
Effective Attack Models for Shilling Item-Based
Collaborative Filtering Systems

Bamshad Mobasher, Robin Burke, Runa Bhaumik, Chad Williams
Center for Web Intelligence

School of Computer Science, Telecommunication and Information Systems
DePaul University, Chicago, Illinois

{mobasher,rburke,rbhaumik,cwilli}@cs.depaul.edu

ABSTRACT
Significant vulnerabilities have recently been identified in
collaborative filtering recommender systems. These vulnera-
bilities mostly emanate from the open nature of such systems
and their reliance on user-specified judgments for building
profiles. Attackers who cannot be readily distinguished from
ordinary users may introduce biased data in an attempt to
force the system to “adapt” in a manner advantageous to
them. A handful of simple attack models have, so far, been
identified, and there appear to be significant differences in
the susceptibility of different recommendation techniques to
these attacks. In particular, item-based collaborative filter-
ing has been found to offer some security advantages over
user-based collaborative filtering. Our research in secure
personalization is examining a range of more complex attack
models and recommendation techniques, paying particular
attention to the costs and benefits of mounting an attack.
In this paper, we take a closer look at item-based collabora-
tive filtering. In particular, we propose a new attack model
that focuses on a subset of users with similar tastes and
show that such an attack can be highly successful against
an item-based algorithm.

Key Words: Shilling, Collaborative Filtering, Recom-
mender Systems, Attack Models

1. INTRODUCTION
Recent research has begun to examine the vulnerabilities
and robustness of different recommendation techniques, such
as collaborative filtering, in the face of what has been termed
“shilling” attacks [2, 1, 5, 6]. Attackers who cannot be read-
ily distinguished from ordinary users may introduce biased
data in an attempt to force the system to “adapt” in a
manner advantageous to them. Recommendation systems,
as well as many other user-adaptive systems are vulnera-
ble to such attacks, precisely because they rely on users’
interactions with the system and past user profiles to gener-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. WebKDD’05, August 21, Chicago, Illinois, USA.
Copyright 2005 ACM, ISBN: 1-59593-214-3, $5.00.

ate recommendations or dynamic content. The wide-spread
use of such systems in domains such as electronic commerce
and information access provides a strong motivation for un-
scrupulous agents to use such attacks in the hope of gaining
economic advantage.

It is easy to see why collaborative filtering is vulnerable to
shilling attacks. A user-based collaborative filtering algo-
rithm collects user profiles, which are assumed to represent
the preferences of many different individuals and makes rec-
ommendations by finding peers with like profiles. If the
profile database contains biased data (many profiles all of
which rate a certain item highly, for example), these biased
profiles may be considered peers for genuine users and re-
sult in biased recommendations. This is precisely the effect
found in [5] and [6]. We have replicated these results and
begun to extend them to consider alternative attack models.

Our work considers in particular the cost of mounting an
attack. This cost has two primary components: knowledge
cost and execution cost. Knowledge cost is the cost or ef-
fort required to gather information about the system to be
attacked or its users. We assume that the more detailed the
knowledge that is required by an attack (details of the rat-
ing distribution across profiles, for example) the more costly
the attack will be to mount. The execution cost is the ef-
fort required in terms of interactions with the system to
add the necessary profiles and ratings to execute the attack.
While this latter cost may seem irrelevant when automated
software agents can generate the needed profiles, we believe
that it remains a relevant consideration. To defend against
shilling attacks, sites may implement policies limiting the
speed with which profiles can be built. Thus, an attack that
requires a small number of short attack profiles would be
much more practical to mount and more difficult to detect
and defend against than one that requires that many profiles
be constructed, each with many ratings.

Lam et al. [5] show that item-based collaborative filtering
appears to offer an advantage over the user-based approach.
In item-based collaborative filtering, the system looks for
items with similar profiles and makes predictions based on
a user’s own rating of these peer items (see example below).
By adding biased user profiles, an attacker can only alter a
portion of the profile for any given item. In [2], we suggested
that an attack could be designed specifically to target an
item-based recommendation algorithm if it is designed to

Figure 1: The general form of a push attack profile.

change the distances between item profiles in specific ways.
This attack, called here the favorite item attack, is designed
to target individual users by co-rating their favorite items
with a target item. However, such an attack presents too
significant a knowledge requirement to be of practical use
by an attacker. In order to know which items are the best
peers for the target item, the attacker must know what each
user’s ratings are for each item.

This paper proposes a generalization of the favorite item
attack called the segmented attack. A segmented attack is
one that pushes an item to a targeted group of users with
known or easily predicted preferences. Profiles are inserted
that maximize the similarity between the pushed item and
items preferred by the group. As we show below, the seg-
mented attack is both effective and practical against stan-
dard item-based collaborative filtering algorithms.

The paper is organized as follows. In Section 2 we pro-
vide a detailed description of various attack models against
collaborative filtering systems, including those proposed in
earlier work, as well as some that we have examined in out
research. Section 3 includes some background information
and the specific details of the user-based and item-based
recommendation algorithms used in our experiments. This
section also contains a description of the evaluation metrics
we have used to determine the effectiveness of various attack
models. In Section 4 we present our experimental results.
We first show the impact of some of the previously stud-
ied attack models on the item-based algorithm. We then
provide a detailed analysis of the proposed segmented at-
tack model and experimentally show that it can be effective
against item-based collaborative filtering.

2. ATTACK MODELS
An attack against a collaborative filtering recommender sys-
tem consists of a set of attack profiles, biased profile data
associated with fictitious user identities, and a target item,
the item that the attacker wishes the system to recommend
more highly (a push attack), or wishes to prevent the sys-
tem from recommending (a nuke attack). We concentrate on
push attacks in this paper. An attack model is an approach
to constructing the attack profile, based on knowledge about
the recommender system, its rating database, its products,
and/or its users. The general form of a push attack profile
is depicted in Figure 1. An attack profile consists of an m-
dimensional vector of ratings, were m is the total number of
items in the system. The rating given to the pushed item,
target, is rmax and is the maximum allowable rating value.
On the other hand, the ratings r1 through rm−1 are assigned

to the corresponding items according to the specific attack
model. Indeed, the specific strategy used to assign ratings
to items 1 through m − 1 is what determines the type of
attack model used.

In the remainder of this section, we provide an illustrative
example that will help illustrate the vulnerability of collab-
orative filtering algorithms, and will serve as a motivation
for the attack models, which we will then describe more for-
mally.

2.1 An Example
Consider, as an example, a recommender system that iden-
tifies books that users might like to read using a user-based
collaborative algorithm [3]. A user profile in this hypotheti-
cal system might consist of that user’s ratings (in the scale of
1-5 with 1 being the lowest) on various books. Alice, having
built up a profile from previous visits, returns to the system
for new recommendations. Figure 2 shows Alice’s profile
along with that of seven genuine users. An attacker, Eve,
has inserted attack profiles (Attack1-3) into the system, all
of which give high ratings to her book labeled Item6. Eve’s
attack profiles may closely match the profiles of one or more
of the existing users (if Eve is able to obtain or predict such
information), or they may be based on average or expected
ratings of items across all users.

If the system is using a standard user-based collaborative
filtering approach, then the predicted ratings for Alice on
Item6 will be obtained by finding the closest neighbors to
Alice. Without the attack profiles, the most similar user
to Alice, using correlation-based similarity, would be User6.
The prediction associated with Item6 would be 2, essentially
stating that Item6 is likely to be disliked by Alice. After the
attack, however, the Attack1 profile is the most similar one
to Alice, and would yield a predicted rating of 5 for Item6,
the opposite of what would have been predicted without
the attack. So, in this example, the attack is successful,
and Alice will get Item6 as a recommendation, regardless of
whether this is really the best suggestion for her. She may
find the suggestion inappropriate, or worse, she may take the
system’s advice, buy the book, and then be disappointed by
the delivered product.

On the other hand, if a system is using an item-based col-
laborative filtering approach, then the predicted rating for
Item6 will be determined by comparing the rating vector for
Item6 with those of the other items. This algorithm does not
lend itself to an attack as obvious as the previous one, since
Eve does not have control over ratings given by other users
to any given item. However, if Eve can obtain some knowl-
edge about the rating distributions for some items, this can
make a successful attack more likely. In the example of Fig-
ure 2, for instance, Eve knows that Item1 is a popular item
among a significant group of users to which Alice also be-
longs. By designing the attack profiles so that high ratings
are associated with both Item1 and Item6, Eve can attempt
to increase the similarity of these two items, resulting in a
higher likelihood that Alice (and the rest of the targeted
group) will receive Item6 as a recommendation. Indeed, as
the example portrays, such an attack is highly successful
regardless of whether the system is using an item-based or
a user-based algorithm. This latter observation illustrates

Figure 2: An example of a push attack favoring the target item Item6.

the motivation behind the attack model we introduce and
analyze in this paper, namely the segmented attack.

2.2 Attack Models
Prior work on recommender system stability has examined
primarily three types of attack models:

• Sampling attack: A sampling attack is one in which
attack profiles are constructed from entire user profiles
sampled from the actual profile database, augmented
by a positive rating for the pushed item. This attack
is used by O’Mahony et al. [6] to provide a proof of the
instability of collaborative filtering algorithms, but is
the least practical from a knowledge cost standpoint.

• Random attack: Lam et al. [5] show an attack model
in which profiles consist of random values (except of
course for a positive rating given to the pushed item).
Specifically, r1 through rm−1 are assigned to the cor-
responding items by generating random values within
the rating scale with a distribution centered around the
mean for all user ratings across all items (see Figure 1).
The knowledge required to mount such an attack is
quite minimal, especially since the overall rating mean
in many systems can be determined by an outsider
empirically (or, indeed, may be available directly from
the system). The execution cost involved, however, is
still substantial, since it involves assigning ratings to
every item in each attack profile. Furthermore, as [5]
shows and our results confirm [1], the attack is not
particularly effective.

• Average attack: A more powerful attack described
in [5] uses the individual mean for each item rather
than the global mean (except again the pushed item.)
In the average attack, each assigned rating, ri, in an
attack profile corresponds (either exactly or approxi-
mately) to the mean rating for itemi, across the users
in the database who have rated that item (see Fig-
ure 1). In addition to the effort involved in producing
the ratings, the average attack also has considerable
knowledge cost of order m. Our experiments, how-
ever, have shown that, in the case of user-based al-
gorithm, the average attack can be just as successful

Figure 3: A Bandwagon attack profile.

by assigning the average ratings to a small subset of
items in the database, thus substantially reducing the
knowledge requirement [1]. This attack model, how-
ever, is not, in general, effective against an item-based
collaborative algorithm, as show in Section 4 below.

In addition to these attack models, we have introduced sev-
eral others that are described below. Some of these attack
models were introduced in [2] and were analyzed in the con-
text of user-based collaborative filtering in [1]. In this paper,
we discuss these attacks in the context of item-based collab-
orative filtering.

• Bandwagon attack: This attack takes advantage of
the Zipf’s law distribution of popularity in consumer
markets: a small number of items, best-seller books for
example, will receive the lion’s share of attention and
also ratings. The attacker using this model will build
attack profiles containing those items that have high
visibility. Such profiles will have a good probability
of being similar to a large number of users, since the
high visibility items are those that many users have
rated. For example, by associating her book with cur-
rent best-sellers, for example, The DaVinci Code, Eve
can ensure that her bogus profiles have a good proba-
bility of matching any given user, since so many users
will have these items on their profiles. This attack
can be considered to have low knowledge cost. It does
not require any system-specific data, because it is usu-
ally not difficult to independently determine what the
“blockbuster” products are in any product space.

Figure 3 depicts a typical attack profile for the band-
wagon attack. Items FR1 through FRk are selected

Figure 4: A Favorite Item attack profile.

because they have been rated by a large number of
users in the database. These items are assigned the
maximum rating value together with the target item.
The ratings r1 through rm−k−1 for the other items are
determined randomly in a similar manner as in the
random attack. The bandwagon attack therefore can
be viewed as an extension of the random attack. We
showed in [4] that the bandwagon attack can still be
successful even when only a small subset of the “ran-
dom items”, item1 through itemm−k−1 are assigned
ratings. However, as in the case of the average at-
tack, it falls short when used against an item-based
algorithm, as shown in Section 4 below.

• Favorite item attack: (called the “consistency at-
tack” in [2]) Rather than knowledge about items, the
favorite item attack looks at knowledge of user’s pref-
erences. Such an attack is mounted not against the
system as a whole, but by targeting a given user. We
assume that the attacker knows which items a given
user, u, really likes, and builds profiles containing only
those items. Like the sampling attack, this attack is
not particularly practical from a knowledge cost stand-
point, but provides an upper bound on the effective-
ness of other attacks focused on user characteristics.

Figure 4 depicts a typical attack profile for the favorite
item attack. FIi(u) represent the favorite items by
user u selected in the attack profile. These favorite
items are the ones whose ratings are greater than the
user’s average rating. These items are assigned maxi-
mum rating value together with the target item. The
other items in the database, item1 through itemm−k−1

are assigned ratings at random or based on other cri-
teria. In our experiments, best results were obtained
when the non-favored items are assigned the lowest
possible rating. Given its direct tailoring to each user,
it is not surprising that the favorite item attack is ef-
fective against both user-based and item-based algo-
rithms as our experiments have suggested [1].

• Segmented attack: The segmented attack is a gen-
eralization of the favorite item attack. It may be im-
possible to know what items are preferred by a given
user, but it is possible to discover what items are well
liked by a targeted segment of users and use this fact
to attack that segment specifically. In fact, such an
approach is probably one with great pragmatic appeal
to an attacker. For example, if Eve were an author of
a fantasy book for children, she would probably much
prefer to have her book pushed to users who are fans
of the Harry Potter series than to readers of gardening
books.

This attack also requires very limited knowledge about

Figure 5: A Segmented attack profile.

the system and the users. An attacker needs to know
only a group of items well liked by the target segment
and needs to build profiles containing only those items.
Figure 5 depicts a typical attack profile for the seg-
mented attack. Items SI1 through SIk are the specific
items, in our case they are the movies common to a
segment of users. These items are assigned the maxi-
mum rating value together with the target item. The
ratings r1 through rm−k−1 are assigned ratings at ran-
dom or based on other criteria. As with the favorite
item attack, the best results were obtained when these
items are assigned to 1, the lowest possible rating.

3. RECOMMENDATION ALGORITHMS AND

EVALUATION METRICS
We have concentrated in this work on the most commonly-
used algorithms for collaborative filtering. Each algorithm
assumes that there is a user / item pair for whom a predic-
tion is sought, the target user and the target item. The task
for the algorithm is to predict the target user’s rating for
the target item.

3.1 User-Based Collaborative Filtering
The standard collaborative filtering algorithm is based on
user-to-user similarity [3]. This kNN algorithm operates by
selecting the k most similar users to the target user, and for-
mulates a prediction by combining the preferences of these
users. kNN is widely used and reasonably accurate. The
similarity between the target user, u, and a neighbor, v, can
be calculated by the Pearson’s correlation coefficient defined
below:

simu,v =

∑
i∈I

(ru,i − r̄u) ∗ (rv,i − r̄v)√∑
i∈I

(ru,i − r̄u)2 ∗
√∑

i∈I

(rv,i − r̄v)2

where I is the set of all items that can be rated, ru,i and
rv,i are the ratings of some item i for the target user u and
a neighbor v, respectively, and r̄u and r̄v are the average of
the ratings of u and v over I , respectively. Once similarities
are calculated, the most similar users are selected. In our
implementation, we have used a value of 20 for the neighbor-
hood size k. We also filter out all neighbors with a similarity
of less than 0.1 to prevent predictions being based on very
distant or negative correlations. Once the most similar users
are identified, we use the following formula to compute the
prediction for an item i for target user u.

pu,i = r̄a +

∑
v∈V

simu,v(rv,i − r̄v)

∑
v∈V

|simu,v|

where V is the set of k similar users and rv,i is the rating of
those users who have rated item i, r̄v is the average rating
for the target user over all rated items, and simu,v is the
mean-adjusted Pearson correlation described above. The
formula in essence computes the degree of preference of all
the neighbors weighted by their similarity and then adds
this to the target user’s average rating: the idea being that
different users may have different “baselines” around which
their ratings are distributed.

3.2 Item-Based Collaborative Filtering
Item-based collaborative filtering works by comparing items
based on their pattern of ratings across users. Again, a
nearest-neighbor approach can be used. The kNN algorithm
attempts to find k similar items that are co-rated by different
users similarly.

For our purpose we have adopted the adjusted cosine simi-
larity measure introduced by [7]. The adjusted cosine simi-
larity formula is given by:

simi,j =

∑
u∈U

(ru,i − r̄u) ∗ (ru,j − r̄u)

√∑
u∈U

(ru,i − r̄u)2 ∗
√

n∑
u∈U

(ru,j − r̄u)2

where ru,i represents the rating of user u on item i, and r̄u is
the average of the user u’s ratings as before. After comput-
ing the similarity between items we select a set of k most
similar items to the target item and generate a predicted
value by using the following formula:

pu,i =

∑
j∈J

ru,j ∗ simi,j

∑
j∈J

simi,j

where J is the set of k similar items, ru,j is the prediction
for the user on item j, and simi,j is the similarity between
items i and j as defined above. We consider a neighborhood
of size 20 and ignore items with negative similarity. The idea
here is to use the user’s own ratings for the similar items to
extrapolate the prediction for the target item.

