| 
| enum   | DynamicModel { RandomWalk, 
AutoRegression1
 } | 
|   | 
| enum   | UpdateType { Additive, 
Compositional
 } | 
|   | 
| enum   | ResamplingType { None, 
BinaryMultinomial, 
LinearMultinomial, 
Residual
 } | 
|   | 
| enum   | LikelihoodFunc { AM, 
Gaussian, 
Reciprocal
 } | 
|   | 
| enum   | MeanType { None, 
SSM, 
Corners
 } | 
|   | 
 | 
| 
  | PFParams (int _max_iters, int _n_particles, double _epsilon, DynamicModel _dyn_model, UpdateType _upd_type, LikelihoodFunc _likelihood_func, ResamplingType _resampling_type, MeanType _mean_type, bool _reset_to_mean, const vectorvd &_ssm_sigma, const vectorvd &_ssm_mean, bool _update_distr_wts, double _min_distr_wt, double _adaptive_resampling_thresh, const vectord &_pix_sigma, double _measurement_sigma, int _show_particles, bool _enable_learning, bool _jacobian_as_sigma, bool _debug_mode) | 
|   | 
| 
  | PFParams (const PFParams *params=nullptr) | 
|   | 
| 
bool  | processDistributions (vector< VectorXd > &state_sigma, vector< VectorXd > &state_mean, VectorXi &distr_n_samples, unsigned int &n_distr, unsigned int ssm_state_size) | 
|   | parse the provided mean and sigma and apply several priors to get the final parameters for all distributions 
  | 
|   | 
 | 
| 
static const char *  | toString (DynamicModel _dyn_model) | 
|   | 
| 
static const char *  | toString (UpdateType _upd_type) | 
|   | 
| 
static const char *  | toString (ResamplingType _resampling_type) | 
|   | 
| 
static const char *  | toString (LikelihoodFunc _likelihood_func) | 
|   | 
| 
static const char *  | toString (MeanType _likelihood_func) | 
|   | 
 | 
| 
int  | max_iters | 
|   | maximum iterations of the PF algorithm to run for each frame 
  | 
|   | 
| 
int  | n_particles | 
|   | number of particles to use 
  | 
|   | 
| 
double  | epsilon | 
|   | iterations will be terminated when L2 norm of the change in tracker corners exceeds this 
  | 
|   | 
| 
DynamicModel  | dynamic_model | 
|   | 
| 
UpdateType  | update_type | 
|   | 
| 
LikelihoodFunc  | likelihood_func | 
|   | 
| 
ResamplingType  | resampling_type | 
|   | 
| MeanType  | mean_type | 
|   | method used for computing the mean of the SSM states corresponding to the particles.  More...
  | 
|   | 
| 
bool  | reset_to_mean | 
|   | reset all particles to the mean/optimal corners found in each frame 
  | 
|   | 
| 
vectorvd  | ssm_sigma | 
|   | standarsd deviations of the Gaussian distributions to use for the samplers 
  | 
|   | 
| 
vectorvd  | ssm_mean | 
|   | mean of the Gaussian distributions to use for the samplers 
  | 
|   | 
| 
bool  | update_distr_wts | 
|   | update the proportion of samples taken from different sampler according to the weights of the samples generated by each 
  | 
|   | 
| 
double  | min_distr_wt | 
|   | fraction of the total particles that will always be evenly distributed between the samplers; 
  | 
|   | 
| 
double  | adaptive_resampling_thresh | 
|   | maximum ratio between the number of effective particles and the total particles for resampling to be performed; setting it to <=0 or >1 disables adaptive resampling 
  | 
|   | 
| 
vectord  | pix_sigma | 
|   | 
| 
double  | measurement_sigma | 
|   | 
| 
int  | show_particles | 
|   | 
| 
bool  | enable_learning | 
|   | 
| 
bool  | jacobian_as_sigma | 
|   | 
| 
bool  | debug_mode | 
|   | decides whether logging data will be printed for debugging purposes; 
  | 
|   | 
      
        
          | MeanType PFParams::mean_type | 
        
      
 
method used for computing the mean of the SSM states corresponding to the particles. 
\ 0: No mean computed - just use the state of the particle with the highest weight 1: let the SSM compute the mean of the samples 2: mean of the corners of the bounding boxes corresponding to the particles 
 
 
The documentation for this struct was generated from the following file: