Pierre Boulanger, Ph.D., P.Eng

 

Professor and CISCO Chair in Healthcare

 

Director of the Advanced Man-Machine Interface

Laboratory


Department of Computing Science

University of Alberta

 

Athabasca Hall, Room 411

Edmonton, Alberta

T6G 2E8, Canada


Tel: (780) 492-3031
Fax: (780) 492-1071

Email: pierreb@ualberta.ca

 
Who am I?
 
Date of Birth: April 24, 1957

 

Hometown: Beautiful Quebec City

I am a man who loves life, music, fine food, and most importantly, ideas


 

A Short CV

 

Dr. Boulanger cumulates more than 36 years of experience in 3D computer vision, rapid product development, and the applications of virtual reality systems to medicine and industrial manufacturing. Dr. Boulanger worked for 18 years at the National Research Council of Canada as a senior research officer, where his primary research interest was in 3D computer vision, rapid product development, and virtualized reality systems. He now has a double appointment as a professor at the University of Alberta Department of Computing Science and the Department of Radiology and Diagnostic Imaging. He is currently the Director of the Advanced Man-Machine Interface Laboratory (AMMI) as well as the scientific Director of the SERVIER Virtual Cardiac Centre. In 2013, Dr. Boulanger was awarded the CISCO chair in healthcare solutions, a ten years investment by CISCO systems in the development of new IT technologies for healthcare in Canada.

 

His main research topics are on the development of new techniques for telemedicine, patient-specific modeling using sensor fusion, and the application of telepresence technologies to medical training, simulation, and collaborative diagnostics. His work has contributed to gain international recognition in this field, publishing more than 350 scientific papers and collaborating with more than 15 universities, research labs, and industrial companies across the world. He is on the editorial board of two major academic journals. Dr. Boulanger is also on many international committees and frequently gives lectures on computational medicine and augmented reality systems. He is also the CTO of Maiad Lab Inc., a start-up dedicated to using advanced technology solutions to enhance the health and quality of life of our clientele worldwide.

Full CV


 

University Education

Ph.D. in Electrical Engineering (1994), University of Montreal (Ecole Polytechnique), Department of Electrical Engineering, Montreal, Canada.

Advising Professor: Dr. P. Cohen

Dissertation: Multi-Scale Extraction of Geometric Elements

MSc in Physics (1982), Laval University, Department of Physics Quebec City, Canada.

Advising Professor: Dr. M. Baril

Dissertation: Multi-Passage Mass Spectrometer

BSc in Engineering Physics (1980), Laval University, Department of Engineering Physics, Quebec City, Canada.

Dissertation: Design and Construction of a Multi-Channel Analyzer for an Electron Spectrometer


Research Interests

3D Computer Vision

Neural Networks

Virtualized Reality Systems

Collaborative Virtual Environments

Tele-Immersion

Medical Imaging

Physical Modeling

Sensor-Based Geometric Modeling

Tele-Medicine

Sensor Fusion


 

Current and Past Projects

 

See AMMI Laboratory WebSite

 


 

Publication List

The most recent publication list: Publications


 

Recent Committee Work

 

Director of the Advanced Man-Machine Interface Laboratory

Scientific Director of the SERVIER Virtual Heart Center

Faculty of Science Disciplinary Committee

Member of the Scientific Advisory Board of CRIM

General Conference Chair of AI/GI/CRV 2017

Member of the editorial board of the Journal of Computer Science and Informatics

Member of the editorial board of the Journal of Radiology

Review Editor of Frontier in ICT Computer Image Analysis

Member of the CIHR Reviewers

Member of the FQRNT Selection Committee

Program Committee of EuroVR

Program Committee for Salento AVR Conference


 

Current Grants

 

CISCO Chair in Healthcare Solution

Heart and Stroke Foundation

NSERC Alliance

NSERC Discovery Grant

NSERC Equipment Grant


 

Teaching

I will be teaching Introduction to Virtual/Augmented Reality and Telepresence in the fall term and Introduction to GPU Programming, Fundamentals of Medical Imaging, and Quantum Computing in Winter 2020.

 

Introduction to Computer Graphics

This course is an introduction to computer graphics concentrating on two- and three-dimensional graphics and interactive techniques. Course topics include fundamental concepts of raster graphics, simple output primitives, windowing, clipping, and 2D transformations, 3D transformations, modeling and viewing, hidden-line and hidden-surface removal, illumination, and shading models, morphing and warping, texture mapping, ray-tracing, radiosity, and introduction to animation.