3.3 Evaluation Metrics
There has been considerable research in the area of recom-
mender systems evaluation [4]. Some of these concepts can
also be applied to the evaluation of the security of recom-
mender systems, but in evaluating security, we are interested
not in raw performance, but rather in the change in perfor-
mance induced by an attack. In [6] two evaluation measures

were introduced: robustness and stability. Robustness mea-
sures the performance of the system before and after an
attack to determine how the attack affects the system as a
whole. Stability looks at the shift in system’s ratings for the
attacked item induced by the attack profiles.

Our goal is to measure the effectiveness of an attack - the
“win” for the attacker. The desired outcome for the attacker
in a “push” attack is of course that the pushed item be more
likely to be recommended after the attack than before. In
the experiments reported below, we follow the lead of [6] in
measuring stability via prediction shift. However, we also
measure hit ratio, the average likelihood that a top N rec-
ommender will recommend the pushed item [7]. This allows
us to measure the effectiveness of the attack on the pushed
item compared to all other items.

Average prediction shift is defined as follows. Let U and I
be the sets of target users and items, respectively. For each
user-item pair (u, i) the prediction shift denoted by ∆u,i,
can be measured as ∆u,i = p′

u,i − pu,i, where p′ represents
the prediction after the attack and p before. A positive value
means that the attack has succeeded in making the pushed
item more positively rated. The average prediction shift for
an item i over all users can be computed as

∆i =
∑
u∈U

∆u,i/ |U | .

Similarly the average prediction shift for all items tested can
be computed as

∆̄ =
∑
i∈I

∆i/ |I | .

Note that a strong prediction shift is not a guarantee that an
item will be recommended - it is possible that other items’
scores are affected by an attack as well or that the item
scores so low to begin with that even a significant shift does
not promote it to “recommended” status. Thus, in order to
measure the effectiveness of the attack on the pushed item
compared to other items, we introduce the hit ratio metric.
Let Ru be the set of top N recommendations for user u. For
each push attack on item i, the value of a recommendation
hit for user u denoted by Hui, can be evaluated as 1 if i ∈ Ru;
otherwise Hui is evaluated to 0. We define hit ratio as the
number of hits across all users in the test set divided by the
number of users in the test set. The hit ratio for a pushed
item i over all users in a set can then be computed as:

HitRatioi =
∑
u∈U

Hui/ |U | .

Likewise average hit ratio can then calculated as the sum of
the hit ratio for each item i following an attack on i across
all items divided by the number of items:

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0% 5% 10% 15%

Attack Size

P
re

d
ic

ti
o

n
S

h
if

t

User Based Item Based

Figure 6: Average Attack in Items-Based v. User-
Based Collaborative Filtering.

HitRatio =
∑
i∈I

HitRatioi/ |I | .

We plan to explore other metrics based on recommendation
behavior, such as the bin-based techniques used in [5] and
others, in our future work.

4. EXPERIMENTS AND DISCUSSION
In our experiments we have used the publicly-available Movie-
Lens 100K dataset1. This dataset consists of 100,000 ratings
on 1682 movies by 943 users. All ratings are integer values
between one and five where one is the lowest (disliked) and
five is the highest (most liked). Our data includes all the
users who have rated at least 20 movies. We used a neigh-
borhood size of 20 in the k-nearest-neighbor algorithms for
both item-based and user based techniques. To perform
our attack experiments, we must average over a number of
different attack items, so we selected 50 movies taking care
that the distribution of ratings for these movies matched the
overall ratings distribution of all movies. We also generally
selected a sample of 50 users as our test data, again mir-
roring the overall distribution of users in terms of number
of movies seen and ratings provided. The results reported
below represent averages over the combinations test users
and test movies. We use the two metrics of prediction shift
and hit ratio to measure the relative performance of various
attack models. Generally, the values of these metrics are
plotted against the size of the attack reported as the num-
ber of attack profiles as a percentage of the total number of
profiles in the system.

