
UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: WILLIAM CHEUNG

TITLE OF THESIS: FREQUENT PATTERN MINING WITHOUT

CANDIDATE GENERATION OR SUPPORT
CONSTRAINT

DEGREE: MASTER OF SCIENCE

YEAR THIS DEGREE GRANTED: 2003

Permission is hereby granted to the University of Alberta library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly,
or scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis
nor any substantial portion thereof may be printed or otherwise reproduced in
any material form whatsoever without the author's prior written permission.

William Cheung
205 17467 98 A Ave,

Edmonton, Alberta T5T 6E9

Date:

University of Alberta

Frequent Pattern Mining Without Candidate Generation or Support
Constraint

by

WILLIAM CHEUNG

A thesis submitted to the faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

Edmonton, Alberta

Spring, 2003

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Frequent
Pattern Mining Without Candidate Generation or Support Constraint
submitted by WILLIAM CHEUNG in partial fulfillment of the requirements for the
degree of Master of Science .

Dr. Osmar R. Zaïane

Dr. Vadim Bulitko

Dr. Marek Reformat

Date:

Abstract

 Mining for frequent patterns in transactional databases has been studied

for more than a decade. Many algorithms have been developed to mine static

databases. There are a few incremental algorithms, FUP2 and SWF, that allow

both addition and deletion of transactions. However, they are not efficient

because they have to rescan the whole dataset at least once. They are not

suitable in real time situations where transactions are added or deleted

constantly and frequent patterns mining could be required at any time.

In this thesis, we propose a novel data structure called CATS Tree. CATS

Tree extends the idea of FP-Tree to improve storage compression and allow

frequent pattern mining without generation of candidate itemsets. The proposed

algorithms allow mining with a single pass over the database as well as addition

or deletion of transactions in the finest granularity at any given time.

Acknowledgments

 I would like to express my gratitude to the many people who have made it

possible for me to complete this thesis. First of all I would like to thank Dr. Osmar

R. Zaïane, my supervisor, for the opportunity to work in his laboratory, and for all

of his help and support in both the research and the writing of this thesis. I would

also like to give thanks to the members of the department who gave me support

and friendship.

Finally, I would like to express my deepest gratitude to my lair, particularly

my wife, Kitty Tam, for loving and putting up with me, and to my furry kids,

Emma, Rinky, Jonathan and Christy, who have been sleeping with and purring to

me when I need them the most.

Table of Contents

1. General Introduction... 1

1.1. MOTIVATION .. 2

1.2. CONTRIBUTION ... 5

2. Previous Work... 7

2.1. INTRODUCTION ... 7

2.2. APRIORI-BASED ALGORITHMS.. 8

2.3. PARTITION-BASED ALGORITHMS ... 10

2.4. DFS AND HYBRID ALGORITHMS.. 11

2.5. PATTERN GROWTH ALGORITHMS.. 12

2.6. INCREMENTAL UPDATE WITH APRIORI-BASED

ALGORITHMS... 15

2.7. SUMMARY .. 17

3. CATS Tree Algorithms.. 18

3.1. INTRODUCTION ... 18

3.2. CATS TREE BUILDER.. 23

3.3. CATS TREE MERGE OR WEDGE APART (MEOW) 32

3.3.1. CATS Tree Merge (MEOW together).. 33
3.3.2. CATS Tree Wedge Apart (MEOW apart).................................. 39

3.4. FREQUENT/LARGE PATTERNS MINING WITH CATS TREE

(FELINE) ... 44

4. Implementation And Challenges.. 50

4.1. INTRODUCTION ... 50

4.2. MEMORY MANAGEMENT.. 52

4.2.1. Structural Memory Management... 53
4.2.2. External Memory Management... 54

4.3. PERFORMANCE ENHANCEMENT .. 62

4.3.1. Reducing Redundancy.. 62
4.3.2. Deployment of Index... 64
4.3.3. Miscellaneous Improvement ... 74

4.4. SUMMARY .. 76

5. Experiments and Results ... 78

5.1. INTRODUCTION ... 78

Table of Contents

5.2. EXPERIMENTAL DESIGN .. 78

5.3. EXPERIMENTAL RESULTS ... 81

5.3.1. Single Pass Scalability and Memory Usage Experiments......... 81
Experiment One.. 81
Experiment Two.. 85
Experiment Three ... 89
Experiment Four ... 93

5.3.2. Incremental Data Mining Experiments 95
Experiment Five .. 95
Experiment Six.. 97

6. General Conclusions and Future Works... 101

6.1. CONCLUSIONS .. 101

6.2. FUTURE WORK.. 102

List of Tables

Table 2.1. Properties of existing algorithms. Where k is the length of maximal frequent
itemsets and p is the number of partitions. Best case assumes all enhancements are
employed successfully and the data distribution is the most favourable distribution
for the algorithm. Worse case assumes none of the enhancements work.
Incremental Apriori has the behaviour of Apriori for the initial mining and single pass
is required for incremental mining.. 17

Table 3.1. Differences between CATS Tree and FP-Tree... 19

Table 3.2. An example of transaction database... 19

Table 5.1. Frequent Pattern Mining Parameter.. 88

List of Figures

Figure 3.1. Differences between CATS Tree and FP-Tree omitting item links. 20

Figure 3.2. Compactness of CATS Tree .. 21

Figure 3.3. Item boundary in CATS Tree ... 23

Figure 3.4. Addition of Transaction 1 & 2 into a CATS Tree.. 26

Figure 3.5. Addition of Transaction 3 into a CATS Tree .. 27

Figure 3.6. Split and Merge of CATS Tree... 28

Figure 3.7. Not Split Vs Spilt & Merge.. 28

Figure 3.8. Addition of Transaction 5 into a CATS Tree .. 29

Figure 3.9. CATS Tree from the same dataset with different ordering.................................. 30

Figure 3.10. Contention path is removed after a new transaction is added 31

Figure 3.11. Merging of two sibling branches .. 32

Figure 3.12. Merge of CATS Tree and causes multiple violations of CATS Tree properties 35

Figure 3.13. General form of a prefix tree branch.. 41

Figure 3.14. Branching section broken into multiple straight branches................................. 42

Figure 3.15. FP-growth cannot be applied to CATS Tree.. 45

Figure 3.16. FELINE: C’s conditional condensed CATS Tree... 47

Figure 3.17. FELINE: F’s conditional condensed CATS Tree ... 48

List of Figures

Figure 4.1. Content of a CATS Node ... 52

Figure 4.2. CATS Nodes Management Scheme.. 57

Figure 4.3. Structure map of children pointers arrays.. 60

Figure 4.4. Projection of items in CATS Tree... 66

Figure 4.5. Addition of a transaction with indexes.. 69

Figure 4.6. Addition of a transaction with partial indexes... 73

Figure 5.1. Scalability of CATS Tree With Respect to Number of Transactions................... 82

Figure 5.2. Memory Usage With Respect to Number of Transactions 83

Figure 5.3. Memory Premium With Respect to Number of Transactions.............................. 84

Figure 5.4. Single Mining Scalability of CATS Tree With Respect to Support 86

Figure 5.5. Multiple Mining with CATS Tree With Different Supports.................................... 88

Figure 5.6. Scalability of CATS Tree With Respect to Pattern Length Ratio 90

Figure 5.7. Memory Usage Respect to Pattern Length Ratio .. 91

Figure 5.8. Scalability With Respect to Transaction Length .. 92

Figure 5.9. Scalability of CATS Tree With Respect to Number of Items............................... 93

Figure 5.10. Memory Usage With Respect to Number of Items .. 94

Figure 5.11. Individual Time for CATS Tree algorithms during incremental data mining 96

List of Figures

Figure 5.12. Incremental Data Mining .. 96

Figure 5.13. Concurrent Vs Batch Deletion.. 98

List of Pseudo Codes

Pseudo Code 3.1. CATS Tree Builder ... 24

Pseudo Code 3.2. MEOW together.. 37

Pseudo Code 3.3. MEOW apart by transaction ... 40

Pseudo Code 3.4. MEOW apart by set .. 44

Pseudo Code 3.5. FELINE ... 46

List of Abbreviations

BFS Breadth First Search
CATS Compressed Arranged Transaction Sequences
DFS Depth First Search
DIC Dynamic Itemset Counting
FELINE FrEquent/Large patterns mINing with CATS TrEe
FP Frequent Pattern
MEOW CATS Tree MErge Or Wedge apart
SWF Slide Window Filtering
TID Transaction Identification

Chapter 1
General Introduction

1

CHAPTER 1

1. General Introduction

With advancement in modern storage technologies, it is possible to store

a large amount of data cheaply, in both financial sense and physical sense.

Because of that, it is feasible for companies to record all kinds of data from

customers’ personal information to purchasing transactions. This leads to

accumulation of huge amount of data. However, huge amount of data does not

equate to huge amount of information and most of the collected data require

substantial amount of processing before useful information can be extracted.

The process of extracting hidden patterns from large datasets is called

knowledge discovery. One crucial phase of the knowledge discovery process is

data-mining: a collection of specific algorithms to sift through the data.

Information extracted from huge transactional datasets is commonly expressed

in the form of association rules that have the following format:



⇒

occurs n appear whe that likelyhood theis confidence and

set data in the appearing , itemset, theof percentage theissupport where
)confidence (support,

XY

XY
YX

Frequent itemsets are itemsets that have support greater than a minimum user

defined support. Before association rules can be constructed, the frequencies of

the underlying frequent itemsets have to be found. The first efficient and

published data-mining algorithm is Apriori [1]. Apriori is based on the downward

closure property of itemset that if an itemset of length k is not frequent, none of

its superset patterns can be frequent. Before each data scan, candidate frequent

Chapter 1
General Introduction

2

itemsets, i.e., itemsets that have the potential to be frequent, are generated;

candidate frequent itemsets are verified whether they are frequent or not during

the next data scan. Apriori had sparkled a lot of interest in the data-mining

community. Many researchers [5,19,20,26] have proposed many ways to

improve Apriori. Yet, there are many more researchers who are continuing to

work on frequent itemset mining. This is because frequent itemset mining is the

most important step in the entire data mining process; frequent itemset mining is

also the most resources consuming step in the knowledge discovery process.

Therefore any improvement in frequent itemset mining will have a significant

effect on the performance of data mining.

This thesis focuses on the mining of frequent itemsets because it is

universal to all kinds of association rules and in addition, it is highly resource

demanding.

1.1. Motivation

The original Apriori algorithm requires k scans or passes over the data

where k is the length of the longest frequent itemset. This requires a significant

amount of I/O overhead. The data mining community has done a significant job

to reduce the number of data scans required to two scans in the worse case and

a single pass in the best case [26]. However, the best-case scenario requires

extreme conditions, namely that all possible frequent itemsets must appear

uniformly in all partitions. Theoretically that is possible, however, in real life

transactions, it is unlikely that such extreme conditions would hold true.

Chapter 1
General Introduction

3

Therefore it is almost certain that more than one data scans are required to

complete data mining.

Most of the time, data mining is performed on a huge database. Therefore

it may not be feasible to restart frequent pattern mining whenever there is an

update. Hence incremental data mining algorithm that allows both insertion and

deletion of transaction without restarting from scratch is highly desirable. Slide

Window Filtering (SWF) algorithm is proposed for incremental mining of

association rules [17]. Based on cumulative information of previous mining, SWF

requires single scan for incremental mining. In order to achieve single scan,

SWF employs candidate 2 itemsets in the memory to generate the set of

candidate frequent itemsets with length of k. Even if the increment is very small;

SWF still requires to scan the whole dataset. Therefore, SWF is not suitable in

situations where datasets are updated and data mining is performed frequently.

As shown in [10], it is computationally expensive to generate candidate sets, sets

that are potentially frequent, and it is especially true when the support is low and

there are many candidate 2 itemsets. Therefore it would be ideal if an algorithm

can perform incremental data mining without generating candidate frequent

itemsets and without a complete rescan of the data.

By nature, association rule mining requires trials and errors. Users

perform data-mining with specified support and confidence. In most of the cases,

the results from the initial data-mining may not be satisfactory. Users have to

change the support or confidence and rerun the process until satisfactory results

Chapter 1
General Introduction

4

are obtained. It is common to change the required minimum support after results

from the initial mining are obtained. When the required support is increased, the

information required is more restrictive. Existing algorithms adapt the situation by

pruning extra information from the initial mining results. On the other hand, when

the required support is decreased, the constraint is less restrictive. Therefore,

more information is required. Most known association rule mining algorithms

store just enough information for that particular required support. As a result,

most known association rule mining algorithms require to restart from scratch. In

[14], Pattern Tree or P-tree is proposed to address the sensitivity of user support.

However, P-tree incurs a large memory overhead and the P-tree must be

converted into a FP-tree before frequent pattern mining. The conversion is

required no matter how small the changes are. Furthermore, P-tree does not

support removal of transactions.

The objective of this thesis is to incorporate previous knowledge into a

new data structures and a set of algorithms that allow single pass data mining to

discover frequent itemsets. At the same time, the data structure would allow

incremental data mining without generating candidate itemsets. This thesis tries

to address the sensitivity of user input parameters without having to restart the

mining process from scratch. Furthermore, addition and removal of transactions

from the data structure are taken into account and discussed in this thesis.

Chapter 1
General Introduction

5

1.2. Contribution

In this thesis, we present an approach to use prefix tree to compress the

whole dataset into a data structure that can be used for frequent itemset mining

directly. The prefix tree is called Compressed Arranged Transaction Sequences

Tree or CATS Tree in short. When the data is dense where patterns within the

dataset have high correlation with one another, e.g., medical data, CATS Tree

allows data to be stored with smaller space. Once the data resides within a

CATS Tree, single pass data mining can be achieved. The algorithm used to

mine frequent patterns from the CATS Tree is called FrEquent/Large patterns

mINing with CATS TrEe or FELINE in short. All previous association rule mining

algorithms require multiple scans. Single pass data mining helps to relieve bottle

neck in the I/O system. Furthermore, CATS Tree can be built incrementally. The

tree can also be built piecewise and the pieces are merged together. This

provides a framework for parallelism to enhance performance.

CATS Tree also allows incremental data mining at the lowest level, i.e.,

one transaction at a time. Transactions can be substracted either premanently

from the tree or temporary during frequent itemset mining. As far as we know,

this is the first single pass data mining algorithm that allows both addition and

deletion of transactions in the finest granuality, i.e., a single transaction.

FELINE mines the CATS Tree without generating candidate itemsets.

This provides an advantage over Apriori based algorithms that require to

generate candidate frequent itemsets especially when the data is dense, where

Chapter 1
General Introduction

6

cost of generation of candidate frequent itemsets can be exponential. In addition,

the CATS Tree is insensitive to user parameters, i.e., FELINE can accommodate

changes in user input parameters without changing the tree. Since FELINE can

be used at any time, our algorithms are especially useful in real time transaction

streams where frequent pattern mining could be required at any time. Unlike

SWF, there is no preset limit on the number of transactions that can be removed,

CATS Tree algorithms can be used to maintain a fixed number of transactions

within the tree by concurrent addition and removal of transactions. As far as we

know, there is no other algorithm that can mine exactly a fixed number of

transactions in real time transaction stream at any time.

The remainder of the thesis is organized as follows. Chapter 2 surveys

related work. Chapter 3 introduces the CATS Tree structure and the algorithms

to build it and to mine frequent patterns from it. Chapter 4 discusses the

implementation challenges and solutions to solve certain problems. Chapter 5

presents experimental results. Conclusions are given in Chapter 6.

Chapter 2
Previous Work

7

CHAPTER 2

2. Previous Work

2.1. Introduction

One of the major uses with association rules is to analyze large amount of

supermarket basket transactions [2,4,10,16]. Recently, association rules have

been applied to other areas like outliers detection, classification, clustering etc

[5,7,9,13,16,18,27,30]. The popularity of association rules can be attributed to its

simplicity. Association rules mining can formally be defined as follows. Let I = {i1,

i2, i3, …, im} be a set of attributes called items. Let D be a set of transactions.

Each transaction t in D consists of a set of items such that t ⊆ I. A transaction t is

said to contain an itemset X if and only if all items within X are also contained in

t. Each transaction also contains a unique identifier called TID. Support of an

itemset is normalized number of occurrences of the itemset within the dataset.

An itemset is considered as frequent or large, if the itemset has a support that is

greater or equal to the user specified minimum support. The most common form

of association rules is implication rule which is in the form of X ⇒ Y, where X ⊂ I,

Y ⊂ I and X ∩ Y = ∅. The support of the rule X ⇒ Y is equal to the percentage of

transactions in D containing X ∪ Y. The confidence of the rule X ⇒ Y is equal to

the percentage of transactions in D containing X also containing Y. Depending

on the application, the definition of confidence can be changed to suit a

Chapter 2
Previous Work

8

particular need [4,5,16,21,27]. For example, instead of using confidence as the

measure of interestedness, χ2 can be used to measure the correlation in the

frequent itemsets. Once the required minimum support and confidence are

specified, association rule mining becomes finding all association rules that

satisfy the minimum requirements. The problem can be further broken down into

2 steps: mining of frequent itemsets and generating association rules.

The number of possible combinations of itemsets increases exponentially

with |I| and the average transaction length. Therefore it is infeasible to determine

the support of all possible itemsets. When counting the supports of itemsets,

there are two strategies. The first strategy is to count the occurrences directly,

whenever an itemset is contained in a transaction, the occurrence of the itemset

is increased. The second strategy is to count the occurrences indirectly by

intersecting TID set of each component of the itemset. The TID set of a

component X, where X can be either item or itemset, is denoted as X.TID. The

support of an itemset S = X ∪ Y is obtained by intersecting X.TID ∩ Y.TID =

S.TID and the support of S equals |S.TID|.

2.2. Apriori-based Algorithms

The very first published and efficient frequent itemset mining algorithm is

Apriori [1]. Apriori uses breadth first search (BFS) as the search strategy. At

each level, Apriori reduces the search space by using downward closure

property of itemset that if an itemset of length k is not frequent, none of its

superset patterns can be frequent. Candidate frequent itemsets, Ck where k is

Chapter 2
Previous Work

9

the length of the itemset, are generated before each data scan. The supports of

candidate frequent itemsets are counted. Candidate k itemsets, Ck, are

generated with frequent k - 1 itemsets. Apriori achieves good performance by

iterative reduction of candidate itemsets. However, Apriori requires k data scans

to find all frequent k-itemsets. In large databases, it is very expensive to scan the

data multiple times. A number of algorithms have been proposed to improve the

performance of Apriori. Most of those improvements address issues related to

the I/O cost.

Dynamic Itemset counting, DIC, relaxes the strict separation between

generating and counting of itemsets [5]. DIC starts counting the support of

candidate frequent itemsets as soon as they are being generated. By

overlapping counting and candidate itemset generation, DIC reduces the overall

data scans required. Orlando et al. proposed an algorithm that combines

transaction reduction and direct data access [20]. At the end of each scan,

transactions that are potentially useful are written back to the disk drive for the

next iteration. A technique called scan reduction uses candidate 2 itemsets to

generate subsequent candidate itemsets [17]. If all intermediate data can be held

in the main memory, only one scan is required to generate all candidate frequent

itemsets. Another data scan is required to verify whether the candidate frequent

itemsets are indeed frequent.

With all of those improvements, the number of data scans required by

Apriori based algorithms has been reduced significantly. However, the number of

Chapter 2
Previous Work

10

data scans required is still related to the length of the maximal frequent itemsets.

Furthermore, the cost of generating candidate frequent itemsets has not been

fully addressed by Apriori based algorithms. This problem becomes apparent

when there are huge numbers of frequent 1 or 2 itemsets.

2.3. Partition-based Algorithms

Motivated by the high number of database scans required by Apriori

based algorithms, Partition algorithm was proposed [26]. In most cases, Partition

algorithm requires two complete data scan to mine frequent itemsets. The

Partition algorithm divides the dataset into many subsets and each subset can

be fitted into the main memory. The main idea of Partition algorithm is that a

frequent itemset must be frequent in at least one of the subsets. During the first

data scan, Partition algorithm generates local frequent itemsets for each

partition. Since the whole partition can be fitted into the main memory, the

complete local frequent itemsets can be mined without further disk access. The

local frequent itemsets are added to the global candidate frequent itemsets. In

the second data scan, false candidates are removed from the global candidate

frequent itemsets. In a special case where each subset contains identical local

frequent itemsets, Partition algorithm can mine all frequent itemsets with a single

data scan. However, when the data is distributed unevenly across different

partitions, Partition algorithm may generate a lot of false candidates from a small

number of partitions. AS-CPA and SSAS-CPA were proposed to address the

effect of uneven distribution of frequent patterns [19]. By employing the

Chapter 2
Previous Work

11

knowledge collected during the mining process, false global candidate frequent

itemsets are pruned when they are found that they cannot be frequent. In

addition, those algorithms reduce the number of scans in the worse case to (2p-

1)/p where p is the number of partitions.

2.4. DFS and Hybrid Algorithms

Eclat and Clique combine depth first search (DFS) with intersection

counting [33]. By using intersection counting, no complicated data structure is

required. Furthermore, only the TID sets of the itemsets of the path from the root

down to the leaves have to be kept in the memory simultaneously. This reduces

the memory requirement of the algorithm. Intersection of TID sets can be

stopped as soon as the remaining length of the shortest TID set is shorter than

the required support minus the counted support. As pointed out by the authors,

intersecting 1 itemset TID sets to determine frequent 2 itemsets is expensive.

The authors assume frequent 2 itemsets are available from pre-processing.

From frequent 2 itemsets, maximal hypergraph clique clustering is applied to

generate a refined set of maximal itemsets. Hipp et al. pointed out that DFS

cannot prune candidate k itemsets by checking frequent k – 1 itemsets [11]. This

is because DFS searches from the root to the leaves of the tree without using

any subsets relationship.

A hybrid approach of BFS and DFS is proposed [12]. When the number of

candidate frequent itemsets is small, it is cheaper to use itemset counting with

BFS to determine the supports. When the number of candidate frequent itemsets

Chapter 2
Previous Work

12

is relatively large, the hybrid algorithm switches to TID set intersection with DFS.

This is because simple TID set intersection is more efficient than occurrence

counting when the number of candidate frequent itemsets is relatively large. This

would incur additional costs to generate TID sets. The authors propose to use

hash-tree-like structure to minimize the cost of transition. However, the authors

do not provide an algorithm to determine when is the best condition to switch

strategy. In the evaluation, the authors provide parameters to change in strategy.

However, those parameters may not be generalized enough for all kinds of

datasets. As pointed out by the authors, incorrect timing of changing strategy

may decrease the performance of hybrid algorithm.

2.5. Pattern Growth Algorithms

Two major costs of Apriori based algorithms are the cost to generate

candidate frequent itemsets and the I/O cost. Data mining community has

addressed the issues related I/O, but the issues related to candidate frequent

itemsets generation remain. First, the cost required to generate candidate k

itemsets especially when there are a lot of k –1 frequent itemsets. For example,

if there are n frequent 1 itemsets, Apriori based algorithms would require to

generate approximately n2/2 candidate frequent itemsets. Secondly, the memory

required to hold the candidate frequent itemsets and their supports could be

substantial. For example, when n equals 10,000, there would be more than 108

length 2 candidate frequent itemsets. Assuming it requires 4 bytes to hold the

support and 4 bytes to hold the itemsets, it would require close to 0.5 gigabytes

Chapter 2
Previous Work

13

of main memory to store the information. Furthermore, the memory required

does not include the overhead from the data structure. Thirdly, the cost required

to counting the support of candidate itemsets may not be trivial. As observed in

run time behaviour of Apriori based algorithms, the run time increases as the

support decreases. Therefore, the cost of candidate frequent itemsets

generation of Apriori based algorithms could easily overshadow the cost of I/O.

Han et al. proposed a data structure called frequent pattern tree or FP-

Tree [10]. FP-growth mines frequent itemsets from FP-Tree without generating

candidate frequent itemsets. FP-Tree is an extension of prefix tree structure.

Only frequent items have nodes in the tree. Each node contains the item’s label

and its frequency. The paths from the root to the leaves are arranged according

to the support of the items with the frequency of each parent is greater than or

equal to the sum of its children’s frequency. The construction of FP-Tree requires

two data scans. In the first scan, the support of each item is found. In the second

scan, items within transactions are sorted in descending order according to the

support of items. If two transactions share a common prefix, the shared portion is

merged and the frequencies of the nodes are incremented accordingly. Nodes

with the same label are connected with an item link. The item link is used to

facilitate frequent pattern mining. In addition, each FP-Tree has a header that

contains all frequent items and pointers to the beginning of their respective item

links. FP-growth partitions the FP-Tree based on the prefixes. FP-growth

traverses the paths of FP-Tree recursively to generate frequent itemsets. Pattern

Chapter 2
Previous Work

14

fragments are concatenated to ensure all frequent itemsets are generated

properly. In this way, FP-growth avoids the costly operations of generating and

testing of candidate itemsets.

As pointed out by the authors of FP-Tree, no algorithm works in all

situations. The fact holds true for FP-Tree when the dataset is sparse. When the

data is sparse, the compression achieved by the FP-Tree is small and the FP-

Tree is bushy. As a result, FP-growth would spend a lot of effort to concatenate

fragmented patterns with no frequent itemsets being found.

A new data structure called H-struct is introduced in [25]. Transactions are

sorted with an arbitrary ordering scheme. Only frequent items are projected in

the H-struct. H-struct consists of projected transactions and each node in the

projected transactions contains item label and a hyper link pointing to the next

occurrence of the item. A header table is created for H-struct. The header

contains frequencies of all items, their supports and hyper link to the first

transaction containing given item. H-mine mines the H-struct recursively by

building a new header table for each item in the original header with subsequent

headers omitting items that have been mined previously. For each sub-header,

H-mine traverses the H-struct according to the hyper links and finds frequent

itemsets for the local header. At the same time, H-mine builds links for items that

have not been mined in the local header. Those links are used to find conditional

frequent patterns within the local header. The process is repeated until all

frequent itemsets have been mined. In case of a dense dataset, H-struct is not

Chapter 2
Previous Work

15

as efficient as FP-Tree because FP-Tree allows compression. H-mine would

dynamically switch to FP-Tree when the dataset is found to be dense.

2.6. Incremental Update with Apriori-based Algorithms

A general incremental update data-mining algorithm is highly desirable in

frequent pattern mining. It is because the complete dataset is normally huge and

the incremental portion is relatively small compared to the complete dataset. In

many cases, it is not feasible to perform a complete data mining process while

transactions are being added continuously. Therefore, incremental data mining

algorithms have to reuse the existing information as much as possible, so that

either computational cost and/or I/O cost can be reduced.

A general incremental mining algorithm called Fast Update 2, FUP2 that

allows both addition and deletion of transactions was proposed in [8]. The major

idea of FUP2 is to reduce the cost of candidate frequent itemsets generation.

Incremental portion of the dataset is scanned; frequent patterns in the

incremental data are compared with the existing frequent itemsets in the original

dataset. Previous frequent itemsets are removed if they are no longer frequent

after the incremental portion of the data is added or removed. The supports of

previous frequent itemsets that are still frequent are updated to reflect the

changes. In those ways, previous frequent itemsets that are still frequent are not

required to be checked for their supports again. New k +1 candidate frequent

itemsets are generated from frequent k itemsets. The entire updated dataset is

scanned to verify those newly added candidate itemsets if they are indeed

Chapter 2
Previous Work

16

frequent. The process is repeated until the set of candidate frequent itemset

becomes empty. FUP2 offers some benefits over the original Apriori; however, it

still requires multiple scans of the dataset.

Another incremental Apriori based algorithm is called Sliding Window

Filtering, SWF for short [17]. SWF incorporates the main idea of Partition

algorithm with Apriori to allow incremental mining. SWF divides the dataset into

several partitions. During the scan of partitions, a filtering threshold is employed

in each partition to generate candidate frequent 2 itemsets. When a candidate 2

itemset is found to be frequent in the newly scanned partition, the partition

number and the frequency of the itemset are stored. Cumulative information

about candidate frequent 2 itemsets is selectively carried over toward

subsequence partition scans. Cumulative frequencies of previous generated

candidate frequent 2 itemsets are maintained as new partitions are being

scanned. False candidate frequent itemsets are pruned when the cumulative

support of the candidate frequent itemsets fall below required proportional

support since they have become frequent. Once incremental portion of the

dataset is scanned, scan reduction techniques are used to generate all

subsequence candidate frequent itemsets [6]. Another data scan over the whole

dataset is required to confirm the frequent itemsets. In the case of data removal,

the partition to be removed are scanned, the cumulative count and the start

partition number of candidate length 2 itemsets are modified accordingly.

Although SWF achieves better performance than pervious algorithms, the

Chapter 2
Previous Work

17

performance of SWF is still depending on the selection of partition size and

removal of data can only be done at partition level.

2.7. Summary

Table 2.1. provides a summary of the performance properties of existing

algorithms assuming the best case scenario is being used in each category. DFS

and hybrid algorithms category are not included in the table because the

properties of those algorithms require either pre-processing of the data or

previous knowledge about the data properties. Therefore it is difficult to give an

accurate summary for those algorithms. Also, in the last column of the table is

the listing of properties that we want to achieve in this thesis with our algorithms.

 Apriori Based Partition Based Incremental Apriori FP-Tree Want to achieve
Number of scans
required in the best
case

2 1 2(1) 2 1

Number of scans
required in worse
case

k + 1 (2p-1)/p k + 1(1) 2 1

Candidate
generation

Y Y Y N N

Incremental mining N N Y N Y
Sensitive to change
in user parameters

Y Y Y Y N

Table 2.1. Properties of existing algorithms.
Where k is the length of maximal frequent itemsets and p is the number of partitions. Best
case assumes all enhancements are employed successfully and the data distribution is the
most favourable distribution for the algorithm. Worse case assumes none of the
enhancements work. Incremental Apriori has the behaviour of Apriori for the initial mining
and single pass is required for incremental mining

Chapter 3
CATS Tree algorithms

18

CHAPTER 3

3. CATS Tree Algorithms

3.1. Introduction

Before designing new frequency pattern mining data structures and

algorithms, let us examine the properties of existing algorithms and compare

them with what we want to achieve. As shown in Table 2.1., combining

incremental Apriori and FP-Tree could produce a result that is the closest to what

we want to achieve. However, incremental Apriori lacks the elegant data

structure that allows mining without generating candidate itemset. On other

hand, FP-Tree lacks the data history of incremental Apriori. Hence, a more

robust and flexible data structure is needed to handle incremental mining.

In this thesis, algorithms that compress the whole dataset into an

intermediate data structure are proposed. The data structure allows data mining

without referencing the original dataset. At the same time, the data structure is

completely insensitive to and unaffected by user parameters. Users can perform

data mining repeatedly with different parameters without having to rebuild the

structure. The data structure is called Compressed Arranged Transaction

Sequences Tree or CATS Tree since transactions are arranged in sequences for

local optimization in a prefix tree and indirectly compressed. The CATS Tree is

an extension of FP-Tree and it contains all elements of FP-Tree including the

Chapter 3
CATS Tree algorithms

19

header, item links etc. However, there are few major differences between the two

data structures.

CATS Tree FP-Tree

Contains all items in every transaction Contains only frequent items
Single scan data mining Two scans data mining
Items within a transaction do not need
to be sorted

Items within a transactions are sorted

Sub-trees are locally optimized to
improve compression

Sub-trees are not locally optimized

Ordering of items within paths from the
root to leaves are ordered by local
support

Ordering of items within paths from the
root to leaves are ordered by global
support

CATS nodes having the same parent
are sorted in descending order
according to local frequencies. If two
CATS nodes have the same
frequencies, they are sorted arbitrarily
either numerically or lexicographically

Children of a node are not sorted

Table 3.1. Differences between CATS Tree and FP-Tree.

Transactions in table 3.2. are used to illustrate some differences between

CATS Tree and FP-Tree. Assuming the absolute required support is 3

transactions.

TID Original Transactions Projected transactions for FP-Tree
1 F, A, C, D, G, I, M, P F, C, A, M, P
2 A, B, C, F, L, M, O F, C, A, B, M
3 B, F, H, J, O F, B
4 B, C, K, S, P C, B, P
5 A, F, C, E, L, P, M, N F, C, A, M, P

Table 3.2. An example of transaction database.

Shown in Figure 3.1. are the CATS Tree and the FP-Tree constructed

from the sample database. Since CATS Tree is an extension of FP-Tree, it is

structurally similar, except branches in CATS Tree are longer than those of FP-

Tree. This is because CATS Tree contains all items in each transaction rather

Chapter 3
CATS Tree algorithms

20

than just the frequent items. As illustrated in the dashed rectangles in Figure

3.1., nodes in CATS Tree are locally optimized. This allows higher compression.

In the FP-Tree, there are two “M” nodes while there is only one “M” in the CATS

Tree.

CATS Tree VS FP-Tree

F:4

C:3

A:3

M:2

P:2

Root

M:1

B:1

C:1

B:1

P:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

G:1

I:1

Root

B:1

L:1

O:1

B:1

H:1

J:1

O:1

B:1

C:1

K:1

S:1

P:1

N:1

E:1

L:1

CATS Tree FP-Tree

Figure 3.1. Differences between CATS Tree and FP-Tree omitting item links.

In this chapter, we describe CATS Tree algorithms that include: CATS

Tree Builder which adds one transaction to CATS Tree at a time; CATS Tree

MErge Or Wedge apart, MEOW in short, that adds or removes a set of

transactions from CATS Tree; FrEquent/Large pattern mINing with CATS TrEe,

FELINE in short, that mines frequent pattern from CATS Tree without generating

candidate itemsets.

Chapter 3
CATS Tree algorithms

21

Before the algorithms are discussed, the data structure is defined first. A

CATS Tree is a prefix tree that contains all components of the FP-Tree that

include a header and item links [10]. Each item in the dataset has a node in the

header and each of them consists of the total frequency of the item in the

dataset. In addition, each header node contains a pointer that points to the first

node in the CATS Tree having the same label as that of the header node. Each

node in the CATS Tree contains item label, its frequency, pointer to its parent,

pointers to its children and the item links. The item links are double linked list

that connect all nodes in the CATS Tree having the same item label. Children of

a node in a CATS Tree are arranged in descending order based on their

frequencies. All CATS Trees have the following properties:

1) The compactness of CATS Tree measures how many transactions are

compressed at a node. The compactness of CATS Tree is the highest at the root

and the compactness decreases as a node is further away from the root.

I:1

G:1 O:1

L:1

B:1

C:6

F:3

A:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

N:1

L:1

E:1

F:1

Compactness

Z:2

Figure 3.2. Compactness of CATS Tree

Chapter 3
CATS Tree algorithms

22

a) Vertical compactness property is inherited from prefix tree that

the compactness of a parent node must be greater than or equal

to the sums of compactness of its children.

b) Horizontal compactness property is the result of branches being

arranged in descending order of the support attached to the root

of each sub-tree. As shown in the dashed rectangle in Figure

3.2., children of a node are arranged in descending order based

on their compactness.

2) No item of the same kind, i.e., nodes containing the same item label, could

appear on the lower right hand side of that level item. Although CATS Tree can

be extended to handle multiple occurrences of item in a transaction, for

simplicity, items in a transaction can only have single occurrence, i.e., binary

transactions as opposed to transactions with reoccurring items [31]. This is a

common assumption that is used in most association rule algorithms. It is

obvious that items of the same kind cannot occur underneath one of their own

because this would violate binary property of itemsets. If there were items of the

same kind on the right hand side, they should have been merged with the node

to increase compression. Any items on the lower right hand side can be switched

to the same level as the item, split nodes as required if switching nodes violates

the structure of CATS Tree. After the violating node is switched to the same

level, the violating node can be merged with the node on the left hand side.

Because of the above properties, a vertical downward boundary is formed below

Chapter 3
CATS Tree algorithms

23

each node and a horizontal rightward boundary is formed at the top of each

node. The vertical and horizontal boundaries combine to form a step like

individual boundary.

I:1

G:1 O:1

L:1

B:1

C:5

F:3

A:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

B:1

K:1

N:1

L:1

E:1

F:1 X:1 Y:1 Z:1 …

… … …Refined
Boundary for B

Individual Boundary of B nodes

Figure 3.3. Item boundary in CATS Tree

As shown in Figure 3.3., boundaries of multiple items can be joined together to

form a more refined boundary for that particular item.

3.2. CATS Tree Builder

Since CATS Tree contains all the information of the dataset, there could

be an infinite number of paths within a CATS Tree. Unlike the construction of FP-

Tree, construction of CATS Tree requires only a single data scan. Heuristic

search is the only method to locate the best position to merge transactions and

branches. New transactions are added to a CATS Tree at the root. At each level,

items of the transaction are compared with those of children nodes. If same

items exist in both the new transaction and that of the children nodes, they would

be merged together and the frequency of the node is incremented. The

Chapter 3
CATS Tree algorithms

24

remaining of the transaction is added to the merged node and the process is

repeated recursively until all common items are found. Any remaining items of

the transaction are added as a new branch to the last common node. Once the

frequency of the new transaction is added, the frequency of a descendant node

could become larger than that of its ancestor. If that happens, the descendant

has to swap in front of its previous ancestor to maintain the structural integrity of

the CATS Tree. The algorithm of CATS Tree is listed below:

Algorithm : CATS Tree Builder
Input : set of transactions
Output : CATS Tree

1) /* adds transaction by transaction to the root*/
PROCEDURE CATSTreeBuilder(input_set)

2) for each transaction t in input_set
3) increment frequencies of items of t in the header.
4) CATS Tree’s root.add(t)

5) /* adds a transaction at the current node */

PROCEDURE add(transaction t)
6) if (there is common item between children nodes and t)
7) child_node.merge(t)
8) else if (descendant of children nodes can be merged with

 t)
9) swap descendant_node and split child_node if

 necessary and descendant_node.merge(t)
10) else t is added as a new child_node
11) Reposition the merged node if necessary based on

 frequencies
12) restructure the CATS Tree if necessary based on

 frequencies

13)PROCEDURE merge(transaction t)
14) increase frequency of the node
15) remove item from t and call node.add(t)

Pseudo Code 3.1. CATS Tree Builder

From the above algorithm, construction of CATS Tree requires exactly

one data scan (line 2). CATS Tree Builder cannot afford to search blindly

throughout the tree to locate common items. Without considering the structure of

the CATS Tree, the search space is the whole tree. When searching for a node

Chapter 3
CATS Tree algorithms

25

to be merged, CATS Tree Builder has to search not only the immediate children

of the current node, but also all of its descendants (line 8). CATS Tree Builder

prunes the search space in the following ways:

1) CATS Tree Builder traverses to the descendants if and only if

there is possibility that the descendant can have greater

frequency than that of its ancestor. Since items within a

transaction have frequency of 1, the frequency of the

descendant of the current node must be equal to that of its

ancestor. If a descendant does not have the same frequency as

that of its ancestor, the search can be aborted and another path

should be followed.

2) Because of compactness and boundary properties, if a node

does not have enough frequency to merge with the transaction,

none of its descendant or rightward siblings would have enough

frequency. As soon as an invalid node is found, CATS Tree

Builder can insert the new transaction as a new branch or abort

the search and pursue other paths. If the ordering of sibling

nodes becomes out of order after merging, the position of the

offending node is repositioned to maintain the structural integrity

of the CATS Tree (line 12). In chapter 4, effective

implementations that take advantages of item links to reduce the

addition cost to approximately O(|t|) are discussed.

Chapter 3
CATS Tree algorithms

26

Here the working of CATS Tree Builder is illustrated with the example

transaction database from Table 3.2.

P:1

M:1

B:1

M:1

A:1

O:1M:1L:1B:1

F:1

A:1

C:1

D:1

G:1

I:1

Root

O:1L:1C:1B:1

M:1 O:1L:1C:1B:1

M:1 O:1L:1F:1C:1A:1

Figure 3.4.A P:1

I:1

O:1L:1B:1

O:1M:1L:1B:1

F:2

A:2

C:2

M:1

D:1

G:1

Root

Figure 3.4.B Only A,C,F have been added

Figure 3.4. Addition of Transaction 1 & 2 into a CATS Tree

At the beginning, the CATS Tree is empty. Transaction 1 is added to the CATS

Tree as it is. When transaction 2 (A, B, C, F, L, M, O) is added, transaction 2

goes into the for loop section of add(). At line 7 of add(), common items, (F, A, C)

extracted from transaction 2 are merged with F, A, C nodes and their frequency

counters are incremented accordingly as shown in Figure 3.4.B. In the fourth

recursive call of add(), there is no item D in the transaction to merge with node

D. CATS Tree Builder has to search nodes below node D as shown in line 8.

Item M is found to be common in both the tree and transaction 2. However,

transaction 2 cannot merge directly at node M because it would violate the

structure of CATS Tree. In order to allow merging of transactions, node M is

swapped in front of node D as shown in line 9 and in Figure 3.4.B. Then item M

of the transaction 2 is merged with the tree. Since there is no more common item

between the remaining of transaction 2 and the tree, the remaining portion of

Chapter 3
CATS Tree algorithms

27

transaction 2 is added as a new branch. The new CATS Tree is shown in Figure

3.5.

P:1

I:1 O:1

L:1

B:1

O:1J:1H:1B:1

F:2

A:2

C:2

M:2

D:1

G:1

Root

O:1J:1H:1F:1B:1

Figure 3.5. Addition of Transaction 3 into a CATS Tree

When transaction 3 (B, F, H, J, O) is added to the CATS Tree, item F of

transaction 3 is merged with node F. Since the frequency of node A is the same

as that of node F, CATS Tree Builder traverses down the path to find another

possible node to merge. CATS Tree Builder passes through node A, C, and M;

finally, it reaches node B. Even though transaction 3 also contains an item B, the

combined frequency of existing node B and that of transaction is equal to, but

not greater than, that of node M. It is important to note that in order to merge

CATS Tree with item B in transaction 3 and, at the same time, maintain the

integrity of CATS Tree, the procedure has to spilt node A and swap node B in

front of node A.

Chapter 3
CATS Tree algorithms

28

P:1

I:1 O:1

L:1

B:1

O:1J:1H:1B:1

F:2

A:2

C:2

M:2

D:1

G:1

Root

O:1J:1H:1F:1B:1

P:1

I:1 O:1

L:1

M:1

F:2

A:1

C:1

M:1

D:1

G:1

Root

B:1

A:1

C:1

Figure 3.6. Split and Merge of CATS Tree

After “Split and Merge”, the resulting CATS Tree may or may not be as

compressed as the original CATS Tree. In this example, the CATS tree that has

transaction merged at node B is not compressed as much as before. This is

evidenced by the total number of nodes in each CATS Tree in Figure 3.7.

P:1

I:1 O:1

L:1

B:1

F:3

A:2

C:2

M:2

D:1

G:1

Root

O:1

J:1

H:1

B:1

16 nodes

Not merge at node B

L:1

M:1

I:1

I:1

H:1

F:3

B:2

O:2

G::1

A:1

C:1

Root

D:1

M:1

C:1

A:1

17 nodes

merge at node B

P:1

Figure 3.7. Not Split Vs Spilt & Merge

In general, we do not know whether it is beneficial or not to perform a “Spilt and

Merge” when the new combined frequency is the same as before. Therefore,

CATS Tree Builder will avoid “Spilt and Merge” unless the new combined

Chapter 3
CATS Tree algorithms

29

frequency is greater than the previous frequency. In chapter 4, benefits and

costs analysis are discussed.

When transaction 4 (B, C, K, S, P) is added, there is no common item at

the root level. Therefore transaction 4 is added as it is. When transaction 5 (A, F,

C, E, L, P, M, N) is added, F, A, C, and M are merged in order as CATS Tree

Builder traverses down the path. After node M has been merged, CATS Tree

Builder continues the path to look for a node to merge. Item P is found to be

common in both the tree and transaction 5. This triggers swapping of node P to

the front of node D because the frequencies of node P and node D are the

same. After that, there is no more common item. There is no more unprocessed

transaction, the construction of CATS Tree from the example database is

completed

P:1

I:1 O:1

L:1

B:1

F:3

A:2

C:2

M:2

D:1

G:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1M:1P:1L:1

E:1C:1F:1A:1

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:1

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1P:1 L:1E:1

Figure 3.8. Addition of Transaction 5 into a CATS Tree

In general, it is impossible to build a CATS Tree with maximal

compression without prior knowledge of the dataset. Therefore the structure of a

CATS Tree is sensitive to both ordering items within transactions and the

Chapter 3
CATS Tree algorithms

30

ordering of transactions. Assuming the order of transaction 1 has been changed

to (F, M, A, D, G, I, C, P) and the order of transaction 3 and 4 are switched. The

major differences in the new CATS Tree are highlighted by dashed rectangles in

the following figures.

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1

L:1

E:1

Original CATS tree

I:1

G:1 O:1

L:1

B:1

C:4

M:3

F:3

A:3

P:2

D:1

Root

P:1

S:1

K:1

B:1

O:1

J:1

H:1

F:1

B:1

N:1

L:1

E:1

CATS tree with different order

Figure 3.9. CATS Tree from the same dataset with different ordering

The differences between the modified CATS Tree and the original one are

due to the fact that nodes C:4 and F:4 cannot exist together in this example, i.e.,

their compressions are mutually exclusive. In such case, CATS Tree Builder

resolves the compression contention with first-come-first-serve algorithm. Once

the contention is removed, either by addition or deletion of transactions, both

trees could converge. For example, if transaction 6 containing only item C is

added, in the second tree, the frequency counter of node C is incremented and it

is done.

Chapter 3
CATS Tree algorithms

31

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1

L:1

E:1

Original CATS tree

C:1

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

C:2

N:1

L:1

E:1

Original CATS tree

Figure 3.10. Contention path is removed after a new transaction is added

In the original CATS Tree, node C:1 in the second branch would be swapped in

front of node B. It is then merged with item C in the new transaction. CATS Tree

Builder tries to find other common node in the sibling branches; it locates

another C node on the first branch. However, node C:3 cannot be swapped in

front of node F:4 directly because it would violate the compactness of CATS

Tree. Node F:4 has to be split into two branches, one contains node C:3 and the

other branch contains the rest of the children. Once node C:3 is swapped to the

front of node F:3, node C:3 is merged with node C:2. After the merge, the

resulted CATS Tree is structurally identical to the second tree except the

ordering of items that have the same frequencies within the same path. Those

differences are insignificant because the pruning strategy of CATS Tree Builder

is based on the boundary created by the difference between nodes’ frequencies.

Any node on the same path with the same frequency is considered as the same

class; the order of appearance does not matter.

Chapter 3
CATS Tree algorithms

32

I:1

G:1 O:1

L:1

B:1

C:3

F:3

A:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

C:2

N:1

L:1

E:1

Original CATS tree

F:1

I:1

G:1 O:1

L:1

B:1

C:5

F:3

A:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

N:1

L:1

E:1

Original CATS tree

F:1

Figure 3.11. Merging of two sibling branches

Although in the above example two structurally different CATS Trees can

converge into the same tree, in some cases involving multiple contentions,

multiple structurally different CATS Trees can be constructed from the same

database. Even though the structure of tree can be different, the information

stored within a CATS Tree, i.e., the whole database, remains the same.

The frequent pattern mining algorithm, FELINE, described later, would

take care of the differences in the structure of trees and produces the identical

set of frequent patterns.

3.3. CATS Tree MErge Or Wedge apart (MEOW)

In general, the application setting can be classified as either real time or

off line. In real time setting, transactions are coming in one by one at any time. In

off line situations, e.g., data warehouse, transactions could be coming in as a

batch. CATS Tree algorithms can handle either situations. However, in certain

settings, like parallel processing or load balancing, it may be advantageous to

Chapter 3
CATS Tree algorithms

33

process a small portion of the dataset into a small CATS Tree and then merge

the small tree with the main CATS Tree. Furthermore, data within a database is

dynamic. Older data may not have the same importance as the recent data. At

some point in time, older data may be removed to reflect the current state of the

database. Data modification can be considered as a two-step process. In the first

step, data that are to be modified are removed. In the second step, updated data

are inserted back into the database. CATS Tree algorithms support all of the

above important functions with MEOW algorithms. “MEOW together” allows

merging of CATS Trees and “MEOW apart” handles deletion of data.

3.3.1. CATS Tree Merge (MEOW together)

The simplest CATS Tree, apart from an empty tree, is a CATS Tree with a

single transaction. The difference between a single transaction and a CATS Tree

with a single transaction is that a CATS Tree has a header while a single

transaction does not. Therefore merging of a CATS Tree with a CATS Tree that

has a single transaction can be transformed as merging the headers and then

adding the only branch of the small tree to the larger CATS Tree. Each node in

the header contains an item label, an item frequency, pointers to the first node

and the last node. It is straightforward to merge the nodes within the headers

together by connecting the last node of a tree to the first node of another tree

and then adding the support together. However, what we really want to achieve

is merging of complex CATS Trees together. From the simplest CATS Tree, we

Chapter 3
CATS Tree algorithms

34

learnt that merging headers is an important step. CATS Tree represents a set of

transactions, the order of processing subsets within a set does not affect the final

outcome of the set. Therefore, a complex CATS Tree can be broken down into

many CATS Trees each with one branch only. This simplifies merging of a

complex CATS Tree into merging of multiple CATS Trees with a single branch.

Branches can be removed from the new CATS Tree in “first come, first serve”

fashion and then be added to the existing CATS Tree branch by branch until the

new CATS Tree is empty. The support of a branch equals the support of the first

node in the branch. When a branch is added to a CATS Tree, it is imperative

that adding a new branch would not violate the compactness and the boundary

properties of the CATS Tree. In the simplest case where there is no common

item between the branch and the existing CATS Tree, only the compactness

property requires attention. The new branch can be added solely based on the

support of the new branch. However, when there are common items between the

new branch and the existing CATS Tree, “MEOW together” has to consider both

compactness and boundary properties. Leading item of a branch is the item of

the first node in the branch. The first step is to find the item in the new branch

that would have the highest frequency after merging. As shown in Figure 3.12.A,

F is the item with the highest frequency after the merging. Nodes containing the

highest frequency item are swapped to the current level and are merged. After

that, the merged node is inserted back to the existing CATS Tree based on its

support. The procedure is repeated recursively on the children of the merged

Chapter 3
CATS Tree algorithms

35

nodes. If the new branch is not empty, the selection and merge operations on

the remaining of the branch are repeated.