Introduction to Multimedia Technology

This course is an introduction to basic principles and algorithms used in the current technologies of multimedia systems. One of the goals of this course is to give the student hands-on experience in issues relating to multimedia data representation, compression, processing, and retrieval. Also, the course address issues relating to sound transmission, music streaming, 2-D and 3-D graphics, image, and video. It also explores human perceptual problems associated with multimedia technologies.

Introduction to Scientific Visualization

Among the most significant scientific challenges of the 21st century will be to effectively understand and make use of the vast amount of information being produced. By its very nature, visualization addresses the challenges created by such excess: too many data points, too many variables, too many time steps, and too many potential explanations. Thus, as we work to tame the accelerating information explosion and employ it to advance scientific, biomedical, and engineering research, visualization will be among our most essential tools. This course aims at introducing scientists, engineers, as well as practitioners in medicine to the fundamentals of data visualization.

Haptics Systems

This graduate-level course is an introduction to the field of haptics, focusing on teleoperated and virtual environments that are displayed through the sense of touch. Topics covered include human haptic sensing and control, design of haptic interfaces (tactile and force), haptics for teleoperation, haptic rendering and modeling of virtual environments, control and stability issues, and medical applications such as telesurgery and surgical simulation. This course is addressed to students with interests in robotics, virtual reality, or computer-integrated surgical systems.

Point-Based Graphics

 

This course presents the latest research results in point-based computer graphics. After an overview of the critical research issues, 3D scanning devices are discussed, and novel concepts for mathematical representation of point-sampled shapes are presented. The course describes methods for high-performance and high-quality rendering of point models, including advanced shading, anti-aliasing, and transparency. It also presents efficient data structures for hierarchical rendering on modern graphics processors and summarizes methods for geometric processing, filtering, re-sampling of point models, and physical modeling.

 

Sensor-Based Modeling

In recent years, sensors and algorithms for three-dimensional (3D) imaging and modeling of real objects have received significant attention, not only in the computer vision and graphics research communities, but are also increasingly being used as tools for a variety of applications in medicine, manufacturing, archeology, and any field requiring 3D modeling of real environments. The main goal of this course is to present a general overview of digital 3D imaging technology from photogrammetry to tomographic systems and the various modeling techniques necessary to create 3D models of large and small structures that are compatible with multiple manufacturing and medical applications. 

Advanced Signal Processing for Computer Scientists

This class addresses the representation, analysis, and design of discrete-time signals and systems. The major concepts covered include discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flow-graph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; Wavelet Transform; Wiener and Kalman Filters, and various applications. This course qualifies as a breadth requirement in theory.

Real-time Digital Signal Processing Using GPU

This class addresses the representation, analysis, and design of discrete-time signals and systems. The major concepts covered include discrete-time processing of continuous-time signals; decimation, interpolation, and sampling rate conversion; flow-graph structures for DT systems; time-and frequency-domain design techniques for recursive (IIR) and non-recursive (FIR) filters; linear prediction; discrete Fourier transform, FFT algorithm; short-time Fourier analysis and filter banks; multivariate techniques; Wavelet Transform; Cepstral analysis, Wiener and Kalman Filters, and various applications. We also discuss and analyze the GPU implementations of many of these algorithms.

 

Fundamentals of Medical Imaging

 

The course will first review the two-dimensional signal processing theory after reviewing one-dimensional signal processing and sampling. We will then study four general medical imaging modalities: projection radiography, computed tomography, magnetic resonance imaging, and ultrasound. The goal will be to understand these modalities in terms familiar to engineers and physicists. Flexibility exists for the instructor to vary the depth and penetration of each topic area after determining the general background and experience of the students.

 

Computers and Society

 

The course deals with moral, legal and social issues of computer technology. Many ethical problems that did not exist before are now omnipresent. For example, one can get our news from many free, online sources but their existence is threatening the existence of the newspapers that employ the reporters who gather the news. Social media are a great way to interact but they can threaten personal privacy. This course explores these issues and more.

 

Introduction to Human-Computer Interaction

 

This course introduces students to topics in human-computer interaction, focusing on human capabilities and limitations, interaction design, current and future interactive systems and devices, and methods for evaluating interaction systems.

 

Introduction to GPU Programming

 

This course introduces how to program heterogeneous parallel computing systems such as GPUs. The course covers CUDA language, functionality, and maintainability of GPU, how to deal with scalability, portability issues, technical subjects, parallel programming API, tools and techniques, principles and patterns of parallel algorithms, processor architecture features, and constraints.