Our earlier investigation [2, 1], as well as the study reported
in [5], suggest that while the average and random attacks
can be successful against user-based collaborative systems,
they generally fall short of having a significant impact in the
stability of item-based algorithms . For example, Figure 6
shows that item-based CF approach is more robust than the
standard user-based algorithms in terms of the overall pre-
diction shift on target items. Similar results were obtained
when measuring the hit ratio.

1http://www.cs.umn.edu/research/GroupLens/data/

In our earlier examination of user-based collaborative filter-
ing, we examined the bandwagon attack - a lower knowledge
version of the random attack and found that it was compa-
rable in performance to the average attack without requiring
as much system-specific knowledge. We repeated these ex-
periments against the item-based algorithm with similar re-
sults, namely that despite its lower knowledge requirements,
the bandwagon attack was comparable to the average attack
in impact. The average attack resulted in slightly higher in
both prediction shift and hit ratio measures. However, the
overall impact of this attack compared to the average attack
was far less successful for the item-based algorithm confirm-
ing the relative stability of the item-based algorithm over the
user-based algorithm. These results are depicted in Figure 7
using 10

Should we conclude then that an item-based algorithm is a
successful defense against shilling attacks, or are there spe-
cific attack models that can have a practical impact on such
systems? The favorite item attack was introduced in [2]
as an approach that appeared to have a theoretical advan-
tage over previously-developed attack types when applied
to the item-based collaborative filtering. Our preliminary
results [1] showed that this attack model can be effective
against both user-based and item-based algorithms. Here
we extend those results and examine the segmented attack
as a more effective and practical variation of the favorite
item attack.

The favorite item attack assumes that we have knowledge of
a handful of items that each user likes. Liked items are most
likely to be rated - users can often predict that they will not
like a particular movie and therefore avoid seeing it. Attack
profiles can then be assembled that consist of these liked
items and the pushed movie. Other movies are assigned low
ratings. Note that a new attack must be formulated for each
target user. This is not practical, of course, but if we gen-
eralize from the single user to a market niche of users with
similar tastes, it becomes plausible that an attacker might
construct an attack targeted only to that niche. Indeed,
the attacker might have demographic and marketing data
that sorts the users into market segments whose preferences
might be highly predictable.

Based on this observation we introduce the segmented at-
tack (see Figure 5), in which a set of items are selected for
co-rating with the target item based on how they define a
segment of users. Thus, the segmented attack targets a set
of users, in contrast to individual users in the favorite item
attack. Furthermore, the selection of the segment is done
implicitly (without direct knowledge about the individual
users within the segment) by the virtue of selecting highly
rated movies with similar characteristics. To build our seg-
mented attack, we identified a segment of users all of whom
had given above average scores(4 or 5) to any three of the
five movies,namely,Alien, Psycho, The Shining, Jaws, and
The Birds.2

For this set of five movies, we then selected all combinations
of three movies that had at least 50 users support, chose 50

2The list was generated from on-line sources of the pop-
ular horror films: http://www.imdb.com/chart/horror and
http://www.filmsite.org/afi100thrillers1.html.

0

0.1

0.2

0.3

0.4

0.5

0.6

0% 3% 6% 9% 12% 15%

Attack Size

P
re

d
ic

ti
o

n
S

h
if

t

Average Bandw agon

0.00

0.01

0.01

0.02

0.02

0.03

0 10 20 30 40 50

#of Top Recommendations

H
it

R
a

ti
o

Average Bandwagon Baseline

Figure 7: Comparison of Average and Bandwagon attacks in Item-Based algorithm.

of those users randomly and averaged the results. These re-
sults were also confirmed with a different segment based on
Harrison Ford’s movies. The power of the segmented attack
is emphasized in Figure 8 in which the impact of the attack
is compared within the targeted user segment and within
the set of all users. Left panel in the Figure shows the com-
parison in terms of prediction shift and varying attack sizes,
while the right panel depicts the hit ratio at 1% attack.
While the segmented attack does show some impact against
the system as a whole, it truly succeeds in its mission: to
push the attacked movie precisely to those users defined by
the segment. Indeed, in the case of in-segment users, the
hit ratio is much higher than average attack.The chart also
depicts the effect of hit ratio before any attack. Clearly the
segmented attack has a bigger impact than any other attack
we have previously examined against item-based algorithm.
Our prediction shift results show that the segmented attack
is more effective against in-segment users than even the more
knowledge intensive average attack for the item-based col-
laborative algorithm.

