|
enum | HistType { Dirac,
Bilinear,
BSpline
} |
|
typedef shared_ptr< IlluminationModel > | ILM |
|
|
| SCVParams (const AMParams *am_params, HistType _hist_type, int _n_bins, double _pre_seed, bool _partition_of_unity, bool _weighted_mapping, bool _mapped_gradient, bool _approx_dist_feat, bool _debug_mode) |
| value constructor
|
|
| SCVParams (const SCVParams *params=nullptr) |
| default/copy constructor
|
|
| AMParams (int _resx, int _resy, double _grad_eps=GRAD_EPS, double _hess_eps=HESS_EPS, bool _uchar_input=UCHAR_INPUT, double _likelihood_alpha=AM_LIKELIHOOD_ALPHA, double _likelihood_beta=AM_LIKELIHOOD_BETA, bool _dist_from_likelihood=AM_DIST_FROM_LIKELIHOOD, double _learning_rate=AM_LEARNING_RATE, IlluminationModel *_ilm=nullptr) |
|
| AMParams (const AMParams *am_params=nullptr) |
|
| ImgParams (int _resx, int _resy, double _grad_eps=GRAD_EPS, double _hess_eps=HESS_EPS, bool _uchar_input=UCHAR_INPUT) |
|
| ImgParams (const ImgParams *img_params=nullptr) |
|
|
static const char * | toString (HistType _hist_type) |
|
|
HistType | hist_type |
| method used for computing the joint histogram: Dirac: Dirac delta function that uses nearest neighbor interpolation Bilinear: Bilinearr interpolation BSpline: use BSpline function of order 3 as the kernel function for Parzen density estimation
|
|
int | n_bins |
| no. More...
|
|
bool | partition_of_unity |
| decides whether the partition of unity constraint has to be strictly observed for border bins; if enabled, the pixel values will be normalized in the range [1, n_bins-2] so each pixel contributes to all 4 bins
|
|
double | pre_seed |
| initial value with which each bin of the joint histogram is pre-seeded to avoid numerical instabilities due to empty or near empty bins
|
|
bool | weighted_mapping |
|
bool | mapped_gradient |
|
bool | approx_dist_feat |
|
bool | debug_mode |
| decides whether logging data will be printed for debugging purposes; only matters if logging option is enabled at compile time
|
|
double | likelihood_alpha |
| multiplicative and additive factors for the exponent in the likelihood
|
|
double | likelihood_beta |
|
bool | dist_from_likelihood |
| use negative of likelihood as the distance measure
|
|
double | learning_rate |
| optional factor to control the rate of online learning
|
|
ILM | ilm |
| optional parametric function of pixel values that can account for lighting changes
|
|
int | resx |
| horizontal and vertical sampling resolutions
|
|
int | resy |
|
double | grad_eps |
| numerical increment/decrement used for computing image hessian and gradient using the method of finite differences
|
|
double | hess_eps |
|
bool | uchar_input |
|
no.
of bins in the histograms if use_bspl and partition_of_unity are enabled, this should be 2 more than the desired no. of bins (w.r.t normalized pixel range) since the actual range within which the pixel values are normalized is 2 less than this value to avoid boundary conditions while computing the contribution of each pixel to different bins by ensuring that pixels with the maximum and minimum values contribute to all 4 bins required by the bspline function of order 3 used here;
The documentation for this struct was generated from the following file: