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Abstract   

 Mining for frequent patterns in transactional databases has been studied 

for more than a decade. Many algorithms have been developed to mine static 

databases. There are a few incremental algorithms, FUP2 and SWF, that allow 

both addition and deletion of transactions. However, they are not efficient 

because they have to rescan the whole dataset at least once. They are not 

suitable in real time situations where transactions are added or deleted 

constantly and frequent patterns mining could be required at any time. 

In this thesis, we propose a novel data structure called CATS Tree. CATS 

Tree extends the idea of FP-Tree to improve storage compression and allow 

frequent pattern mining without generation of candidate itemsets. The proposed 

algorithms allow mining with a single pass over the database as well as addition 

or deletion of transactions in the finest granularity at any given time. 
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CHAPTER 1 

 
1. General Introduction  

 
With advancement in modern storage technologies, it is possible to store 

a large amount of data cheaply, in both financial sense and physical sense. 

Because of that, it is feasible for companies to record all kinds of data from 

customers’ personal information to purchasing transactions. This leads to 

accumulation of huge amount of data. However, huge amount of data does not 

equate to huge amount of information and most of the collected data require 

substantial amount of processing before useful information can be extracted. 

The process of extracting hidden patterns from large datasets is called 

knowledge discovery. One crucial phase of the knowledge discovery process is 

data-mining: a collection of specific algorithms to sift through the data. 

Information extracted from huge transactional datasets is commonly expressed 

in the form of association rules that have the following format: 



⇒

occurs n appear whe  that likelyhood  theis confidence and

set data in the appearing , itemset,  theof percentage  theissupport  where
 )confidence (support,  

XY

XY
YX

Frequent itemsets are itemsets that have support greater than a minimum user 

defined support. Before association rules can be constructed, the frequencies of 

the underlying frequent itemsets have to be found. The first efficient and 

published data-mining algorithm is Apriori [1]. Apriori is based on the downward 

closure property of itemset that if an itemset of length k is not frequent, none of 

its superset patterns can be frequent. Before each data scan, candidate frequent 
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itemsets, i.e., itemsets that have the potential to be frequent, are generated; 

candidate frequent itemsets are verified whether they are frequent or not during 

the next data scan. Apriori had sparkled a lot of interest in the data-mining 

community. Many researchers [5,19,20,26] have proposed many ways to 

improve Apriori. Yet, there are many more researchers who are continuing to 

work on frequent itemset mining. This is because frequent itemset mining is the 

most important step in the entire data mining process; frequent itemset mining is 

also the most resources consuming step in the knowledge discovery process. 

Therefore any improvement in frequent itemset mining will have a significant 

effect on the performance of data mining. 

This thesis focuses on the mining of frequent itemsets because it is 

universal to all kinds of association rules and in addition, it is highly resource 

demanding. 

 
1.1. Motivation 

The original Apriori algorithm requires k scans or passes over the data 

where k is the length of the longest frequent itemset. This requires a significant 

amount of I/O overhead. The data mining community has done a significant job 

to reduce the number of data scans required to two scans in the worse case and 

a single pass in the best case [26]. However, the best-case scenario requires 

extreme conditions, namely that all possible frequent itemsets must appear 

uniformly in all partitions. Theoretically that is possible, however, in real life 

transactions, it is unlikely that such extreme conditions would hold true. 
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Therefore it is almost certain that more than one data scans are required to 

complete data mining.  

Most of the time, data mining is performed on a huge database. Therefore 

it may not be feasible to restart frequent pattern mining whenever there is an 

update. Hence incremental data mining algorithm that allows both insertion and 

deletion of transaction without restarting from scratch is highly desirable. Slide 

Window Filtering (SWF) algorithm is proposed for incremental mining of 

association rules [17]. Based on cumulative information of previous mining, SWF 

requires single scan for incremental mining. In order to achieve single scan, 

SWF employs candidate 2 itemsets in the memory to generate the set of 

candidate frequent itemsets with length of k. Even if the increment is very small; 

SWF still requires to scan the whole dataset. Therefore, SWF is not suitable in 

situations where datasets are updated and data mining is performed frequently. 

As shown in [10], it is computationally expensive to generate candidate sets, sets 

that are potentially frequent, and it is especially true when the support is low and 

there are many candidate 2 itemsets. Therefore it would be ideal if an algorithm 

can perform incremental data mining without generating candidate frequent 

itemsets and without a complete rescan of the data.  

By nature, association rule mining requires trials and errors. Users 

perform data-mining with specified support and confidence. In most of the cases, 

the results from the initial data-mining may not be satisfactory. Users have to 

change the support or confidence and rerun the process until satisfactory results 
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are obtained. It is common to change the required minimum support after results 

from the initial mining are obtained. When the required support is increased, the 

information required is more restrictive. Existing algorithms adapt the situation by 

pruning extra information from the initial mining results. On the other hand, when 

the required support is decreased, the constraint is less restrictive. Therefore, 

more information is required. Most known association rule mining algorithms 

store just enough information for that particular required support. As a result, 

most known association rule mining algorithms require to restart from scratch. In 

[14], Pattern Tree or P-tree is proposed to address the sensitivity of user support. 

However, P-tree incurs a large memory overhead and the P-tree must be 

converted into a FP-tree before frequent pattern mining. The conversion is 

required no matter how small the changes are. Furthermore, P-tree does not 

support removal of transactions. 

The objective of this thesis is to incorporate previous knowledge into a 

new data structures and a set of algorithms that allow single pass data mining to 

discover frequent itemsets. At the same time, the data structure would allow 

incremental data mining without generating candidate itemsets. This thesis tries 

to address the sensitivity of user input parameters without having to restart the 

mining process from scratch. Furthermore, addition and removal of transactions 

from the data structure are taken into account and discussed in this thesis. 
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1.2. Contribution 

In this thesis, we present an approach to use prefix tree to compress the 

whole dataset into a data structure that can be used for frequent itemset mining 

directly. The prefix tree is called Compressed Arranged Transaction Sequences 

Tree or CATS Tree in short. When the data is dense where patterns within the 

dataset have high correlation with one another, e.g., medical data, CATS Tree 

allows data to be stored with smaller space. Once the data resides within a 

CATS Tree, single pass data mining can be achieved. The algorithm used to 

mine frequent patterns from the CATS Tree is called FrEquent/Large patterns 

mINing with CATS TrEe or FELINE in short. All previous association rule mining 

algorithms require multiple scans. Single pass data mining helps to relieve bottle 

neck in the I/O system. Furthermore, CATS Tree can be built incrementally. The 

tree can also be built piecewise and the pieces are merged together. This 

provides a framework for parallelism to enhance performance.  

CATS Tree also allows incremental data mining at the lowest level, i.e., 

one transaction at a time. Transactions can be substracted either premanently 

from the tree or temporary during frequent itemset mining. As far as we know, 

this is the first single pass data mining algorithm that allows both addition and 

deletion of transactions in the finest granuality, i.e., a single transaction. 

FELINE mines the CATS Tree without generating candidate itemsets. 

This provides an advantage over Apriori based algorithms that require to 

generate candidate frequent itemsets especially when the data is dense, where 
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cost of generation of candidate frequent itemsets can be exponential. In addition, 

the CATS Tree is insensitive to user parameters, i.e., FELINE can accommodate 

changes in user input parameters without changing the tree. Since FELINE can 

be used at any time, our algorithms are especially useful in real time transaction 

streams where frequent pattern mining could be required at any time. Unlike 

SWF, there is no preset limit on the number of transactions that can be removed, 

CATS Tree algorithms can be used to maintain a fixed number of transactions 

within the tree by concurrent addition and removal of transactions. As far as we 

know, there is no other algorithm that can mine exactly a fixed number of 

transactions in real time transaction stream at any time. 

The remainder of the thesis is organized as follows. Chapter 2 surveys 

related work. Chapter 3 introduces the CATS Tree structure and the algorithms 

to build it and to mine frequent patterns from it. Chapter 4 discusses the 

implementation challenges and solutions to solve certain problems. Chapter 5 

presents experimental results. Conclusions are given in Chapter 6. 
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CHAPTER 2 

 
2. Previous Work  

 
2.1. Introduction 

One of the major uses with association rules is to analyze large amount of 

supermarket basket transactions [2,4,10,16]. Recently, association rules have 

been applied to other areas like outliers detection, classification, clustering etc 

[5,7,9,13,16,18,27,30]. The popularity of association rules can be attributed to its 

simplicity. Association rules mining can formally be defined as follows. Let I = {i1, 

i2, i3, …, im} be a set of attributes called items. Let D be a set of transactions. 

Each transaction t in D consists of a set of items such that t ⊆ I. A transaction t is 

said to contain an itemset X if and only if all items within X are also contained in 

t. Each transaction also contains a unique identifier called TID. Support of an 

itemset is normalized number of occurrences of the itemset within the dataset. 

An itemset is considered as frequent or large, if the itemset has a support that is 

greater or equal to the user specified minimum support. The most common form 

of association rules is implication rule which is in the form of X ⇒ Y, where X ⊂ I, 

Y ⊂ I and X ∩ Y = ∅. The support of the rule X ⇒ Y is equal to the percentage of 

transactions in D containing X ∪ Y. The confidence of the rule X ⇒ Y is equal to 

the percentage of transactions in D containing X also containing Y. Depending 

on the application, the definition of confidence can be changed to suit a 
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particular need [4,5,16,21,27]. For example, instead of using confidence as the 

measure of interestedness, χ2 can be used to measure the correlation in the 

frequent itemsets. Once the required minimum support and confidence are 

specified, association rule mining becomes finding all association rules that 

satisfy the minimum requirements. The problem can be further broken down into 

2 steps: mining of frequent itemsets and generating association rules. 

The number of possible combinations of itemsets increases exponentially 

with |I| and the average transaction length. Therefore it is infeasible to determine 

the support of all possible itemsets. When counting the supports of itemsets, 

there are two strategies. The first strategy is to count the occurrences directly, 

whenever an itemset is contained in a transaction, the occurrence of the itemset 

is increased. The second strategy is to count the occurrences indirectly by 

intersecting TID set of each component of the itemset. The TID set of a 

component X, where X can be either item or itemset, is denoted as X.TID. The 

support of an itemset S = X ∪ Y is obtained by intersecting X.TID ∩ Y.TID = 

S.TID and the support of S equals |S.TID|.  

2.2. Apriori-based Algorithms 

The very first published and efficient frequent itemset mining algorithm is 

Apriori [1]. Apriori uses breadth first search (BFS) as the search strategy. At 

each level, Apriori reduces the search space by using downward closure 

property of itemset that if an itemset of length k is not frequent, none of its 

superset patterns can be frequent. Candidate frequent itemsets, Ck where k is 
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the length of the itemset, are generated before each data scan. The supports of 

candidate frequent itemsets are counted. Candidate k itemsets, Ck, are 

generated with frequent k - 1 itemsets. Apriori achieves good performance by 

iterative reduction of candidate itemsets. However, Apriori requires k data scans 

to find all frequent k-itemsets. In large databases, it is very expensive to scan the 

data multiple times. A number of algorithms have been proposed to improve the 

performance of Apriori. Most of those improvements address issues related to 

the I/O cost.  

Dynamic Itemset counting, DIC, relaxes the strict separation between 

generating and counting of itemsets [5]. DIC starts counting the support of 

candidate frequent itemsets as soon as they are being generated. By 

overlapping counting and candidate itemset generation, DIC reduces the overall 

data scans required. Orlando et al. proposed an algorithm that combines 

transaction reduction and direct data access [20]. At the end of each scan, 

transactions that are potentially useful are written back to the disk drive for the 

next iteration. A technique called scan reduction uses candidate 2 itemsets to 

generate subsequent candidate itemsets [17]. If all intermediate data can be held 

in the main memory, only one scan is required to generate all candidate frequent 

itemsets. Another data scan is required to verify whether the candidate frequent 

itemsets are indeed frequent. 

With all of those improvements, the number of data scans required by 

Apriori based algorithms has been reduced significantly. However, the number of 
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data scans required is still related to the length of the maximal frequent itemsets. 

Furthermore, the cost of generating candidate frequent itemsets has not been 

fully addressed by Apriori based algorithms. This problem becomes apparent 

when there are huge numbers of frequent 1 or 2 itemsets. 

2.3. Partition-based Algorithms 

Motivated by the high number of database scans required by Apriori 

based algorithms, Partition algorithm was proposed [26]. In most cases, Partition 

algorithm requires two complete data scan to mine frequent itemsets. The 

Partition algorithm divides the dataset into many subsets and each subset can 

be fitted into the main memory. The main idea of Partition algorithm is that a 

frequent itemset must be frequent in at least one of the subsets. During the first 

data scan, Partition algorithm generates local frequent itemsets for each 

partition. Since the whole partition can be fitted into the main memory, the 

complete local frequent itemsets can be mined without further disk access. The 

local frequent itemsets are added to the global candidate frequent itemsets. In 

the second data scan, false candidates are removed from the global candidate 

frequent itemsets. In a special case where each subset contains identical local 

frequent itemsets, Partition algorithm can mine all frequent itemsets with a single 

data scan. However, when the data is distributed unevenly across different 

partitions, Partition algorithm may generate a lot of false candidates from a small 

number of partitions. AS-CPA and SSAS-CPA were proposed to address the 

effect of uneven distribution of frequent patterns [19]. By employing the 



Chapter 2 
Previous Work 

11 

knowledge collected during the mining process, false global candidate frequent 

itemsets are pruned when they are found that they cannot be frequent. In 

addition, those algorithms reduce the number of scans in the worse case to (2p-

1)/p where p is the number of partitions.  

2.4. DFS and Hybrid Algorithms 

Eclat and Clique combine depth first search (DFS) with intersection 

counting [33]. By using intersection counting, no complicated data structure is 

required. Furthermore, only the TID sets of the itemsets of the path from the root 

down to the leaves have to be kept in the memory simultaneously. This reduces 

the memory requirement of the algorithm. Intersection of TID sets can be 

stopped as soon as the remaining length of the shortest TID set is shorter than 

the required support minus the counted support. As pointed out by the authors, 

intersecting 1 itemset TID sets to determine frequent 2 itemsets is expensive. 

The authors assume frequent 2 itemsets are available from pre-processing. 

From frequent 2 itemsets, maximal hypergraph clique clustering is applied to 

generate a refined set of maximal itemsets. Hipp et al. pointed out that DFS 

cannot prune candidate k itemsets by checking frequent k – 1 itemsets [11]. This 

is because DFS searches from the root to the leaves of the tree without using 

any subsets relationship.  

A hybrid approach of BFS and DFS is proposed [12]. When the number of 

candidate frequent itemsets is small, it is cheaper to use itemset counting with 

BFS to determine the supports. When the number of candidate frequent itemsets 
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is relatively large, the hybrid algorithm switches to TID set intersection with DFS. 

This is because simple TID set intersection is more efficient than occurrence 

counting when the number of candidate frequent itemsets is relatively large. This 

would incur additional costs to generate TID sets. The authors propose to use 

hash-tree-like structure to minimize the cost of transition. However, the authors 

do not provide an algorithm to determine when is the best condition to switch 

strategy. In the evaluation, the authors provide parameters to change in strategy. 

However, those parameters may not be generalized enough for all kinds of 

datasets. As pointed out by the authors, incorrect timing of changing strategy 

may decrease the performance of hybrid algorithm. 

2.5. Pattern Growth Algorithms 

Two major costs of Apriori based algorithms are the cost to generate 

candidate frequent itemsets and the I/O cost. Data mining community has 

addressed the issues related I/O, but the issues related to candidate frequent 

itemsets generation remain. First, the cost required to generate candidate k 

itemsets especially when there are a lot of k –1 frequent itemsets. For example, 

if there are n frequent 1 itemsets, Apriori based algorithms would require to 

generate approximately n2/2 candidate frequent itemsets. Secondly, the memory 

required to hold the candidate frequent itemsets and their supports could be 

substantial. For example, when n equals 10,000, there would be more than 108 

length 2 candidate frequent itemsets. Assuming it requires 4 bytes to hold the 

support and 4 bytes to hold the itemsets, it would require close to 0.5 gigabytes 
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of main memory to store the information. Furthermore, the memory required 

does not include the overhead from the data structure. Thirdly, the cost required 

to counting the support of candidate itemsets may not be trivial. As observed in 

run time behaviour of Apriori based algorithms, the run time increases as the 

support decreases. Therefore, the cost of candidate frequent itemsets 

generation of Apriori based algorithms could easily overshadow the cost of I/O.  

Han et al. proposed a data structure called frequent pattern tree or FP-

Tree [10]. FP-growth mines frequent itemsets from FP-Tree without generating 

candidate frequent itemsets. FP-Tree is an extension of prefix tree structure. 

Only frequent items have nodes in the tree. Each node contains the item’s label 

and its frequency. The paths from the root to the leaves are arranged according 

to the support of the items with the frequency of each parent is greater than or 

equal to the sum of its children’s frequency. The construction of FP-Tree requires 

two data scans. In the first scan, the support of each item is found. In the second 

scan, items within transactions are sorted in descending order according to the 

support of items. If two transactions share a common prefix, the shared portion is 

merged and the frequencies of the nodes are incremented accordingly. Nodes 

with the same label are connected with an item link. The item link is used to 

facilitate frequent pattern mining. In addition, each FP-Tree has a header that 

contains all frequent items and pointers to the beginning of their respective item 

links. FP-growth partitions the FP-Tree based on the prefixes. FP-growth 

traverses the paths of FP-Tree recursively to generate frequent itemsets. Pattern 
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fragments are concatenated to ensure all frequent itemsets are generated 

properly. In this way, FP-growth avoids the costly operations of generating and 

testing of candidate itemsets. 

As pointed out by the authors of FP-Tree, no algorithm works in all 

situations. The fact holds true for FP-Tree when the dataset is sparse. When the 

data is sparse, the compression achieved by the FP-Tree is small and the FP-

Tree is bushy. As a result, FP-growth would spend a lot of effort to concatenate 

fragmented patterns with no frequent itemsets being found.  

A new data structure called H-struct is introduced in [25]. Transactions are 

sorted with an arbitrary ordering scheme. Only frequent items are projected in 

the H-struct. H-struct consists of projected transactions and each node in the 

projected transactions contains item label and a hyper link pointing to the next 

occurrence of the item. A header table is created for H-struct. The header 

contains frequencies of all items, their supports and hyper link to the first 

transaction containing given item. H-mine mines the H-struct recursively by 

building a new header table for each item in the original header with subsequent 

headers omitting items that have been mined previously. For each sub-header, 

H-mine traverses the H-struct according to the hyper links and finds frequent 

itemsets for the local header. At the same time, H-mine builds links for items that 

have not been mined in the local header. Those links are used to find conditional 

frequent patterns within the local header. The process is repeated until all 

frequent itemsets have been mined. In case of a dense dataset, H-struct is not 
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as efficient as FP-Tree because FP-Tree allows compression. H-mine would 

dynamically switch to FP-Tree when the dataset is found to be dense. 

2.6. Incremental Update with Apriori-based Algorithms 

A general incremental update data-mining algorithm is highly desirable in 

frequent pattern mining. It is because the complete dataset is normally huge and 

the incremental portion is relatively small compared to the complete dataset. In 

many cases, it is not feasible to perform a complete data mining process while 

transactions are being added continuously. Therefore, incremental data mining 

algorithms have to reuse the existing information as much as possible, so that 

either computational cost and/or I/O cost can be reduced. 

A general incremental mining algorithm called Fast Update 2, FUP2 that 

allows both addition and deletion of transactions was proposed in [8]. The major 

idea of FUP2 is to reduce the cost of candidate frequent itemsets generation. 

Incremental portion of the dataset is scanned; frequent patterns in the 

incremental data are compared with the existing frequent itemsets in the original 

dataset. Previous frequent itemsets are removed if they are no longer frequent 

after the incremental portion of the data is added or removed. The supports of 

previous frequent itemsets that are still frequent are updated to reflect the 

changes. In those ways, previous frequent itemsets that are still frequent are not 

required to be checked for their supports again. New k +1 candidate frequent 

itemsets are generated from frequent k itemsets. The entire updated dataset is 

scanned to verify those newly added candidate itemsets if they are indeed 
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frequent. The process is repeated until the set of candidate frequent itemset 

becomes empty. FUP2 offers some benefits over the original Apriori; however, it 

still requires multiple scans of the dataset. 

Another incremental Apriori based algorithm is called Sliding Window 

Filtering, SWF for short [17]. SWF incorporates the main idea of Partition 

algorithm with Apriori to allow incremental mining. SWF divides the dataset into 

several partitions. During the scan of partitions, a filtering threshold is employed 

in each partition to generate candidate frequent 2 itemsets. When a candidate 2 

itemset is found to be frequent in the newly scanned partition, the partition 

number and the frequency of the itemset are stored. Cumulative information 

about candidate frequent 2 itemsets is selectively carried over toward 

subsequence partition scans. Cumulative frequencies of previous generated 

candidate frequent 2 itemsets are maintained as new partitions are being 

scanned. False candidate frequent itemsets are pruned when the cumulative 

support of the candidate frequent itemsets fall below required proportional 

support since they have become frequent. Once incremental portion of the 

dataset is scanned, scan reduction techniques are used to generate all 

subsequence candidate frequent itemsets [6]. Another data scan over the whole 

dataset is required to confirm the frequent itemsets. In the case of data removal, 

the partition to be removed are scanned, the cumulative count and the start 

partition number of candidate length 2 itemsets are modified accordingly. 

Although SWF achieves better performance than pervious algorithms, the 
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performance of SWF is still depending on the selection of partition size and 

removal of data can only be done at partition level. 

2.7. Summary 

Table 2.1. provides a summary of the performance properties of existing 

algorithms assuming the best case scenario is being used in each category. DFS 

and hybrid algorithms category are not included in the table because the 

properties of those algorithms require either pre-processing of the data or 

previous knowledge about the data properties. Therefore it is difficult to give an 

accurate summary for those algorithms. Also, in the last column of the table is 

the listing of properties that we want to achieve in this thesis with our algorithms. 

 Apriori Based Partition Based Incremental Apriori FP-Tree Want to achieve 
Number of scans 
required in the best 
case 

2 1 2(1) 2 1 

Number of scans 
required in worse 
case 

k + 1 (2p-1)/p k + 1(1) 2 1 

Candidate 
generation 

Y Y Y N N 

Incremental mining N N Y N Y 
Sensitive to change 
in user parameters  

Y Y Y Y N 

Table 2.1. Properties of existing algorithms. 
Where k is the length of maximal frequent itemsets and p is the number of partitions. Best 
case assumes all enhancements are employed successfully and the data distribution is the 
most favourable distribution for the algorithm. Worse case assumes none of the 
enhancements work. Incremental Apriori has the behaviour of Apriori for the initial mining 
and single pass is required for incremental mining 
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CHAPTER 3 
 

3. CATS Tree Algorithms  

 

3.1. Introduction 

Before designing new frequency pattern mining data structures and 

algorithms, let us examine the properties of existing algorithms and compare 

them with what we want to achieve. As shown in Table 2.1., combining 

incremental Apriori and FP-Tree could produce a result that is the closest to what 

we want to achieve. However, incremental Apriori lacks the elegant data 

structure that allows mining without generating candidate itemset. On other 

hand, FP-Tree lacks the data history of incremental Apriori. Hence, a more 

robust and flexible data structure is needed to handle incremental mining.  

In this thesis, algorithms that compress the whole dataset into an 

intermediate data structure are proposed. The data structure allows data mining 

without referencing the original dataset. At the same time, the data structure is 

completely insensitive to and unaffected by user parameters. Users can perform 

data mining repeatedly with different parameters without having to rebuild the 

structure. The data structure is called Compressed Arranged Transaction 

Sequences Tree or CATS Tree since transactions are arranged in sequences for 

local optimization in a prefix tree and indirectly compressed. The CATS Tree is 

an extension of FP-Tree and it contains all elements of FP-Tree including the 
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header, item links etc. However, there are few major differences between the two 

data structures.  

CATS Tree FP-Tree 

Contains all items in every transaction Contains only frequent items 
Single scan data mining Two scans data mining 
Items within a transaction do not need 
to be sorted 

Items within a transactions are sorted 

Sub-trees are locally optimized to 
improve compression 

Sub-trees are not locally optimized 

Ordering of items within paths from the 
root to leaves are ordered by local 
support  

Ordering of items within paths from the 
root to leaves are ordered by global 
support 

CATS nodes having the same parent 
are sorted in descending order 
according to local frequencies. If two 
CATS nodes have the same 
frequencies, they are sorted arbitrarily 
either numerically or lexicographically 

Children of a node are not sorted 

Table 3.1. Differences between CATS Tree and FP-Tree. 

Transactions in table 3.2. are used to illustrate some differences between 

CATS Tree and FP-Tree. Assuming the absolute required support is 3 

transactions. 

TID Original Transactions Projected transactions for FP-Tree 
1 F, A, C, D, G, I, M, P F, C, A, M, P 
2 A, B, C, F, L, M, O F, C, A, B, M 
3 B, F, H, J, O F, B 
4 B, C, K, S, P C, B, P 
5 A, F, C, E, L, P, M, N F, C, A, M, P 

Table 3.2. An example of transaction database. 

Shown in Figure 3.1. are the CATS Tree and the FP-Tree constructed 

from the sample database. Since CATS Tree is an extension of FP-Tree, it is 

structurally similar, except branches in CATS Tree are longer than those of FP-

Tree. This is because CATS Tree contains all items in each transaction rather 
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than just the frequent items. As illustrated in the dashed rectangles in Figure 

3.1., nodes in CATS Tree are locally optimized. This allows higher compression. 

In the FP-Tree, there are two “M” nodes while there is only one “M” in the CATS 

Tree. 

CATS Tree VS FP-Tree
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CATS Tree FP-Tree

 
Figure 3.1. Differences between CATS Tree and FP-Tree omitting item links. 

In this chapter, we describe CATS Tree algorithms that include: CATS 

Tree Builder which adds one transaction to CATS Tree at a time; CATS Tree 

MErge Or Wedge apart, MEOW in short, that adds or removes a set of 

transactions from CATS Tree; FrEquent/Large pattern mINing with CATS TrEe, 

FELINE in short, that mines frequent pattern from CATS Tree without generating 

candidate itemsets. 
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Before the algorithms are discussed, the data structure is defined first. A 

CATS Tree is a prefix tree that contains all components of the FP-Tree that 

include a header and item links [10]. Each item in the dataset has a node in the 

header and each of them consists of the total frequency of the item in the 

dataset. In addition, each header node contains a pointer that points to the first 

node in the CATS Tree having the same label as that of the header node. Each 

node in the CATS Tree contains item label, its frequency, pointer to its parent, 

pointers to its children and the item links. The item links are double linked list 

that connect all nodes in the CATS Tree having the same item label. Children of 

a node in a CATS Tree are arranged in descending order based on their 

frequencies. All CATS Trees have the following properties:  

1) The compactness of CATS Tree measures how many transactions are 

compressed at a node. The compactness of CATS Tree is the highest at the root 

and the compactness decreases as a node is further away from the root. 

I:1

G:1 O:1

L:1

B:1

C:6

F:3

A:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

N:1

L:1

E:1

F:1
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Z:2

 
Figure 3.2. Compactness of CATS Tree  
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a) Vertical compactness property is inherited from prefix tree that 

the compactness of a parent node must be greater than or equal 

to the sums of compactness of its children.  

b) Horizontal compactness property is the result of branches being 

arranged in descending order of the support attached to the root 

of each sub-tree. As shown in the dashed rectangle in Figure 

3.2., children of a node are arranged in descending order based 

on their compactness. 

2) No item of the same kind, i.e., nodes containing the same item label, could 

appear on the lower right hand side of that level item. Although CATS Tree can 

be extended to handle multiple occurrences of item in a transaction, for 

simplicity, items in a transaction can only have single occurrence, i.e., binary 

transactions as opposed to transactions with reoccurring items [31]. This is a 

common assumption that is used in most association rule algorithms. It is 

obvious that items of the same kind cannot occur underneath one of their own 

because this would violate binary property of itemsets. If there were items of the 

same kind on the right hand side, they should have been merged with the node 

to increase compression. Any items on the lower right hand side can be switched 

to the same level as the item, split nodes as required if switching nodes violates 

the structure of CATS Tree. After the violating node is switched to the same 

level, the violating node can be merged with the node on the left hand side. 

Because of the above properties, a vertical downward boundary is formed below 
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each node and a horizontal rightward boundary is formed at the top of each 

node. The vertical and horizontal boundaries combine to form a step like 

individual boundary.  

I:1

G:1 O:1

L:1

B:1

C:5

F:3

A:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

B:1

K:1

N:1

L:1

E:1

F:1 X:1 Y:1 Z:1 …
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Individual Boundary of B nodes

 
Figure 3.3. Item boundary in CATS Tree 

As shown in Figure 3.3., boundaries of multiple items can be joined together to 

form a more refined boundary for that particular item.  

 
3.2. CATS Tree Builder 

Since CATS Tree contains all the information of the dataset, there could 

be an infinite number of paths within a CATS Tree. Unlike the construction of FP-

Tree, construction of CATS Tree requires only a single data scan. Heuristic 

search is the only method to locate the best position to merge transactions and 

branches. New transactions are added to a CATS Tree at the root. At each level, 

items of the transaction are compared with those of children nodes. If same 

items exist in both the new transaction and that of the children nodes, they would 

be merged together and the frequency of the node is incremented. The 
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remaining of the transaction is added to the merged node and the process is 

repeated recursively until all common items are found. Any remaining items of 

the transaction are added as a new branch to the last common node. Once the 

frequency of the new transaction is added, the frequency of a descendant node 

could become larger than that of its ancestor. If that happens, the descendant 

has to swap in front of its previous ancestor to maintain the structural integrity of 

the CATS Tree. The algorithm of CATS Tree is listed below: 

Algorithm : CATS Tree Builder 
Input : set of transactions 
Output : CATS Tree 

1) /* adds transaction by transaction to the root*/ 
PROCEDURE CATSTreeBuilder( input_set )  

2)   for each transaction t  in input_set  
3)     increment frequencies of items of t  in the header. 
4)     CATS Tree’s root.add( t ) 

 
5) /* adds a transaction at the current node */ 

PROCEDURE add(transaction t )  
6)   if (there is common item between children nodes and t )  
7)     child_node.merge( t )  
8)   else if (descendant of children nodes can be merged with  

    t ) 
9)    swap descendant_node and split child_node if  

   necessary and descendant_node.merge( t ) 
10)  else t  is added as a new child_node 
11)  Reposition the merged node if necessary based on  

  frequencies 
12)  restructure the CATS Tree if necessary based on 

  frequencies 
 

13)PROCEDURE merge(transaction t ) 
14)  increase frequency of the node  
15)  remove item from t  and call node.add( t ) 

Pseudo Code 3.1. CATS Tree Builder 

From the above algorithm, construction of CATS Tree requires exactly 

one data scan (line 2). CATS Tree Builder cannot afford to search blindly 

throughout the tree to locate common items. Without considering the structure of 

the CATS Tree, the search space is the whole tree. When searching for a node 
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to be merged, CATS Tree Builder has to search not only the immediate children 

of the current node, but also all of its descendants (line 8). CATS Tree Builder 

prunes the search space in the following ways:  

1) CATS Tree Builder traverses to the descendants if and only if 

there is possibility that the descendant can have greater 

frequency than that of its ancestor. Since items within a 

transaction have frequency of 1, the frequency of the 

descendant of the current node must be equal to that of its 

ancestor. If a descendant does not have the same frequency as 

that of its ancestor, the search can be aborted and another path 

should be followed. 

2) Because of compactness and boundary properties, if a node 

does not have enough frequency to merge with the transaction, 

none of its descendant or rightward siblings would have enough 

frequency. As soon as an invalid node is found, CATS Tree 

Builder can insert the new transaction as a new branch or abort 

the search and pursue other paths. If the ordering of sibling 

nodes becomes out of order after merging, the position of the 

offending node is repositioned to maintain the structural integrity 

of the CATS Tree (line 12). In chapter 4, effective 

implementations that take advantages of item links to reduce the 

addition cost to approximately O(|t|) are discussed. 
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Here the working of CATS Tree Builder is illustrated with the example 

transaction database from Table 3.2. 
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Figure 3.4.B Only A,C,F have been added

 
Figure 3.4. Addition of Transaction 1 & 2 into a CATS Tree 

At the beginning, the CATS Tree is empty. Transaction 1 is added to the CATS 

Tree as it is. When transaction 2 (A, B, C, F, L, M, O) is added, transaction 2 

goes into the for loop section of add(). At line 7 of add(), common items, (F, A, C) 

extracted from transaction 2 are merged with F, A, C nodes and their frequency 

counters are incremented accordingly as shown in Figure 3.4.B. In the fourth 

recursive call of add(), there is no item D in the transaction to merge with node 

D. CATS Tree Builder has to search nodes below node D as shown in line 8. 

Item M is found to be common in both the tree and transaction 2. However, 

transaction 2 cannot merge directly at node M because it would violate the 

structure of CATS Tree. In order to allow merging of transactions, node M is 

swapped in front of node D as shown in line 9 and in Figure 3.4.B. Then item M 

of the transaction 2 is merged with the tree. Since there is no more common item 

between the remaining of transaction 2 and the tree, the remaining portion of 
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transaction 2 is added as a new branch. The new CATS Tree is shown in Figure 

3.5. 
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Figure 3.5. Addition of Transaction 3 into a CATS Tree 

When transaction 3 (B, F, H, J, O) is added to the CATS Tree, item F of 

transaction 3 is merged with node F. Since the frequency of node A is the same 

as that of node F, CATS Tree Builder traverses down the path to find another 

possible node to merge. CATS Tree Builder passes through node A, C, and M; 

finally, it reaches node B. Even though transaction 3 also contains an item B, the 

combined frequency of existing node B and that of transaction is equal to, but 

not greater than, that of node M. It is important to note that in order to merge 

CATS Tree with item B in transaction 3 and, at the same time, maintain the 

integrity of CATS Tree, the procedure has to spilt node A and swap node B in 

front of node A.  
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Figure 3.6. Split and Merge of CATS Tree 

After “Split and Merge”, the resulting CATS Tree may or may not be as 

compressed as the original CATS Tree. In this example, the CATS tree that has 

transaction merged at node B is not compressed as much as before. This is 

evidenced by the total number of nodes in each CATS Tree in Figure 3.7. 
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Figure 3.7. Not Split Vs Spilt & Merge  

In general, we do not know whether it is beneficial or not to perform a “Spilt and 

Merge” when the new combined frequency is the same as before. Therefore, 

CATS Tree Builder will avoid “Spilt and Merge” unless the new combined 
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frequency is greater than the previous frequency. In chapter 4, benefits and 

costs analysis are discussed. 

When transaction 4 (B, C, K, S, P) is added, there is no common item at 

the root level. Therefore transaction 4 is added as it is. When transaction 5 (A, F, 

C, E, L, P, M, N) is added, F, A, C, and M are merged in order as CATS Tree 

Builder traverses down the path. After node M has been merged, CATS Tree 

Builder continues the path to look for a node to merge. Item P is found to be 

common in both the tree and transaction 5. This triggers swapping of node P to 

the front of node D because the frequencies of node P and node D are the 

same. After that, there is no more common item. There is no more unprocessed 

transaction, the construction of CATS Tree from the example database is 

completed 
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Figure 3.8. Addition of Transaction 5 into a CATS Tree 

In general, it is impossible to build a CATS Tree with maximal 

compression without prior knowledge of the dataset. Therefore the structure of a 

CATS Tree is sensitive to both ordering items within transactions and the 
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ordering of transactions. Assuming the order of transaction 1 has been changed 

to (F, M, A, D, G, I, C, P) and the order of transaction 3 and 4 are switched. The 

major differences in the new CATS Tree are highlighted by dashed rectangles in 

the following figures. 
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Figure 3.9. CATS Tree from the same dataset with different ordering 

The differences between the modified CATS Tree and the original one are 

due to the fact that nodes C:4 and F:4 cannot exist together in this example, i.e., 

their compressions are mutually exclusive. In such case, CATS Tree Builder 

resolves the compression contention with first-come-first-serve algorithm. Once 

the contention is removed, either by addition or deletion of transactions, both 

trees could converge. For example, if transaction 6 containing only item C is 

added, in the second tree, the frequency counter of node C is incremented and it 

is done.  
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Figure 3.10. Contention path is removed after a new transaction is added 

In the original CATS Tree, node C:1 in the second branch would be swapped in 

front of node B. It is then merged with item C in the new transaction. CATS Tree 

Builder tries to find other common node in the sibling branches; it locates 

another C node on the first branch. However, node C:3 cannot be swapped in 

front of node F:4 directly because it would violate the compactness of CATS 

Tree. Node F:4 has to be split into two branches, one contains node C:3 and the 

other branch contains the rest of the children. Once node C:3 is swapped to the 

front of node F:3, node C:3 is merged with node C:2. After the merge, the 

resulted CATS Tree is structurally identical to the second tree except the 

ordering of items that have the same frequencies within the same path. Those 

differences are insignificant because the pruning strategy of CATS Tree Builder 

is based on the boundary created by the difference between nodes’ frequencies. 

Any node on the same path with the same frequency is considered as the same 

class; the order of appearance does not matter. 
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Figure 3.11. Merging of two sibling branches 

Although in the above example two structurally different CATS Trees can 

converge into the same tree, in some cases involving multiple contentions, 

multiple structurally different CATS Trees can be constructed from the same 

database. Even though the structure of tree can be different, the information 

stored within a CATS Tree, i.e., the whole database, remains the same.  

The frequent pattern mining algorithm, FELINE, described later, would 

take care of the differences in the structure of trees and produces the identical 

set of frequent patterns. 

 

3.3. CATS Tree MErge Or Wedge apart (MEOW) 

In general, the application setting can be classified as either real time or 

off line. In real time setting, transactions are coming in one by one at any time. In 

off line situations, e.g., data warehouse, transactions could be coming in as a 

batch. CATS Tree algorithms can handle either situations. However, in certain 

settings, like parallel processing or load balancing, it may be advantageous to 



Chapter 3 
CATS Tree algorithms 

33 

process a small portion of the dataset into a small CATS Tree and then merge 

the small tree with the main CATS Tree. Furthermore, data within a database is 

dynamic. Older data may not have the same importance as the recent data. At 

some point in time, older data may be removed to reflect the current state of the 

database. Data modification can be considered as a two-step process. In the first 

step, data that are to be modified are removed. In the second step, updated data 

are inserted back into the database. CATS Tree algorithms support all of the 

above important functions with MEOW algorithms. “MEOW together” allows 

merging of CATS Trees and “MEOW apart” handles deletion of data.  

 

3.3.1. CATS Tree Merge (MEOW together) 

The simplest CATS Tree, apart from an empty tree, is a CATS Tree with a 

single transaction. The difference between a single transaction and a CATS Tree 

with a single transaction is that a CATS Tree has a header while a single 

transaction does not. Therefore merging of a CATS Tree with a CATS Tree that 

has a single transaction can be transformed as merging the headers and then 

adding the only branch of the small tree to the larger CATS Tree. Each node in 

the header contains an item label, an item frequency, pointers to the first node 

and the last node. It is straightforward to merge the nodes within the headers 

together by connecting the last node of a tree to the first node of another tree 

and then adding the support together. However, what we really want to achieve 

is merging of complex CATS Trees together. From the simplest CATS Tree, we 
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learnt that merging headers is an important step. CATS Tree represents a set of 

transactions, the order of processing subsets within a set does not affect the final 

outcome of the set. Therefore, a complex CATS Tree can be broken down into 

many CATS Trees each with one branch only. This simplifies merging of a 

complex CATS Tree into merging of multiple CATS Trees with a single branch. 

Branches can be removed from the new CATS Tree in “first come, first serve” 

fashion and then be added to the existing CATS Tree branch by branch until the 

new CATS Tree is empty. The support of a branch equals the support of the first 

node in the branch. When a branch is added to a CATS Tree, it is imperative 

that adding a new branch would not violate the compactness and the boundary 

properties of the CATS Tree. In the simplest case where there is no common 

item between the branch and the existing CATS Tree, only the compactness 

property requires attention. The new branch can be added solely based on the 

support of the new branch. However, when there are common items between the 

new branch and the existing CATS Tree, “MEOW together” has to consider both 

compactness and boundary properties. Leading item of a branch is the item of 

the first node in the branch. The first step is to find the item in the new branch 

that would have the highest frequency after merging. As shown in Figure 3.12.A, 

F is the item with the highest frequency after the merging. Nodes containing the 

highest frequency item are swapped to the current level and are merged. After 

that, the merged node is inserted back to the existing CATS Tree based on its 

support. The procedure is repeated recursively on the children of the merged 
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nodes. If the new branch is not empty, the selection and merge operations on 

the remaining of the branch are repeated.  
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Figure 3.12. Merge of CATS Tree causes multiple violations of CATS Tree properties 
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Occasionally, the merged node may violate integrity of a CATS Tree in 

two ways: 1) the newly added branch may contain items that are leading items of 

its leftward siblings as shown in Figure 3.12.E. However, the integrity of the 

CATS Tree on the right hand side of the merged node is still intact because, 

from the boundary property, there is no node on the right hand side containing 

the same item as the merged node; 2) the support of the merged node could be 

larger than that of its leftward siblings as shown in Figure 3.12.B. “MEOW 

together” would scan the newly added branch for any leading items of leftward 

siblings except those siblings with support less than that of the merged node. 

Any items found are swapped to the same level as the merged node and then 

those nodes are merged with the respective leftward siblings. Since transactions 

are added to an existing node, at most all newly added transactions are 

removed. The support of the merged node cannot be smaller than what it has 

before, therefore the merged node can only be moving leftward.  

Every time the merged node moves a position, it has to pass its adjacent 

sibling. Whenever the merged node passes a sibling, the sibling is scanned for 

leading item of the merged branch. Nodes have the item as the leading item of 

the merged branch are split and merged with the new branch. The process is 

repeated until the merged branch reaches its proper position based on its 

support. Pseudo code for “MEOW together” is given as follows: 

Algorithm : MEOW together 
Input : two CATS Trees: CATS1 & CATS2 
Output : CATS1 

1) PROCEDURE MEOW_together (CATS Tree CATS1, CATS Tree CATS2)  
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2)   Remove branch b from CATS2 one by one  
3)   CATS1.add( b) until CATS2 is empty  

 
4) PROCEDURE add(CATS node newNode)  
5)   if (there exists a child with the same item as the  

  newNode’s)  
6)     leading item 
7)     merge( newNode, child node) 
8)   else look for descendant  node having item same as newNode  
9)     swap the descendant with the children. Split the child  
10)    node as necessary.  
11)    descendant.merge( newNode) 
12)  else  
13)    add newNode as a new branch 

 
14)PROCEDURE merge(CATS node newNode)  
15)  Support += newNode’s support 
16)  Remove branch b from newNode one by one 
17)    this .add( b) until newNode is empty 
18)  reposition this  as necessary 

 
19)PROCEDURE split(CATS node descendant ) 
20)  if (this.frequency > descendant ’s frequency) 
21)    start from descendant  moves upward until this . 
22)    Divide nodes into nodes containing descendant and not 

    containing descendant 

Pseudo Code 3.2. MEOW together 

The main ideas of the above “MEOW together” are rather simple; the new 

CATS Tree is broken into pieces; one piece is added at a time until the complete 

CATS Tree is merged with the other. However, there are some issues that need 

to be addressed.  

First, branches of a CATS Tree are the result of partitioning based on the 

local item distribution of the tree. If the local item distribution of the new CATS 

Tree is similar to the global item distribution of all CATS Trees, adding the first 

branch of new tree to the existing one can be very effective. It is because the 

new branch is more likely to be added to an existing branch; thus the work 

required to restructure the merged CATS Tree is minimized. On the other hand, 

adding a branch that has an item distribution that does not match with the 
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existing CATS Tree may cause the branch to move back and forth. Even though 

the end results are the same, the order of adding branches does matter in term 

of the amount of work required to merge trees. Therefore finding the optimal 

order of adding the branches can be a challenge by itself.  

Secondly, the addition of a new branch may cause cascade changes to 

the CATS Tree. When the merged branch passes over a sibling, nodes with the 

same item as the leading item of the merged node are extracted from its sibling. 

If the number of transactions extracted is large enough, the support of the sibling 

could be decreased to a point that the branch has to move rightward in order to 

maintain the compactness property of the CATS Tree. As it passes another 

sibling, it may cause the support of another sibling to be changed and so forth. 

As shown in Figure 3.12.B-E, the cost of cascade effect can be substantial, 

especially when the frequency distribution of items in the new branch does not 

match with that of the CATS Tree.  

Thirdly, it could be expensive to locate items underneath a node. If the 

search is undirected, all nodes in the CATS Tree have to be visited in order to 

ensure no node is missed. Traversing the whole branch can be very expensive 

especially when the branch is large and bushy. Item links can be used to 

facilitate the search. However, item links can lead to branches that are 

completely irrelevant to the current branch. Partial index discussed in chapter 4 

can be used to reduce the search space. However, there is maintenance cost 

associates with the index.  
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Fourthly, as new branches are added to another CATS Tree, branches 

added have to be compared with not only that of the other CATS Tree but also 

branches that have just been added. Since branches in the new CATS Tree 

have been compared with each other during the initial construction, there is no 

need to compare those transactions again during the merge.  

In the Chapter 4, implementations that help to address those issues are 

discussed. 

3.3.2. CATS Tree Wedge Apart (MEOW apart) 

When removing transactions from a CATS Tree, we assume that those 

transactions exist in the CATS Tree. The set of transactions to be removed is 

called ∆. Like merging of CATS Tree, the goal of removal transactions is 

efficiency and maintaining the structural integrity of the CATS Tree. CATS Tree 

can be wedged apart either transaction by transaction or by a set of transactions. 

Removing transactions one by one is straightforward and does not incur an 

overhead to process ∆. Furthermore, “MEOW apart by transaction” allows real 

time removal of transactions. Addition and removal of transactions can be 

happening at the same time. This is especially useful when the application 

requires to mine frequent patterns from a fixed number of transactions. However, 

removal of transactions by set allows a higher degree of parallelism and allows 

elimination of multiple transactions with a single scan.  

In the case of “MEOW apart by transaction”, t ∈ ∆, frequencies of items 

within t at the current level are obtained and item with the highest frequency is 
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selected. If there were multiple items having the same frequency, item that is on 

the left most hand side in the CATS Tree is considered as the selected item. By 

the boundary property of CATS Tree, t will be located in the branch having the 

item with the highest frequency. If t were located on the right hand side of 

predicted node, the item with the highest current level frequency within t would 

have to locate on the right hand side of the predicted node; this would violate the 

boundary property of a CATS Tree. If t were located on the left hand side of the 

predicted node, this implied there was a node at the same level having frequency 

greater than that of the select branch. This contradicts the definition of the 

highest frequency item. As “MEOW apart by transaction” traverses down the 

path, frequency counter of each traversed node is decremented and the header 

of the CATS Tree is updated. The pseudo code for “MEOW apart by transaction” 

is given as following: 

Algorithm : MEOW apart by transaction 
Input : a CATS Tree: CATS1 and a set of transactions to be removed 
Output : a CATS Tree: CATS1 

1)    Procedure MEOW_apart( set of transactions ) { 
2)      While ( set of transactions  is not empty) { 
3)        Remove transaction t  from set of transactions  
4)        Locate and remove transaction t  from CATS1 
5)        Update CATS1.header 
6)      } 
7)    } 

Pseudo Code 3.3. MEOW apart by transaction 

When removing transactions as a set, the first step involves building of a 

prefix tree out of ∆. Either a CATS Tree or a FP-Tree with 0% support can be 

constructed from ∆. However, a FP-Tree is used here because the construction 

is simpler. Instead of using frequency list of ∆ to sort items within transactions of 
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∆, the global frequency list of the CATS Tree is used. This may not provide as 

much compression as if local frequency list of ∆ were used. However, the global 

frequency list is maintained in CATS Tree header, this allows the FP-Tree to be 

built without reading ∆ twice. Every branch of a FP-Tree or a CATS Tree can be 

represented as following: 

B:m

Y:j

Z:j

M:k

P:l

X:j

…
Repeat n times and n > 0

… ……

 
Figure 3.13. General form of a prefix tree branch 

When n equals one, that means there exists at least (j – k) number of 

transactions that contain only single item X in the whole CATS Tree. Since those 

transactions are singleton, this guarantees that those transactions are 

represented as a child node at the root level. With the index technique discussed 

in chapter 4, the branch can be accessed directly and the frequency of the 

branch can be decremented by (j – k). If the new frequency of that node equals 

zero, the branch is removed from the CATS Tree. The header can be updated 

once at the end of removal by subtracting the header of FP-Tree from that of 

CATS Tree. This reduces the branch of the FP-Tree to the general form with n 

larger than one. Items X to Z form a set called setXZ and |setXZ| equals n. By 
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substituting items X to Z with setXZ, the branch reduces to the general form with 

n equals one. By using the same argument as before, it is guaranteed that there 

exists setXZ at the root level. By substituting setXZ back to items X to Z, this 

means that one of branch that has item X, …, or Z at the root level contains the 

transactions to be removed. This reduces the search space significantly from |I| 

to n. By applying the boundary property of a CATS Tree, only the branch with the 

highest frequency out of those n branches can contain the required transactions. 

Since all branches are arranged in descending order from left to right, items in 

setXZ will be arranged according to their root level frequency. If the frequency of 

item Y at first level is smaller than that of item X, all transactions underneath item 

Y cannot contain any item X. By applying this property iteratively, the above 

conclusion can be drawn. This solves the straight portion of the branch, but it 

does not address the branching section of the branch. As shown in the following 

figure, sub branches of a branch can be broken into multiple straight branches. 
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Figure 3.14. Branching section broken into multiple straight branches 
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After branching section of the FP-Tree branch is broken into straight branches, 

substitution of itemsets can be applied repeatedly until the FP-Tree branch is 

removed. Unlike “MEOW apart by transaction”, a single scan of the CATS Tree 

can remove multiple transactions. While “MEOW apart by set” removes a 

straight branch, it can look ahead of the sub branches to be removed. In the 

above example, “MEOW apart by set” checks frequency of node P at the root 

level if there is one. As shown in Figure 3.14., the frequency of node P at the 

root level is 1. If root level frequency of item P is smaller than that of X before 

deletion or there does not exist a node P at the root, by boundary property of 

CATS Tree, the transaction containing P is underneath the current position. The 

transactions can be removed without restarting at the root. Therefore it is 

possible to remove the whole branch of FP-Tree by a single path traversal. Once 

all branches in the FP-Tree have been removed, the header of the FP-Tree is 

subtracted from that of the CATS Tree. The pseudo code of “MEOW apart by 

set” is given as following: 

Algorithm : MEOW apart by set 
Input : a CATS Tree, CATS1 and removal dataset or CATS Tree, CATS2 
Output : a CATS Tree: CATS1 

1) PROCEDURE MEOW_apart( removal_dataset  or CATS Tree CATS2) 
2)   If ( removal_dataset  is not NULL) 
3)     Build a FP-Tree out of removal_dataset  with global 

    frequency  
4)     prefix_tree  = FP-Tree  
5)   else  
6)     prefix_tree  = CATS2 
7)   for every branch b in prefix_tree  
8)     removeBranch( b) 
9)   subtract prefix_tree  header from CATS1.header 

 
10)PROCEDURE removeBranch(branch b) { 
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11)  At each level, locate the child node that has the highest 
  frequency and the node’s item is same as one the node in 
  the straight portion of the branch 

12)  repeat until straight portion is gone 
  break the branching portion of b into multiple straight 
  branches 

13)  for every straight branch c 
14)    removeBranch( c) 

Pseudo Code 3.4. MEOW apart by set 

 
3.4. FrEquent/Large patterns mINing with CATS Tree (FELINE) 

Unlike FP-tree, once the CATS Tree is built, it can be mined repeatedly 

for frequent patterns with different support thresholds without the need to rebuild 

the tree. Like FP-growth [10], FELINE employs divide and conquer, fragment 

growth method to generate frequent patterns without generating candidate 

itemsets. FELINE partitions the dataset based on what patterns do transactions 

have. For a pattern called p, a p’s conditional CATS Tree is a CATS Tree built 

from all transactions that contain pattern p. Transactions contained in conditional 

CATS Tree can be easily gathered by traversing the item links of pattern p. A 

condensed CATS Tree is a CATS Tree with all infrequent items removed. It can 

be built by traversing the CATS Tree and at each node, the support of the node 

label is found from the header. If the frequency of that label in the header is 

smaller than the required frequency, the node is removed. The children of that 

node are added to its parent node. Like FP-Tree, only frequent items have a 

node in a condensed CATS Tree; unlike FP-Tree, the order of items within a 

branch of a condensed CATS Tree is arranged based on the local frequencies of 

items within the branch instead of global frequencies that are used in FP-Tree. 
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Removal of infrequent nodes can be incorporated into the construction of 

conditional CATS Tree. This allows conditional condensed CATS Tree to be built 

with a single traversal. Although a conditional condensed CATS Tree is very 

similar to a conditional FP-Tree, a conditional condensed CATS Tree is different 

enough that FP-growth cannot be applied directly. It is because the order of 

items within a branch of CATS Tree is arranged based on local frequency. By 

traversing upward only like FP-growth, it cannot be guaranteed that all frequent 

patterns are gathered. 

CATS Tree FP Tree
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Root

B:1

B:1
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C:1
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B:1
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B:1

 
Figure 3.15. FP-growth cannot be applied to CATS Tree  

In the above example, if B’s conditional condensed CATS Tree were built 

by traversing upward only, pattern <B, C, P> would be missed. If C’s conditional 

condensed CATS Tree were built by traversing upward only, pattern <F, A, C, M, 

B> would be missed. In order to ensure all frequent patterns are captured, 

FELINE has to traverse both upward and downward to build conditional 

condensed trees. However, this may cause duplications of frequent patterns 

because frequent patterns could appear in all conditional condensed trees of 
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items that constitute the pattern. To avoid duplications, FELINE excludes items 

that either are infrequent or have been mined. Once a conditional condensed 

CATS Tree is built, pattern fragment growth algorithm such as FP-growth can be 

used to mine frequent patterns. The pseudo code for FELINE is given as 

following: 

Algorithm : FELINE 
Input : a CATS Tree and required support 
Output : a set of frequent pattern 

1) PROCEDURE FELINE(required support ε)  
2)   sort frequent items in the header in descending order 
3)   for each frequent item α 
4)     build αTree = α’s conditional condensed CATS Tree 
5)     mineCATSTree( αTree, α) 

 
6) PROCEDURE mineCATSTree( αTree, α)  
7)   if ( αtree’s support > ε) 
8)     if ( αtree’s contains a straight path P) 
9)       generate frequent patterns in P with support equals 

      that of constituents of P 
10)    else  
11)      at branching area for each frequent item αi  generates  

      αi Tree = αi ’s conditional CATS Tree 
12)      generate pattern β=αi ∪α with support = support of αi  
13)      βTree = β’s conditional condensed CATS Tree 
14)      mineCATSTree( βTree, β) 

Pseudo Code 3.5. FELINE 

In the following section, FELINE is demonstrated with the database shown 

in Table 3.2. The required support is 3. The first step of FELINE is to build a 

sorted frequent item list in a descending order based on the frequency of items 

(line 2). For items with the same frequency, the ordering would be resolved with 

predefined scheme. In the following example, ascending lexicographical ordering 

is used. 



Chapter 3 
CATS Tree algorithms 

47 

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1

L:1

E:1

C:4, F:4, A:3, B:3, M:3, P:3,  L:2, O:2, D:1, E:1, G:1, H:1, I:1, J:1, K:1, N:1, S:1

Sorted item frequency list

B:1

C:4

F:3

A:3

M:3

P:2

C:3

P:3

<C, P>:3

<C>:4

<C,F,A,M>:3

CATS tree C’s conditional condensed CATS Tree

P:1

B:1

 
Figure 3.16. FELINE: C’s conditional condensed CATS Tree 

Conditional condensed CATS Trees are built according to the frequency list. 

Since item C is the first item in the frequency list, C’s conditional condensed 

CATS Tree is built first and then passed to mineCATSTree (line 6). <C>:4 is the 

first frequent pattern produced and then mineCATSTree is called recursively to 

mine the remaining frequent items. Since node C has more than one child, sub 

conditional condensed trees are built according to the local header list (line 11). 

As shown in the Figure 3.16., branch <C, F, A, M> section is a straight branch. 

All combinations of <C, F, A, M> are generated and frequencies of those 

frequent patterns equal the minimum support of their constituent items (line 9). 

However, based on previous works [22,23,24,28], all frequent patterns can be 

generated from <C, F, A, M>:3. Therefore only <C, F, A, M>:3 has been shown. 

Then FELINE builds CFAM’s conditional condensed CATS Tree. Since the 

frequency of item P underneath <C, F, A, M> is smaller than the required 

support, the mining process for that branch ends. After that, node B is checked. 

However item B is infrequent, it is ignored. After the mining of branch <C, F, A, 
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M> has been finished, FELINE builds CP’s conditional condensed CATS Tree. 

This leaves <C, P>:3 the only frequent pattern in that branch and completes the 

mining of C’s conditional condensed CATS Tree. Then FELINE builds F’s 

conditional condensed CATS Tree, and skips mined items and infrequent items.  
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Figure 3.17. FELINE: F’s conditional condensed CATS Tree 

The frequency list in the header can be used to determine whether an item has 

been mined or not. If the frequency of an item in the header is larger than that of 

the current item, that item must have been mined. In the above example (Figure 

3.17.), F’s conditional condensed CATS Tree is built without infrequent item or 

item C. Item B and item P are skipped because they are infrequent in F’s 

conditional condensed Tree. <F>:4 is mined first and FELINE continues to mine 

the remaining of the tree. FELINE mines <F, A, M>:3. The same process is 

repeated until all frequent items are mined. 
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 The algorithms presented in this chapter have been submitted for 

publication in SIAM International Conference on Data Mining (2003) 1 

 

                                                 
1 A version of this chapter has been submitted for publication. SIAM International Conference on 
Data Mining (2003), Cathedral Hill Hotel, San Francisco, CA, May 1-3, 2003. 
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CHAPTER 4 

 
4. Implementation And Challenges  

 

4.1. Introduction 

The initial development of CATS Tree is based on the belief that single 

pass frequent pattern mining is achievable and feasible. It is assumed that there 

is no limitation on the main memory. The assumption is realistic for a reasonably 

large database due to the following reasons: 1) the current trend of modern 

computing moves towards computers with large amounts of main memory 

(gigabytes sized); 2) memory management techniques in the CATS Tree 

manage to minimize memory wastage; 3) data compression technique in the 

CATS Tree compresses multiple transactions into a single path. Most of the 

previous published literature deals with database sized around 100k 

[5,10,12,17,19,25,29,33]. In our experiments, our database size is over a million 

transactions, which is a reasonable size for a respectable department store-like 

transactional database. By comparing memory usage of the CATS Tree with that 

of the FP-Tree, in some of our experiments, the CATS Tree is so memory 

efficient that the CATS Tree successes in our tests, while the FP-tree fails the 

tests with memory trashing. In addition, CATS Tree allows removal of 

transactions concurrently. Even a very huge database can be processed by 

CATS Tree if out of date transactions are removed concurrently. 
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As a proof of concept, a prototype of CATS Tree algorithms is 

implemented with JAVA 1.3.1_01 using high-level data structures, e.g., tree, 

vectors and hash tables. JAVA is chosen as the test platform because of its 

portability, well-documented libraries and availability of integrated development 

environment. These attributes allow fast prototyping without consuming too many 

resources. The prototype is a success in terms of single pass frequent patterns 

mining. The prototype is able to perform single pass mining, incremental update, 

tree merging and deletion. However, from the feasibility and efficiency point of 

view, the prototype requires too much physical memory and it does not scale 

with a large number of transactions. Due to the nature of JAVA, it is difficult to 

exercise tight control on the memory usage. As a result, CATS Tree algorithms 

need to be implemented with a different language. 

We rewrote our algorithms in C++ that allows tighter memory control and 

more efficient code. However, single pass frequent pattern is not the only goal 

for the CATS Tree. We want to store data in a data structure that minimizes 

memory requirement and at the same time, facilitates frequent pattern mining. In 

this chapter, first we address issues related to memory usage of CATS Tree by 

reducing the size of a node and circumventing software and hardware 

architectural memory constraints. After that, we discuss techniques that improve 

the performance of CATS Tree algorithms by reducing redundancy, improving 

efficiency with indexes, as well as other miscellaneous performance 

enhancements. 
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4.2. Memory Management 

Each node in the CATS Tree contains the node’s label and its frequency. 

Shown in Figure 4.1. is the content of a CATS node. In addition, each node also 

contains pointers to its parent, children and item links. Finally, the root node also 

contains a pointer to its header. In order to minimize memory usage, a block of 

memory is used as an array for the children pointers. In addition to the array, two 

counters are needed to store the capacity of the array and the number of 

children.  

Children Pointers Array

Max Array Size

Number of Children 

Item Link pointer previous Node

Item Link pointer next Node

Parent Pointer

Frequency

Label

Parent Node

Cousin Node
Cousin Node

Child NodeChild Node

 
Figure 4.1. Content of a CATS Node 

Assuming the source data is stored in a normalized relational database, 

each item in a transaction is represented as transaction ID and item pair. There 

is a 4 to 1 ratio in the data size between a node and the data source when there 

is no compression. Therefore, memory usage has to be managed carefully in 

order to make CATS Tree feasible. Memory used in a CATS Tree can be 

classified as data memory, structural memory or external memory. Data memory 

stores transactional information from the data file. Attributes included in data 



Chapter 4 
Implementation And Challenges 

53 

memory are parent pointer, children pointers, label and frequency. Structural 

memory maintains the structure of CATS Tree that includes header pointer, item 

links pointers and array counters. External memory is the total amount of 

memory used by CATS Tree minus the memory for the data and the structural 

memory. Data memory depends solely on the data source. On the other hand, 

there are some controls over the usage of structural and external memories. In 

this section, memory management techniques that help to minimize structural 

memory and external memory are discussed. 

4.2.1. Structural Memory Management 

Structural memory is used to maintain the necessary structure of CATS 

Tree, however, structural memory does not contain user data. By employing an 

alternative representation of the CATS Tree, it is possible to reduce structural 

memory without affecting the performance of building and mining of CATS Tree. 

Maximum array size counter removal technique is discussed. 

Removal of array capacity counter 

The set of children pointers array is implemented as a simple array. 

Capacity counter and number of children counter are the side product of simple 

array implementation. If the size of an array can be determined at run time, the 

capacity counter can be removed. Unfortunately, the function to determine the 

size of a memory block is not part of the standard C++ library and it is not 

available in all platforms. If the function to determine memory block size were 

available in multiple platforms, it would often be named differently. Because of 
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non-portability of the memory size determining function, only a limited number of 

platforms suppose the function. Conditional compilation is used to remove array 

capacity counter in platforms that support memory block size determining 

function. Microsoft Visual C++ is the primary tested platform that supports the 

memory size determining function. The function is also supported in GNU g++ 

under WIN32, but it is not supported by the version under Linux. 

4.2.2. External Memory Management 

During experiments, it is found that the actual amount of memory 

consumed by CATS Tree algorithms is much higher than that accounted for by 

data memory and structural memory; the extra memory is called external 

memory. External memory includes all inaccessible or unused memory from 

over-allocation of memory in an array to memory wastage due to software or 

hardware architecture. In this section, issues with memory allocation of children 

pointers array are discussed first. Then memory manager, that minimizes 

memory overhead with dynamic memory, is introduced. 

Issues With Memory Allocation Of Children Pointers Array 

All nodes in the CATS Tree except leaf nodes have children. Therefore 

any wastage in children pointers array has a huge impact on the total size of the 

CATS Tree. In general, the number of children that a node can have is not 

known in advance, therefore the memory for the children pointers array has to be 

allocated dynamically. When a children pointers array is filled up, the memory 

block has to be resized. Issues related to children pointers array are: 1) when to 
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allocate the memory; 2) how big the initial array size should be; 3) how big the 

incremental size should be; 4) when to free the array. 

In order to preserve memory, memory allocation for the children pointers 

array is delayed until a child is added. This helps to prevent memory wastage in 

the leaf nodes.  

Based on experiments, the majority of CATS nodes have low 

compactness and each of them has only a small number of children. Therefore it 

is reasonable to allocate the smallest feasible amount of memory to the children 

pointers array. Currently, memory of size of 2 pointers is allocated when a child 

is first added to a node. The rationale for the size of 2 pointers are both software 

and hardware architectures constraints that are discussed in the following 

sections.  

When the children pointers array is filled, the array has to be resized. In 

most hardware architectures, the address of a memory block has to be aligned in 

a certain manner. Because of the alignment requirement, memory can only be 

allocated in the multiple of a minimum allocation size. If the requested memory 

size is not a multiple of the minimum allocation size, the allocated memory size 

will be rounded up to the next multiple of the minimum allocation size. Any 

memory between the requested size and the actual allocated size would be 

inaccessible. In all tested platforms, the minimum allocation units are found to be 

16 bytes or the size of 4 pointers. Therefore the incremental size of children 

pointers array should be in the multiple of the size of 4 pointers. Because of local 
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memory management strategy and the compactness property of the CATS Tree, 

nodes with low compactness are pushed farther away from the root. As the node 

is further from the root, it is less likely to be merged with new transactions, since 

transactions are merged starting from the root of the tree. Therefore, there is 

need for larger incremental size of children pointers array when the node has a 

high compactness, i.e., at the beginning of the tree. The incremental size is set 

as a fraction the current array size with the size rounded up to the next multiple 

of the minimum allocation size. Currently, the incremental fraction equals 0.3. 

Based on experiments, the amount of memory wasted in over-allocation is 

minimal. 

Because of the split and merge operations, occasionally, a node can lose 

some of its children. This results in over-allocation of children pointers array. 

However, split and merge operations happen infrequently. The amount of 

memory wastage does not warrant the extra effort to reduce it. On the other 

hand, when a non-leaf node becomes a leaf node, memory for the children 

pointers array should be de-allocated. 

Dynamic Memory Overhead Management 

During experiments, the actual memory consumed by CATS Tree is about 

40% larger than the theoretical memory size. It has been found that standard 

new operator in C++ and dynamic memory allocator, malloc(), reserves 8 bytes 

at the beginning of each allocated memory block for house keeping. Combining 

with hardware architecture of minimum memory allocation size of 16 bytes, the 
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smallest useable allocation size of children pointers array is 2. In this section, a 

technique to reduce memory wastage in CATS node allocation is discussed. 

Furthermore, high-level implement design for the memory manager to reduce 

wastage in children pointers array is discussed. 

External CATS node Memory Management 

In order to reduce memory wastage, a partial memory manager, called 

CATS allocator, is implemented; the new and delete operators of CATS node are 

overloaded. CATS allocator is constructed in a way that there is at most one 

instance of CATS allocator that exists at any moment. CATS allocator contains 

an outer array of pointers; each pointer within the outer array points to a large 

block of memory that is used as an array of CATS nodes. The memory 

management scheme of the CATS allocator is shown in Figure 4.2. 

0
1
2
3

n

…

Outer array of pointers

…

…

Array of CATS nodes

NextFree

 
Figure 4.2. CATS Nodes Management Scheme 

The array size of the CATS node is set to a large number; currently it is set to 

100,000, and the amount of memory wasted in the memory block header is 

negligible. Although there is wastage in over allocating, the over-allocation is 
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insignificant when millions of transactions are added to the CATS Tree. In 

addition, CATS allocator also contains two integer counters that are used to keep 

track of the current size and the maximum size of the array of pointers. A 

variable, NextFree, stores the next available memory location in the array of 

CATS nodes.  

Instead of using standard memory allocation routines, the new and delete 

operators of CATS node request CATS allocator to carry out the functions. 

When the new operator is used, CATS allocator returns the address from 

NextFree and NextFree is incremented. If the array of CATS nodes is filled up, a 

new memory block is allocated. The address of the newly allocated memory 

block is put into the outer array of pointers. Furthermore, CATS allocator 

contains a free memory linked list; each node of the linked list contains a pointer 

to a free address within array of CATS nodes. When the outer array of pointers 

is full, the array is resized with realloc(). When delete operator of CATS node is 

called, the address to be freed is added to the free memory linked list. Whenever 

a new operator of CATS node is called, the address in the free memory linked 

list is returned if the free memory linked list is not empty. Since the addition of a 

transaction is the most often used function in CATS Tree algorithms, most of the 

time the free memory linked list would be very short and there is no need to 

manage it. The actual size of a leaf node, before CATS allocator is implemented, 

equals 8 attributes times 4 bytes + 8 bytes for house keeping = 40 bytes. With 
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the partial memory manager, the actual node size is reduced to 32 bytes, i.e., a 

20% saving. 

Other than reducing memory consumption, the partial memory manager 

also increases the performance of CATS Tree Builder by about 2-3% based on 

experiments. This is because memory is allocated in a large chunk; the program 

does not need to search for free space every time new operator is used.  

External Children Pointers Array Memory Management 

Due to lack of time, the memory manger for children pointers arrays has 

not been implemented. However, we discuss how it can be implemented. As 

discussed previously, the children pointer array increments in a constant fraction. 

The possible number of different array sizes is limited. Multiple children pointers 

arrays having the same size can be packed together as a large memory block. 

Pointers to the same size arrays of children pointers array are put into another 

array. Finally, all pointers to the same size arrays are put into another array 

called array of pointers to all sizes arrays. The relationships between different 

arrays are shown in Figure 4.3. 
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Figure 4.3. Structure map of children pointers arrays 

The first element of array of pointers to all sizes arrays points to the 

collection of the smallest possible array of children pointers. The second element 

points to the collection of second smallest array of children pointers and so on. 

The address of each individual children pointers array can be expressed as a 

combination of positions of those three arrays. For each collection of array of 

children pointers, the number of entries in each memory block is constant. 

However, different collections of children pointers arrays can have different entry 

sizes. This is important to allow customization of entry size because different 

sizes of children pointers arrays could have different distribution characteristics. 

Customization of entry size helps to reduce wastage in over-allocation. For each 

collection of array sizes, there is a free memory list just like the free memory 

linked list in CATS node memory management. The position of the element in 

array of pointers to all sizes arrays can be used to determine the size of the 

children pointers array. Therefore it is not necessary to keep track of the 

maximum array size of the children pointers array. When a CATS node requests 
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memory for children pointers array, CATS allocator assigns memory address 

from the free memory linked list if it is available. Otherwise, CATS allocator 

returns the next available address. Unlike CATS node memory management that 

has one size only, distribution of different sizes children pointers arrays can 

change. Therefore it is possible for a particular size of children pointers array to 

be in demand at one moment and then there is no demand for it at another 

moment. Therefore the memory manager has to be more active to manage the 

free memory linked list. If the free memory linked list becomes larger than the 

threshold, the memory manager has to combine free memory together and 

release the memory as required. Although the address of the CATS node 

containing the children pointers array is not provided directly, it can be obtained 

from the parent pointer of the first element in the children pointers array. The 

content of the last allocation children pointers array is copied to one of the free 

addresses in the free array list. The host CATS node’s children pointers array 

can be replaced with that from the free list. The current size of the array of 

children pointers array can be reduced. If the last entry in the memory block is 

freed, the memory block is de-allocated. The swapping process is repeated until 

the free list is empty. When the CATS allocator is completely implemented, the 

actual node size of a non-leaf node with 2 children equals that of 8 attributes + 8 

bytes for children pointers array = 40 bytes. Without the CATS allocator, the 

actual size of the same node equals size of 8 attributes + 8 bytes for node’s 
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header block +16 bytes for children pointers array = 56 bytes. The memory 

saving is over 29%. 

4.3. Performance Enhancement 

CATS Tree Builder is the slowest step in CATS Tree algorithms. CATS 

Tree is a single pass algorithm; therefore it does not have prior knowledge of the 

database that allows building of CATS Tree in the optimal manner. This reduces 

the performance of CATS Tree Builder. Furthermore, when a new transaction is 

added, only linear search is available to locate the best merging node. This 

further degrades the performance of CATS Tree Builder. In this section, a 

technique to reduce redundancy in CATS Tree Builder is introduced. A data 

structure that enables non-linear search is also discussed. Finally, other 

miscellaneous performance enhancing techniques are discussed. 

4.3.1. Reducing Redundancy 

CATS Tree algorithms are based on local optimization. Therefore, it is 

possible that CATS Tree algorithms could behave in a way that is counter-

productive in the global sense. For example, if two items are added alternatively, 

it is possible that CATS Tree algorithms would split and merge those nodes 

continuously. Splitting a node requires to undo some of previous work. If the 

global information about those nodes were given, a CATS Tree can be 

constructed without any split. Therefore all the work done before the final split 

and merge is redundant.  
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Benefit and cost analysis has been applied successfully in a large variety 

of problems. Whenever a node is required to be split, benefit and cost analysis 

can be applied. The problem is transformed into defining suitable benefit and 

cost functions. The benefit of split and merge of nodes is the increment in the 

support of the highest frequent node. The cost of splitting includes the 

decrement in the support of the split node. Furthermore, the cost of splitting 

should include the cost of undoing the previous work that can be assigned as a 

percentage of the support of the node to be split. After benefit and cost analysis, 

only split and merge operations that have net positive value will occur. 

Furthermore, the cost can be used as one of pruning factor when searching for a 

merge target. 

It is found that the root node has different characteristics from the other 

nodes. Therefore, there are two weights for CATS Tree Builder, one for the root 

and the other for the remaining nodes. The reasons why root node behaves 

differently are: 1) root is the densest node in the tree; 2) root can have all items 

as children branches. In the remaining nodes, the number of possible children 

nodes is bounded by the boundary property of CATS Tree. The number of 

possible children nodes decreases as the distance from the root increases. If the 

weight were set too small, the cost would not reflect the true cost of splitting and 

CATS Tree algorithms would behave as if benefit and cost analysis had not been 

performed. On the other hand, if the weights were set too high, some beneficial 

split and merge operations could be blocked by the benefit and cost analysis. 
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This results in a bushy CATS Tree. Therefore it is important to select weights 

that are well balanced. Experiments are performed to obtain the weights. The 

weight for the root is set to 0.1. The time required to build a CATS Tree is 

recorded and the same process is rerun with the weight reduced by 0.05. The 

time required is plotted on a graph. The process is repeated until the time curve 

forms a concave curve. The experiment is repeated with a weight near to the 

trough of the time graph and the decrement in the weight is also reduced. The 

process is repeated until the change in the time required is smaller than 1% of 

the time required to build the CATS Tree. The same process is repeated to find 

the weight for non-root nodes. The weight used in the root is 0.0015 and the 

weight from non-root nodes is 0.015. Based on experiments, with the above 

weights, the performance of CATS Tree Builder increases by 50%.  

4.3.2. Deployment of Index 

One of the major features of CATS Tree is that CATS Tree rearranges 

itself based on the local features to minimize the memory overhead. However, 

the same step also slows down the construction of a CATS Tree. As a CATS 

Tree gets more complex and larger, it becomes more difficult to locate the node 

to merge. Since children of CATS node are arranged based on their frequencies, 

search methods that depend on item label cannot be used on the children 

pointers array. Hence, only sequential searches can be used to locate the best 

merging node. On average, a sequential search requires examining half of all 

items in the search space. This can be very inefficient especially at the root level 
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where the root node may contain up to |I| number of children. Because of the 

bias in children nodes distribution, i.e., high frequency nodes appear first in the 

search space, in most cases, a sequential search does not need to examine as 

many items as that in the case of uniform distribution. Nevertheless, sequential 

search still requires examining a substantial number of items. Furthermore, 

CATS Tree Builder has to search for the best merging node not only for the 

immediate children, but also for all descendants. Therefore a global optimization 

technique is required to enhance the system performance. 

Indexing techniques have been used with good results for many 

information retrieval systems. The effectiveness of an index depends on the 

structure of the index and the selection of indexed attributes. The most 

commonly used operation in CATS Tree is addition of a transaction. A 

transaction contains item label only, therefore, item label should be used for the 

indexes. One of the major properties of CATS Tree is the boundary property. 

The boundary property of item provides 2 dimensional layouts of nodes having 

the same label. Item label is a single dimension in nature. It is logical to project 

the 2 dimensional layouts into a single dimension space. Although, CATS Tree 

can be extended to handle multiple occurrences of item in a transaction, for 

simplicity, items in a transaction can only have single occurrence, i.e., binary 

transactions as opposed to transactions with reoccurring items [31]. Therefore, at 

most one node of a certain item label can exist in each vertical space. CATS 

nodes having the same item label can be projected into a single horizontal space 
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without fear of collision. Items can be ordered based on the ordering of their 

ancestors at the root level. If there are two CATS nodes having the same 

ancestor at the root level, the ordering can be resolved with the paths from the 

root to those nodes. From the boundary property of CATS node, no two CATS 

nodes having the same parent can exist together at the same level. This 

guarantees that the ordering of CATS nodes can be resolved. For each item 

underneath the indexed node, nodes having the same item label can be 

expressed as a range of nodes where starting node and the ending node are the 

left most node and the right most node respectively. The projection B’s index is 

shown in Figure 4.4. If total frequencies of items underneath are added to the 

indexes, the indexes can also be used to facilitate merging of nodes. The role of 

indexes in merging of nodes is discussed later in this section. 
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Figure 4.4. Projection of items in CATS Tree 

The best merging node at an indexed node can be identified by locating the 

node that occurs in a transaction with 2 properties: 1) The node is the ending 

node underneath the current indexed node that has the highest frequency; 2) 
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The ending node can be made as a child of the indexed node without causing 

splitting of any node. If no such node exists, there is no chance for the 

transaction to be merged with any node that can improve compression of the 

CATS Tree. Therefore, the transaction should be inserted without further 

searching. In order to make a merging node into a child node without splitting, 

the merging node must be either: 1) a child of the current node, or 2) having the 

same frequency as that of its ancestor which is a child of the current node. In 

Figure 4.4., all nodes in the branch B (B, C, K, S, S, P) and node F can be made 

into a child node of the root. Assuming the merging node is a child of the current 

node and it is not the ending node for the current node, this implies there exists a 

node that is on the lower right hand side of the merging node. This node would 

violate the boundary property of CATS Tree. Therefore, if a node is a child for a 

given indexed node, the node must be the ending node for the indexed node. 

Now assuming the merging node is not an ending node, there could exist a node 

on the right hand side of the merging node. Since the merging node can be 

made as a child of the indexed node, by compactness property of CATS Tree, 

the frequency of the merging node is greater than all nodes on its right hand 

side. Therefore the merging node should have merged with all nodes with the 

same item on the right hand side and such CATS Tree should not have existed 

in the first place. This satisfies the assertion that the merging node is the ending 

node and it can be made into a child of the indexed node without splitting.  
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Let us assume that there are multiple ending nodes that can be merged 

with the transaction. If the ending node with the highest frequency, h, is not 

merged with transaction, this implies that the transaction is merged with node, l, 

that has frequency lower than that of node h. Since the frequency of h is larger 

than that of l, h is on the left hand side of l. When the transaction is merged with 

I, a node having the same label as that of h will be added to the lower right hand 

side of h. This violates the boundary property of CATS Tree. Therefore the 

transaction has to merge with the candidate ending node that has the highest 

frequency.  

The final assertion that a transaction should be added when there is no 

ending node that can be made into a child node without splitting, can be proved 

as follows: Let us assume that there is a node that can be merged with the 

transaction and it cannot be made into a child of the indexed node without 

splitting. Since the node cannot be made into a child of the indexed node without 

splitting, the difference between the frequency of merging node and its ancestor 

that is a child of the indexed node must be equal to or greater than one. With the 

increment frequency equals 1, the resulted frequency is at most equal to that of 

its ancestor. Therefore there is no benefit to merge with the given node. 
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Figure 4.5. Addition of a transaction with indexes 

The workings of the indexes are illustrated with Figure 4.5. When 

transaction (A, B, C) is added, the ending nodes for A, B and C are checked. 

Both ending nodes of B and C can be made into children nodes of the root 

without splitting, while the ending node of A cannot. Since node C:1 is an 

ancestor of node B:1, node C:1 is merged with the transaction. After that, the 

ending nodes of A and B under node C:2 are checked. Since A:3 is not a 

descendant of node C:2, there is no ending for node A under node C:2. This 

leaves node B:1 to merge with the transaction. A new node A is created and it is 

the rightmost node A in the CATS Tree. The new node is added as the ending 

node of item A. That finishes the addition of the transaction. Since node C:2 is a 

child of the root and its support has been increased, CATS Tree Builder 

traverses along C’s index to check for violation of the boundary property. Node 

C:2 is at the proper location. However node C:2 and node C:3 can be merged 

and the resulting node will have frequency greater than that of node F:4. Since 
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merging of node C:2 and node C:3 requires splitting of node F:4, benefit and 

cost analysis is applied.  
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Since the net benefit is not greater than 0, node C:2 and node C:3 are not 

merged. 

Because of the indexes, the search space at each level is reduced from 

O(|t||f|) to O(|t|) where |t| is the length of the transaction and |f| is the average 

number of comparison required to locate the best merging node. Assuming the 

transaction is fully assimilated into the CATS Tree, i.e., every item in the 

transaction can be merged with a node in the CATS Tree, the total addition cost 

of a transaction equals the sum of cost at each level, 
2

2||

1

tt
n

t +
=∑ . If the 

transaction cannot be fully assimilated, the total cost is even smaller because the 

process is preempted when no merging node is found. This is a very significant 

improvement compared to the linear search model. The indexes allow addition of 

transactions, with a given length, at a constant cost no matter how complicated 

or how big the CATS Tree is. This ensures the scalability of CATS Tree Builder 

with respect to adding transactions. Other than improving addition performance, 

the indexes can also help to maintain the CATS Tree. After a transaction is 
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merged with a node, the increase in frequency may cause the node to move 

leftward and passes by some nodes. Some nodes underneath the passed by 

nodes may contain nodes having the same label as the merged node; this 

violates the boundary property. Without the indexes, all nodes underneath the 

passed by nodes need to be searched. With the indexes, the merged node can 

step along the indexes until it reaches the proper position. Any nodes between 

new and old position for the emerged node are the nodes that violate the 

boundary property. As long as the node remains a child of the indexed node, the 

merged node must be the ending node for the indexed node. In other words, the 

merged node can traverse along the index and merges with nodes that it passes 

by. This removes the need to search for nodes that violate boundary property. 

Furthermore, the indexes can also help to merge nodes, p1 and p2, in an optimal 

manner. Since the indexes contain information about frequencies of nodes 

underneath the indexed node, nodes containing the most frequency item 

underneath both indexed nodes, p1 and p2, are extracted and are merged to form 

the first child for the combined node of p1 and p2. In the next iteration, nodes with 

the highest frequency remaining underneath p1 and p2 are extracted and they 

are combined into the next child of the combined node of p1 and p2. Extraction of 

nodes with the highest frequency item is repeated until p1 and p2 are empty.  

Although the indexes are useful in many ways, there are costs associated 

with the indexes as well. The major costs are the storage requirement, creation 

and maintenance costs. Given that the whole CATS Tree is already stored in the 
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main memory, any additional memory requirement could be prohibitive. 

Therefore the memory usage of the indexes should be kept to a minimum. 

For the complete indexes, each node has to store the starting node, the 

ending node and the total frequency for all distinct descendants. The extra 

memory required depends on not only the distinctiveness of descendants, but 

the length of transactions as well. This is because the information of the leaf 

node has to be repeated in all of its ancestors. Therefore, the longer the 

transactions are, the higher the overhead is. Because of that, the memory 

required for the complete indexes can easily be more than that of the whole 

CATS Tree. Scarcity of main memory becomes the biggest obstacle against 

deployment of complete indexes. Within the index, the ending node is the most 

important component because it determines the merging node. If the ending 

nodes for the root level can be indexed, a significant performance improvement 

can be achieved. It turns out that ending node for the root level can be indexed 

very easily. All nodes with the same label are connected with the item links. The 

last node of the item link can be used as the ending node. When a node is 

added, the item link for the new node can be inserted as the first node in the item 

link. With the root level partial index, the best merging node for the root level can 

be found with transaction length number of comparisons. The performance 

increase of CATS Tree Builder, determined by experiments, by this simple 

improvement is 50% comparing with sequential search. There is no additional 

memory overhead and the maintenance cost is very low. Second level partial 
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indexes can be added, however, they are not implemented because of the 

additional memory overhead and maintenance cost. 
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Figure 4.6. Addition of a transaction with partial indexes 

Using the same example in the complete indexes, the ending nodes of 

items A, B and C are checked. The transaction is merged with the ending node 

of item C. At the second level, the partial indexes are no longer available. CATS 

Tree Builder has to use sequential search to locate the node to be merged. Node 

C:1 is merged with the transaction. Since all descendants of the branch (C, B) 

have the same frequency, CATS Tree Builder has to compare with branch (K, S, 

P), dashed rectangle in Figure. 4.6., with item A in the transaction before item A 

can be added as a new branch. In this example, CATS Tree Builder makes 4 

comparisons excluding the root level comparisons to add the transaction. In the 

case of complete indexes, only 3 comparisons are needed. If the transaction 

were changed to <A, C, N>, only 2 comparisons are required for the complete 

indexes while 8 comparisons are needed for the partial indexes. 
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The item links can be converted into an array easily. It is possible to 

project the item links into an ordered array and use them as indexes; the starting 

node and the ending node at each level can be searched on fly with a binary 

search. This idea turns out to be infeasible. First of all, the ordering function, i.e., 

comparing paths to the root, requires too many comparisons. The biggest 

problem is the maintenance cost of the sorted arrays. When a node moves or 

merges, items underneath the node may have to reorder their positions within 

their indexes. Unlike the complete indexes, item link indexes do not contain 

information about nodes underneath it. In order to find out which indexes need to 

be updated, every node underneath the moving or merging node has to be 

visited. After determining which indexes need to be updated, the starting and 

ending nodes still have to be found as well. Hence the maintenance costs of 

indexes can easily exceed the benefits of the indexes. 

4.3.3. Miscellaneous Improvement 

Miscellaneous enhancements include improvements that provide small 

performance gain, but when multiple of them are applied, observable 

improvements can be noticed. Those enhancements include hybrid transaction, 

removal recursion and sorting of transaction. 

Hybrid Transaction 

Initially, a transaction is considered as a single branch of CATS Tree. All 

comparisons are done in sequential manner. Instead of considering transaction 

as a CATS Tree branch, the transaction class is converted into a hash table. 
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Only one comparison is required to determine whether or not a transaction can 

be merged with a node. However, a hash table requires an exhaustive search to 

find all elements. That could cause a significant performance hit when a long 

transaction is added without merging with existing nodes. A new hybrid data 

structure that combines both hash table and sequential links is used to construct 

the transaction. With the hybrid transaction implementation, the performance of 

CATS Tree Builder is increased by 25% based on experiments performed. 

Sorting Transaction 

Unlike most other algorithms, which require a transaction to be sorted with 

either lexicographical ordering, e.g., Apriori, or global frequency ordering, e.g., 

FP-Tree, CATS Tree Builder does not require ordering of transactions. As a 

matter of fact, ordering items within a transaction with a fixed ordering scheme, 

like lexicographical ordering, could actually decrease the performance of CATS 

Tree Builder. The reason of ordering is to take advantage of the predefined data 

structure of the algorithm. However, in the case of CATS Tree, the structure of 

CATS Tree changes as transactions are being added. Static ordering schemes 

cannot capture the dynamic of CATS Tree. As a result, the effort of sorting the 

items within a transaction becomes totally wasted and causes about 2% drop in 

the performance. This does not mean that CATS Tree Builder cannot take 

advantage of sorting of items within a transaction. The ordering scheme has to 

consider the current state of the CATS Tree. During updating the CATS header, 

the global support of each item can be obtained. The transaction can be ordered 
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by the global support of each item. Sorting of transactions increases the chance 

of finding common items between the transaction and the CATS Tree. The 

performance increase with sorted transaction is about 3-5% based on 

preliminary tests. 

Removal of Recursion 

Most of the functions in CATS Tree algorithms are recursive functions. 

During a recursive call, the program has to push the current memory address 

and local variables into a stack and allocates and reinitializes all local variables in 

the function. Although the cost of making a recursive call is low, it can becomes 

enormous if millions of recursive calls are made. Standard recursive function 

removal techniques are applied. Based on experiments, the performance of 

CATS Tree Builder increases by about 5% when recursions are removed. 

4.4. Summary 

The memory management techniques presented in this chapter has been 

shown to be able to reduce the memory footprint of CATS Tree by more than 

25%. As shown in the experiments and results in the next chapter, memory 

usage of CATS Tree is far more superior than that of FP-Tree. In some tests, 

even though CATS Tree containing all items in the database, the memory 

consumed is smaller than the memory footprint of FP-Tree that contains only 

frequent items.  

After implementing all previously discussed enhancements, the overall 

performance of CATS Tree Builder increases by about 10 folds. Furthermore, 
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the time required to construct CATS Tree is found linearly proportional only to 

the number of transaction and the average transaction length. 
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CHAPTER 5 

 
5. Experiments and Results  

 
5.1. Introduction 

With most theories, there is often a gap between theoretical and practical 

benefits. The purpose of this chapter is to find out if such a gap exists in our 

algorithms and at the same time to compare the relative performance of CATS 

Tree algorithms with other well-known data mining algorithms. It has been 

argued by many researchers that there is no universal algorithm that would work 

well in every dataset [10,12,25]. There are many parameters, like transaction 

length, |I|, |D|, etc., that can have profound effects on CATS Tree performance. 

By studying the behaviours of CATS Tree algorithms, we can gain insight about 

the strength and weakness of our algorithms. The strength of our algorithms 

could be applied in other application areas. Furthermore, improvements can be 

made to reduce the weakness of CATS Tree algorithms. In addition, the results 

can be used to infer the conditions for which our algorithms would work the best. 

 

5.2. Experimental design 

The goal of the experiments is to find out how different dataset properties 

can affect the performance and resource usage of CATS Tree algorithms.  

The resource usages are measured with the memory consumption and 

the total processing time that includes CPU time and I/O time. The memory 
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usage is normalized into memory premium that is defined as the memory used 

by CATS Tree minus the original data file size and then divided by the original 

data file size.  

Datasets used in the experiments are generated with a data generator by 

IBM QUEST [15] that has been used by many researchers [10,12,18,19,25]. 

CATS Tree algorithms are compared with the first efficient and published data 

mining algorithm, Apriori and FP-growth. To avoid implementation bias, third 

party Apriori implementation, by Christian Borgelt [3], and FP-growth written by 

its original authors are used. Apriori experiments are run into two different 

modes. In the original mode, Apriori is run as the original Apriori implementation 

where a complete data scan is required to verify the candidate frequent itemsets 

at each level. In the cached mode, all transactions are loaded into the main 

memory. In this case, there is no additional I/O overhead. All data scans are 

performed on the main memory. This allows a fair comparison of algorithms that 

CATS Tree algorithms, FP-growth and Apriori perform data mining in the main 

memory. Frequent patterns mined from CATS Tree algorithms are verified 

against that of Apriori to check for completeness and accuracy. Experiments are 

performed on a Pentium 4 1.6GHz PC with 512Mb RAM running on Windows 

2000 server. All programs are compiled with Microsoft Visual C++ 6.0. All 

experiments are done with default parameters of the data generator: 106 

transactions; average pattern length is 4; average transaction length is 10; 



Chapter 5 
Experiment and Results 

80 

number of unique items is 23,890 and support is 0.15% unless stated otherwise. 

Experiments are divided into two sections: 

The first portion of the experiments measures the scalability of single pass 

frequent patterns mining with various parameters. The dataset properties used 

are average transaction length, average pattern length, support of frequent 

patterns, number of transactions and number of unique items in the dataset. In 

each experiment, one of the parameters is changed while the other parameters 

are kept the same. Experiments with average pattern length and average 

transaction length are combined as one experiment. It is because any single 

change in average pattern length or average transaction length affects the ratio 

between average pattern length and average transaction length. Therefore 

instead of changing average pattern length or average transaction length, ratio 

between average pattern length and average transaction length is used. 

The second portion of the experiments measures the ability of CATS Tree 

to handle transactional streams. Transactions are added to the CATS Tree one 

at a time. Frequent patterns are mined from the CATS Tree at a regular interval, 

every fifty thousand transactions. Transactions are continuously being added to 

the tree. The accumulated time is measured from the beginning of the first 

transaction to the end of frequent pattern mining process. Its performance is 

compared with original Apriori, cached Apriori and FP-growth. In the last portion 

of the experiment, a limit, L, specifies how many transactions CATS Tree can 

hold. Once the limit is reached, transactions are removed from CATS Tree at the 
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same rate as transactions are added. Unlike SWF, L can be set to any number 

and L can be changed at run time. There are two modes for the removal of 

transactions, real time mode and batch mode. In the real time mode, a 

transaction is removed after a transaction is added to the CATS Tree except in 

the first L transactions. This keeps a constant number L of transactions in the 

CATS Tree. In the batch mode, transactions to be removed are used to build a 

FP-Tree and then the FP-Tree is subtracted from CATS Tree. The maximum 

number of transactions in the CATS Tree equals L plus the batch size. 

Distributed computing can be used to build FP-Tree; this allows the primary 

processor to focus on the maintenance of CATS Tree. Different batch sizes are 

used to test the impact of variable sizes. There is no performance comparison 

with Apriori or FP-growth, since both of them cannot remove transactions and 

perform data mining in real time or batch mode without data pre-processing. 

However, the frequent patterns produced by Apriori with pre-processed are used 

to verify the accuracy of our algorithms. 

 

5.3. Experimental Results 

5.3.1. Single Pass Scalability and Memory Usage Experiments 

Experiment One 

The first experiment measures scalability and memory usage of CATS 

Tree algorithms with respect to number of transactions. 
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Figure 5.1. Scalability of CATS Tree With Respect to Number of Transactions 

CATS Tree algorithms can be broken into two steps. The first step is the 

building of the tree. Once the tree is built, FELINE can be used to mine frequent 

itemsets. As shown in the first scalability test, Figure 5.1., both CATS Tree 

Builder and FELINE scale linearly proportional to the number of transactions. 

Although the tree becomes more complex as transactions are added, 

comparisons required to insert a transaction depends only on the length of the 

transaction. With the average length of transaction holding constant, the 

construction cost of CATS Tree is simply a multiplication of a constant time 

factor with the number of transactions. The number of frequent itemsets 

generated from each data file is more or less constant. Theoretically, FELINE 

should be able to perform data mining with constant time. Although pruning 

strategy in FELINE reduces the work to build a conditional CATS Tree, the 

degradation of performance with number of transactions can be attributed to the 

fact that FELINE performs “prune and grab first, and prune again” strategy. The 
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cost of traversing the whole tree is proportional to the complexity and the number 

of nodes in the tree. Incremental construction of conditional CATS Tree may be 

the answer to this problem.  

In all cases, CATS Tree algorithms complete the test using one third of 

the time required by original Apriori. On the other hand, cached Apriori runs twice 

as fast as CATS Tree algorithms in the number of transaction scalability test. 

FELINE is very efficient, while building the CATS Tree may seem expensive. 

However, the cost of building the CATS tree is quickly amortized in an ad-hoc 

interactive association rule-mining context, since the tree needs only be built 

once, “build once, mine many”. This matches the design goal: building once and 

mining multiple times with low overhead. 
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Figure 5.2. Memory Usage With Respect to Number of Transactions 
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Figure 5.3. Memory Premium With Respect to Number of Transactions 

Most published experiments of the previous work deal with database sizes 

around 100k [5,10,12,17,19,25,29,33]. In the case of our experiments, the tree 

scales to millions of transactions. In terms of memory usage, CATS Tree size is 

linearly proportional to the number of transactions. Figure 5.2. shows results up 

to 4 million transactions. However, the rate of increase in CATS Tree size is 

smaller than that of data file size. In the beginning, there is only small number of 

transactions in the CATS Tree; most newly added transactions cannot find a 

node to merge or only one or two items can be merged with existing nodes. This 

explains why the memory premium has such high value at the beginning. As 

transactions are added, the tree becomes more crowded. Therefore it is more 

likely that a new transaction can be completely or partially merged with existing 

nodes. As shown in Figure 5.3., there is a downward trend for memory premium 

as the number of transactions increases. As more transactions are added to the 

CATS Tree, the tree size may eventually become smaller than that of the data 
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file. There are two dips in the memory premium curve. At both dips, the data file 

sizes are larger than expected. The number of transactions and the average 

transaction length determines the data file size. Since the number of transactions 

increases linearly, any deviations from expected file sizes can only be explained 

by changes in the average transaction length. The data files are created with 

synthetic data generator, it is possible that the extended portions of the 

transactions are repeats of previous patterns. CATS Tree Builder is able to 

merge the extended portions of the transactions; hence, the tree sizes continue 

to increase linearly. When data file sizes are larger than the expected sizes and 

the tree sizes remain at the expected sizes, memory premium dips are created. 

After the changes in the average transaction length at the memory premium dips, 

the average transaction length returns to the previous average transaction 

length. Therefore, the memory premium curve returns to the expected values. 