Finally, we performed a set of experiments to determine the
impact of “focus” on the segmented attack. By focus, here
we mean the degree to which the user segment is character-
ized by its interest in a specific type of item. In this case
we considered three user segments with increasing degrees of
focus based on the movies they have rated highly. The first
segment (focus 1) consists of all those users who have given
above average rating to any one of the five horror movies as
mentioned above. The second segment (focus 2) has users
who have rated 4 or 5 any two of the five movies. Finally the
users in the third segment (focus 3) had rated above average
any three of the five movies. As the focus increases, the user
segments become smaller and increasingly characterized by
those who enjoy horror movies.

We performed the segmented attack against each segment,
in each case taking the movie combinations described above
as the selected items that were co-rated with the target item
in the attack profiles. For the focus 2 and focus 1 results,
the average was taken from running all combinations of the
movies used in focus 3. The results of this experiment are
depicted in Figure 9, showing the prediction shift and hit

ratio values, respectively, across the three segments. We
fixed the number of top recommendations, N , to 17 (1% of
the total items). As expected, the increase in focus results
in the segmented attack having a higher impact in the tar-
geted user segment, but even a segment defined by two liked
movies in common is strongly impacted by the attack.

5. CONCLUSIONS
The open and interactive nature of collaborative filtering is
both a source of strength and vulnerability for recommender
systems. As our research and that of others has shown, bi-
ased profile data can easily sway the recommendations of a
collaborative system towards inaccurate results that serve
the attacker’s ends. Previous research had held out hope
that item-based collaborative filtering might be relatively
robust compared to the more common user-based variant.
However, our research reported here shows that a fairly low-
cost technique, the segmented attack, can be successfully
deployed against item-based recommenders. Furthermore,
the segmented attack offers pragmatic advantages for the
attacker. Instead of spreading the bias due to the attacks
across the whole user base, the segmented attack lets the at-
tacker pick a focused set of users to whom an item should be
pushed, effectively allowing targeted marketing of particular
products to those sets of individuals judged as most likely
to be influenced by the biased recommendation. We believe
that hybrid recommender systems, which combine collab-
orative and content-based filtering, as well as model-based
recommendation algorithms, may provide partial solutions
the bias injection problem studied in this paper. We plan
to examine the robustness of such algorithms in the context
of different attack models in our future work.

6. REFERENCES
[1] R. Burke, B. Mobasher, and R. Bhaumik. Limited

knowledge shilling attacks in collaborative filtering
systems. In Proceedings of the 3rd IJCAI Workshop in
Intelligent Techniques for Personalization, Edinburgh,
Scotland, August 2005.

[2] R. Burke, B. Mobasher, R. Zabicki, and R. Bhaumik.
Identifying attack models for secure recommendation.
In Beyond Personalization: A Workshop on the Next

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

#of TopRecommendations

H
it

R
a

ti
o

All user Insegment Pre-attackbaseline

0

0.2

0.4

0.6

0.8

1

0% 3% 6% 9% 12% 15%

Attack Size

P
re

d
ic

ti
o

n
S

h
if

t

All users In segment

Figure 8: Segmented attack in Item-Based algorithm

0

0.2

0.4

0.6

0.8

1

0% 3% 6% 9% 12% 15%

Attack Size

P
re

d
ic

ti
o

n
S

h
if

t

Focus 3 Focus 2 Focus 1

Figure 9: Analysis of in-segment focus in Segmented attack.

Generation of Recommender Systems, San Diego,
California, January 2005.

[3] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An
algorithmic framework for performing collaborative
filtering. In Proceedings of the 22nd ACM Conference
on Research and Development in Information Retrieval
(SIGIR’99), Berkeley, CA, August 1999.

[4] J.Herlocker, J. Konstan, L. G. Tervin, and J. Riedl.
Evaluating collaborative filtering recommender
systems. ACM Transactions on Information Systems,
22(1):5–53, 2004.

[5] S. Lam and J. Reidl. Shilling recommender systems for
fun and profit. In Proceedings of the 13th International
WWW Conference, New York, May 2004.

[6] M. O’Mahony, N. Hurley, N. Kushmerick, and
G. Silvestre. Collaborative recommendation: A
robustness analysis. ACM Transactions on Internet
Technology, 4(4):344–377, 2004.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th International
World Wide Web Conference, Hong Kong, May 2001.