 

Introduction to Virtual/Augmented Reality and Telepresence

 

Virtual reality and augmented reality can provide an immersive environment where many scenarios can be simulated. For example, manufacturing and engineering tasks, medical planning and training, art and design, rehabilitation, Physics, Biology and Chemistry concept exploration, and many others can benefit from a virtual reality environment. This course focuses on the challenges of setting up a user-friendly virtual reality scene where users can interact intuitively and naturally. The use of interactive techniques and sensor-based devices, such as haptic and head-mount display, in creating a virtual environment for scientific analysis, visualization exploration and Tele-presence, as well as how mobile users can participate in these applications, will be discussed.

 

Quantum Computing for Computer Scientist

 

This course is an introduction to the theory and applications of quantum information and quantum computation from the perspective of computer science. The course will cover classical information theory, compression of quantum information, quantum entanglement, efficient quantum algorithms, quantum error-correcting codes, fault-tolerant quantum computation, and quantum machine learning. The course will also cover physical implementations of quantum computation into real quantum computers and their programming languages using real-world examples utilizing a state-of-the-art quantum technology through the IBM Q Experience, Microsoft Quantum Development Kit, and D-Wave.


 

Current Graduate Students

 

 

Post-docs and Visiting Professors

 

 

Nathaniel Rossol, Mitacs postdoc, Improved Human Movement Tracking and Prediction in High-Occlusion Multiuser Virtual Reality Environments

 

 

Ph.D. Students

 

Ray Yang, Ph.D. Medical Physics, Development of an Efficient Algorithmic Framework Therapy for Deterministic Patient Dose Calculation in MRI-guided Radiotherapy

 

Hong Zu Li, Ph.D. CS, Continuous Heart Anomaly Detection System with Motion Artifacts Suppression

 

Thea Wang, Ph.D. CS, Application of Proxy Haptics to Medical Training


Shrimanti Ghosh, Ph.D. CS, Anatomy Deformation Estimation During Gynecological Brachytherapy Treatments

 

Deepa Krishnaswamy, Ph.D. Medicine, A Novel 4D Semi-Automated Algorithm for Volumetric Segmentation in Echocardiography

 

Athar Mahmoudi-Nejad, Ph.D. CS, Application of Virtual Reality to Manage Anxiety Disorders

 

Mohsen Soltanpour, Ph.D. CS, Ischemic Stroke Lesion Segmentation from CT Perfusion Scans

 

Bernal Manzanilla, Ph.D. CS, Robotically Controlled Multi-View Ultrasound Imaging

 

Farnoosh Fatemi Pour, Ph.D. CS, Visualizing Neural Networks in Action Using Virtual Reality

 

 

Master Students

 

Mike Feist, MSc CS, Application of LSTM to Video Image Processing

 

Mahdi Rahmani Hanzaki, MSc CS, Surgical Training Using Proxy Haptic Mannequin

 

Pouneh Gorji, MSc CS, Automated Fatty Liver Detection in Ultrasound Images Using U-Net, We all miss Pouneh what a tragedy.

  

Emilie Robertson, MSc Medicine, Virtual Surgical Planning in Cranial Vault Reconstruction for Infants with Unilateral Coronal Synostosis

 

Anahita Doosti Sanjani, MSc CS, Virtual E-Commerce Applications

 

Davinderjit Kaur, MSc MM, Virtual E-Commerce Applications

 

 

Technical Support

 

Stephanie Schaeffer, Programmer for the MedROAD and VRSpinClass projets

 

Xuping Fang, Programmer for the MedROAD project

 

 

Administrative Support

 

Melanie Calvert, Deals with all admin issues in the lab

 

Esmatullah Naikyar, Project management and business development for the MedROAD and Virtual E-Commerce Projects

 

 

 

 


 

Current Collaborations

 

CISCO Systems

Siemens Canada

InnovMetric Inc.

Quanser

Smart Network

National University of Columbia, Colombia

UofA Department of Electrical and Computer Engineering

UofA Mechanical Engineering Department

CNRS/LIMSI Laboratory, Orsay, France

INSA, Ampere Laboratory, Lyon, France

UofA Department of Radiology and Diagnostic Imaging

UofA School of Public Health

Centre for the Advancement of Minimally Invasive Surgery (CAMIS), an Alberta Health Services (AHS)

Institute for Reconstructive Sciences in Medicine (iRSM)

Faculty of Rehabilitation Medicine

Surgical Simulation Research Lab

Medical Physics Division, Dept. Oncology, Cross Cancer Institute

 


Last Update February 2020