Experiment Two 

The goal of the second experiment is to examine the effect of support on 

CATS Tree algorithms. In addition, unique characteristic of CATS Tree, that 

“build once, mine many”, is put to test. A single CATS Tree is built from the data 

file. Data mining with different supports are performed. All results are expected 

to be identical to that of Apriori. Memory usage is not measured in this 

experiment because only one CATS Tree is built regardless of the support 

threshold. For a single data-mining comparisons purpose with Apriori and FP-

growth, the time required to build CATS Tree is added to the time for the FELINE 
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as if CATS Tree algorithms had to rebuild the tree. Cumulated time from the 

addition of the first transaction until the completion of frequent pattern mining at 

each data point is calculated. The cumulated time for CATS Tree, cached Apriori 

and FP-growth are used to show the effect of “build once, mine many” of CATS 

Tree. 
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Figure 5.4. Single Mining Scalability of CATS Tree With Respect to Support 

In most cases of single frequent pattern mining, CATS Tree algorithms 

outperform the original Apriori. However, the original Apriori outperforms CATS 

Tree algorithms when the support is 0.4% or 0.5%. In those cases, the support is 

so large that only one or no frequent one itemset can be found. Notice that 

original Apriori also outperforms FP-growth in those cases when the support is 

high. In reality, high support is rarely used. Even if it is used, it is almost certain 
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that the support will be changed to a lower value and the data mining process is 

rerun again. In that situation with our approach, only FELINE needs to be rerun; 

the CATS Tree algorithms will end up faster than the original Apriori. Therefore it 

is safe to assume that our algorithms outperform the original Apriori in all 

situations. 

In the second experiment, the time required by all algorithms increases as 

the support decreases. However, the rate of time increase for the cached Apriori 

is much faster than that of FELINE. Eventually, CATS Tree algorithms become 

faster than the cached Apriori. CATS Tree algorithms run faster than the cached 

Apriori because FELINE, like FP-growth, does not generate candidate frequent 

itemsets for testing. Other than performance, the memory required by Apriori to 

hold generated candidate frequent itemsets becomes an issue when support is 

small. When the support is 0.02%, Apriori generates so many candidate frequent 

itemsets that the memory required to hold them exceeds the main memory and 

causes the program to halt. On the other hand, CATS Tree algorithms do not 

have such problem. As long as the tree can be held in the main memory, 

FELINE performs fine. Furthermore, CATS Tree is more memory efficient than 

FP-tree. When the support is lower than 0.125%, FP-tree and FP-growth require 

so much memory that memory trashing occurs. 
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Frequent Pattern Mining Support (%) 
1 0.5 
2 0.4 
3 0.3 
4 0.25 
5 0.2 
6 0.175 
7 0.15 

Table 5.1. Frequent Pattern Mining Parameter 
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Figure 5.5. Multiple Mining with CATS Tree With Different Supports 

Since all support scalability tests are performed with the same data file, 

frequent pattern with different supports can be mined from the same CATS Tree 

without rebuilding it. On the other hand, both Apriori and FP-growth have to start 

all over again when the support is decreased. As shown in Figure 5.5., the 

cumulated time curves, the cumulated cached Apriori and FP-growth curves are 
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very steep when compared with cumulated CATS Tree curve. Other than the first 

data point in the cumulated time curves, our algorithms outperform both cached 

Apriori and FP-growth. As the number of frequent pattern mining rerun 

increases, the gap between cumulated the CATS Tree curve and cumulated 

curves of other algorithms increases. 

Experiment Three 

The goal of the experiment measures the effect of Pattern Length Ratio 

on the performance and memory usage of CATS Tree algorithms. The Pattern 

Length Ratio is changed by keeping average pattern length the same and 

varying average transaction length. This experiment measures not only the 

effects of transaction length on CATS Tree algorithms, but also the effects of 

data sparsity on the tree. As Pattern Length Ratio increases, the data becomes 

dense. On other hand, the data becomes sparse as Pattern Length Ratio 

decreases.  
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Figure 5.6. Scalability of CATS Tree With Respect to Pattern Length Ratio 

At the beginning of decrease in Pattern Length Ratio, all algorithms are 

rather insensitive to the changes. As shown in Figure 5.6., the time required by 

all algorithms increases slowly as Pattern Length Ratio decreases. However, 

after the Pattern Length Ratio drops below 66%, all algorithms’ performance start 

to deteriorate non-linearly. CATS Tree Builder is less sensitive to Pattern Length 

Ratio changes than FELINE. As the Pattern Ratio decreases, the data becomes 

sparser; the resulted CATS Tree becomes bushier. Since the partial indexes are 

available only at the root level, CATS Tree Builder has to use linear search to 

locate nodes to merge at the other levels. This decreases the performance of 

CATS Tree Builder. For every extra branch in the CATS Tree, it could potentially 

cause FELINE to build a conditional CATS Tree. This is also true for FP-tree and 

FP-growth. H-struct was proposed solely to deal with the sparsity problem. 
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Figure 5.7. Memory Usage Respect to Pattern Length Ratio 

When the Pattern Length Ratio is close to 100%, the data is very dense. 

CATS Tree Builder compresses multiple transactions into a single branch. As a 

result, the size of the tree is smaller than that of original file and the memory 

premium is negative. As the Pattern Length Ratio decreases, the data becomes 

sparse. CATS Tree builder is not able to compress as many transactions as 

before; hence, the memory premium increases.  
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Figure 5.8. Scalability With Respect to Transaction Length 

As the transaction length increases, the time required by all algorithms 

increase. As expected, CATS Tree Builder scales linearly with transaction length. 

The time required by FELINE increases progressively with transaction length. 

Degradation in FELINE’s performance could be attributed by the fact that the 

tree becomes bushier as transaction length increases. As shown in Figure 5.8., 

FP-tree and FP-growth do not handle long transactions very well; they cause 

memory trashing when the average transaction length is 11 or 12. On other 

hand, CATS Tree algorithms manage memory very well and pass the 

experiment. 
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Experiment Four 

The goal of the experiment measures the effect of the number of unique 

items on the performance and memory usage of CATS Tree algorithms. 
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Figure 5.9. Scalability of CATS Tree With Respect to Number of Items 

There is a surprise in the number of unique items scalability test. Given 

that the other parameters of the data file are being kept constant, as the number 

of unique items decreases, the occurrence of frequent patterns should increase. 

Therefore, the density of data file should increase as the number of items 

decreases. As shown in Figure 5.9., all algorithms perform relatively constant 

over a large range. However, when the number of unique items drops below 

10,000, the performance of FELINE decreases significantly while the 

performance of Apriori and FP-growth decrease a little. Theoretically, CATS Tree 

algorithms should perform well in dense data file, where larger number of 

transactions can be compressed into small number of branches. The experiment 
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result is completely opposite to what has been expected. Frequent Patterns 

mined from each data file are compared. The number of 2+ frequent itemsets in 

each data file is more or less the same as each other; however, the number of 

one itemset frequent patterns varies inversely proportional to the number of 

unique items. When the structure of CATS Tree is examined, it is found that 

nodes in the first or second levels have high frequencies and have a large fan 

out factor. Nodes in three level or lower have very low frequency. Contrarily to 

initial belief, the data file with the smallest number of unique item is actually 

sparse.  
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Figure 5.10. Memory Usage With Respect to Number of Items 

This also explains why the memory premium is the highest when the 

number of unique items is the smallest. As shown in Figure 5.10., CATS Tree 

algorithms are insensitive to the number of unique items between 10,000 and 

30,000. Within that range, memory premium of CATS Tree decreases as the 
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number of unique items increases. The decrease in memory premium cannot be 

explained by the increase in the number of unique items or decrease in data file 

size because the file size has been increasing with the number of unique items. 

The only possible explanation is that the density of data file has been increasing. 

Based on the above observations, CATS Tree algorithms are not sensitive to the 

number of unique items, but they are sensitive to the data density. There is an 

anomaly point on the memory premium curve that is due sudden decrease in the 

data file size. 

 

5.3.2. Incremental Data Mining Experiments 

Experiment Five 

The goal of the experiment measures the efficiency of incremental data 

mining of CATS Tree algorithms. After every 50,000 transactions are added, 

frequent pattern mining is performed. Cumulated times measure the time from 

the addition of the first transaction until the end of frequent pattern mining.  
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Figure 5.11. Individual Time for CATS Tree algorithms during incremental data mining 

FELINE scales linearly with the total number of transactions. As shown in 

Figure 5.11., incremental CATS Tree Builder requires approximately the same 

amount of time to process every 50,000 transactions.  
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Figure 5.12. Incremental Data Mining 
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As shown in Figure 5.12., the cumulated time for CATS Tree algorithms 

scales linearly with respect to the total number of transactions. On other hand, 

the cumulated time for Apriori and FP-growth increase non-linearly with respect 

to the total number of transactions. CATS Tree algorithms are more than twice 

faster than cached Apriori or FP-growth. This is due to the CATS Tree 

algorithms’ “build once, mine many”. The gap between the cumulated curve of 

our algorithms and that of other algorithms curves increases as the number of 

data mining performed increases.  

Experiment Six 

The goal of this experiment measures the effect of concurrent and batch 

addition and deletion of transaction in CATS Tree algorithms. After 100,000 

transactions are added, transactions are added and removed at the same rate. 

This keeps a slide window of constant 100,000 transactions in the CATS Tree. 

Batch sizes of 50,000 transactions and 100,000 transactions are used to test 

effect of batch size. There is no performance comparison because there is no 

known and published algorithm that allows frequent patterns mining with both 

addition and deletion of transactions at the same time 
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Figure 5.13. Concurrent Vs Batch Deletion 

The time required by CATS Tree Builder and FELINE are constant 

throughout the experiment. From the concurrent deletion experiments, 

concurrent deletion roughly doubles the time required to add a given number of 

transactions compared with CATS Tree Builder alone. This implies the time 

required to delete a transaction roughly equals that of addition.  

Building of a FP-Tree requires about 80% of the time required to build a 

CATS Tree. This is a surprise because building of a FP-Tree is much simpler 

than building a CATS Tree. There could be few reasons for that: 1) FP-Trees 

constructed in previous work were constructed with frequent items only; in our 

experiments, FP-Trees are constructed with all items in the data file; 2) 

implementation bias may have affected the performance; 3) FP-Tree is only 

efficient when the number of nodes in the tree is small.  
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Since FP-Tree can be constructed with secondary processor, construction 

time for FP-Tree is excluded for comparison purpose. Without considering the 

time for FP-Tree construction, batch deletion is about 4% faster than concurrent 

deletion when the batch size is 50,000 transactions. The time difference is tested 

for statistical significance. The t-score is 7.41; the difference is statistically 

significant. When the batch size is increased to 100,000 transactions, the 

difference between concurrent deletion and batch deletion (without considering 

cost of building FP-Tree) increases to 6%. Again the difference is also 

statistically significant. As the batch size increases, the chance of having other 

identical or similar transactions in the same batch increases. This allows multiple 

transactions to be compressed into a single branch that allows removal of 

multiple transactions with single scan. 

Although batch deletion allows higher removal rate of the transactions, 

batch deletion requires more resources. First of all, batch deletion requires a 

secondary processor to process the removal transactions. Without the 

secondary processor, the time required by batch deletion is higher than that of 

concurrent deletion. Secondly, larger amount of main memory is required. The 

main memory has to be able to hold FP-Tree of size of batch size and CATS 

Tree size of L plus the batch size where L is the slide window size.  
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 The experiment results presented in this chapter have been 

submitted for publication in SIAM International Conference on Data Mining 

(2003) 2 

 

                                                 
2 A version of this chapter has been submitted for publication. SIAM International Conference on 
Data Mining (2003), Cathedral Hill Hotel, San Francisco, CA, May 1-3, 2003. 
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CHAPTER 6 

 
6. General Conclusions and Future Works  

6.1. Conclusions 

We have successfully designed a novel data structure, CATS Tree, and 

an algorithm to build it, as well as MEOW algorithms that are to add or delete 

transactions from the CATS Tree in a batch mode or on the fly. We have also 

designed another algorithm, FELINE that is to mine frequent patterns from the 

CATS Tree.  

There are many advantages of CATS Tree algorithms over the existing 

algorithms.  

1) The building algorithm consists of single pass data mining.  

2) Once the tree is built, data mining with different supports can be 

performed without having to rebuild the tree structure. The benefit 

of “build once, mine many” increases with the number of interactive 

mining stages with different supports. The construction cost of 

CATS Tree is amortized over multiple frequent pattern mining 

interactions. This makes our approach appropriate for ad hoc data 

mining. 

3) MEOW algorithms allow addition and deletion of transactions in the 

finest granularity, i.e., transaction by transaction. Currently, there is 

no known and published algorithm that allows addition and deletion 

of single transaction and able to perform frequent mining efficiently. 
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Mining non-stop streams of transactions becomes possible 

especially that single scan of the data suffices. 

We have implemented CATS Tree algorithms and compared our 

approach with other algorithms that had been implemented and optimized by 

either their own authors or third party developers to avoid implementation bias. 

Experiments were performed on a dataset with over a million transactions. In this 

thesis work, CATS Tree algorithms have been shown efficient and scalable to 

handle large amounts of transactions. Furthermore, CATS Tree algorithms have 

been shown to outperform the other known algorithms in interactive and 

incremental data mining. In addition, CATS Tree algorithms can perform addition 

and deletion of single transaction that no other known published algorithm can 

handle. 

6.2. Future Work 

There are many data mining issues that can be built upon the foundation 

of CATS Tree based algorithms that include: 

1) In this thesis work, it has assumed that there is an unlimited amount of 

main memory. In reality, there is possibility that computer may run out 

of memory while it is running with CATS Tree algorithms. This problem 

can be resolved by using disk based CATS Tree algorithms. Disk 

based CATS Tree algorithms allows frequent pattern mining with 

databases that cannot be fitted into the main memory. CATS Tree 

contains all items in the database and hence can be used as the 
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native format for transactional databases, allowing direct frequent 

pattern mining on the data without further overhead. 

2) Although CATS Tree algorithms are efficient, there are non-linear run 

time behaviours in both “MEOW together” and FELINE. The sequence 

in which trees are merged and incremental building of conditional 

condensed CATS Tree could be further investigated. 

3) Extension of CATS Tree based algorithms to other application areas 

including privacy preserving frequent itemset mining [32], negative 

frequent pattern mining [27] and many other issues related to 

association rule mining. 
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