I:1

G:1

O:1

L:1

B:1

C:2

F:1

A:1

M:1

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

N:1

L:1

E:1

F:2

F:1Merging a singleton CATS Tree F:1

Figure A

I:1

G:1

O:1

L:1

B:1

C:2

F:1

A:1

M:1

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

N:1

L:1

E:1

F:3

F:3 passes C:2

F:3 violates compactness property
and F:3 moves leftward and passes C:2

Figure B

I:1

G:1

O:1

L:1

B:1

C:2

F:1

A:1

M:1

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

N:1

L:1

E:1

F:3

F:1 under C:2 violates boundary property and cause C:2 to split

Figure C

I:1

G:1

L:1

M:1

C:1

C:1

A:1

P:2

D:1

Root

J:1

H:1

O:2

B:2

P:1

S:1

K:1

B:1

N:1

L:1

E:1

F:4

After C:2 split, C:2 becomes C:1 and violate compactness property
C:1 has to move rightward and passes P:2

Figure D

I:1

G:1

L:1

M:1

C:1

C:1

A:1

P:2

D:1

Root

J:1

H:1

O:2

B:2

P:1

S:1

K:1

B:1

N:1

L:1

E:1

F:4

After C:1 passes P:2, P:1 under C:1 violates boundary property.
P:1 has to merge with P:2

Figure E

I:1

G:1

L:1

M:1

C:1

C:1

A:1

P:3

D:1

Root

J:1

H:1

O:2

B:2

S:1

K:1

B:1

N:1

L:1

E:1

F:4

Final CATS Tree

Figure F

Figure 3.12. Merge of CATS Tree causes multiple violations of CATS Tree properties

Chapter 3
CATS Tree algorithms

36

Occasionally, the merged node may violate integrity of a CATS Tree in

two ways: 1) the newly added branch may contain items that are leading items of

its leftward siblings as shown in Figure 3.12.E. However, the integrity of the

CATS Tree on the right hand side of the merged node is still intact because,

from the boundary property, there is no node on the right hand side containing

the same item as the merged node; 2) the support of the merged node could be

larger than that of its leftward siblings as shown in Figure 3.12.B. “MEOW

together” would scan the newly added branch for any leading items of leftward

siblings except those siblings with support less than that of the merged node.

Any items found are swapped to the same level as the merged node and then

those nodes are merged with the respective leftward siblings. Since transactions

are added to an existing node, at most all newly added transactions are

removed. The support of the merged node cannot be smaller than what it has

before, therefore the merged node can only be moving leftward.

Every time the merged node moves a position, it has to pass its adjacent

sibling. Whenever the merged node passes a sibling, the sibling is scanned for

leading item of the merged branch. Nodes have the item as the leading item of

the merged branch are split and merged with the new branch. The process is

repeated until the merged branch reaches its proper position based on its

support. Pseudo code for “MEOW together” is given as follows:

Algorithm : MEOW together
Input : two CATS Trees: CATS1 & CATS2
Output : CATS1

1) PROCEDURE MEOW_together (CATS Tree CATS1, CATS Tree CATS2)

Chapter 3
CATS Tree algorithms

37

2) Remove branch b from CATS2 one by one
3) CATS1.add(b) until CATS2 is empty

4) PROCEDURE add(CATS node newNode)
5) if (there exists a child with the same item as the

 newNode’s)
6) leading item
7) merge(newNode, child node)
8) else look for descendant node having item same as newNode
9) swap the descendant with the children. Split the child
10) node as necessary.
11) descendant.merge(newNode)
12) else
13) add newNode as a new branch

14)PROCEDURE merge(CATS node newNode)
15) Support += newNode’s support
16) Remove branch b from newNode one by one
17) this .add(b) until newNode is empty
18) reposition this as necessary

19)PROCEDURE split(CATS node descendant)
20) if (this.frequency > descendant ’s frequency)
21) start from descendant moves upward until this .
22) Divide nodes into nodes containing descendant and not

 containing descendant

Pseudo Code 3.2. MEOW together

The main ideas of the above “MEOW together” are rather simple; the new

CATS Tree is broken into pieces; one piece is added at a time until the complete

CATS Tree is merged with the other. However, there are some issues that need

to be addressed.

First, branches of a CATS Tree are the result of partitioning based on the

local item distribution of the tree. If the local item distribution of the new CATS

Tree is similar to the global item distribution of all CATS Trees, adding the first

branch of new tree to the existing one can be very effective. It is because the

new branch is more likely to be added to an existing branch; thus the work

required to restructure the merged CATS Tree is minimized. On the other hand,

adding a branch that has an item distribution that does not match with the

Chapter 3
CATS Tree algorithms

38

existing CATS Tree may cause the branch to move back and forth. Even though

the end results are the same, the order of adding branches does matter in term

of the amount of work required to merge trees. Therefore finding the optimal

order of adding the branches can be a challenge by itself.

Secondly, the addition of a new branch may cause cascade changes to

the CATS Tree. When the merged branch passes over a sibling, nodes with the

same item as the leading item of the merged node are extracted from its sibling.

If the number of transactions extracted is large enough, the support of the sibling

could be decreased to a point that the branch has to move rightward in order to

maintain the compactness property of the CATS Tree. As it passes another

sibling, it may cause the support of another sibling to be changed and so forth.

As shown in Figure 3.12.B-E, the cost of cascade effect can be substantial,

especially when the frequency distribution of items in the new branch does not

match with that of the CATS Tree.

Thirdly, it could be expensive to locate items underneath a node. If the

search is undirected, all nodes in the CATS Tree have to be visited in order to

ensure no node is missed. Traversing the whole branch can be very expensive

especially when the branch is large and bushy. Item links can be used to

facilitate the search. However, item links can lead to branches that are

completely irrelevant to the current branch. Partial index discussed in chapter 4

can be used to reduce the search space. However, there is maintenance cost

associates with the index.

Chapter 3
CATS Tree algorithms

39

Fourthly, as new branches are added to another CATS Tree, branches

added have to be compared with not only that of the other CATS Tree but also

branches that have just been added. Since branches in the new CATS Tree

have been compared with each other during the initial construction, there is no

need to compare those transactions again during the merge.

In the Chapter 4, implementations that help to address those issues are

discussed.

3.3.2. CATS Tree Wedge Apart (MEOW apart)

When removing transactions from a CATS Tree, we assume that those

transactions exist in the CATS Tree. The set of transactions to be removed is

called ∆. Like merging of CATS Tree, the goal of removal transactions is

efficiency and maintaining the structural integrity of the CATS Tree. CATS Tree

can be wedged apart either transaction by transaction or by a set of transactions.

Removing transactions one by one is straightforward and does not incur an

overhead to process ∆. Furthermore, “MEOW apart by transaction” allows real

time removal of transactions. Addition and removal of transactions can be

happening at the same time. This is especially useful when the application

requires to mine frequent patterns from a fixed number of transactions. However,

removal of transactions by set allows a higher degree of parallelism and allows

elimination of multiple transactions with a single scan.

In the case of “MEOW apart by transaction”, t ∈ ∆, frequencies of items

within t at the current level are obtained and item with the highest frequency is

Chapter 3
CATS Tree algorithms

40

selected. If there were multiple items having the same frequency, item that is on

the left most hand side in the CATS Tree is considered as the selected item. By

the boundary property of CATS Tree, t will be located in the branch having the

item with the highest frequency. If t were located on the right hand side of

predicted node, the item with the highest current level frequency within t would

have to locate on the right hand side of the predicted node; this would violate the

boundary property of a CATS Tree. If t were located on the left hand side of the

predicted node, this implied there was a node at the same level having frequency

greater than that of the select branch. This contradicts the definition of the

highest frequency item. As “MEOW apart by transaction” traverses down the

path, frequency counter of each traversed node is decremented and the header

of the CATS Tree is updated. The pseudo code for “MEOW apart by transaction”

is given as following:

Algorithm : MEOW apart by transaction
Input : a CATS Tree: CATS1 and a set of transactions to be removed
Output : a CATS Tree: CATS1

1) Procedure MEOW_apart(set of transactions) {
2) While (set of transactions is not empty) {
3) Remove transaction t from set of transactions
4) Locate and remove transaction t from CATS1
5) Update CATS1.header
6) }
7) }

Pseudo Code 3.3. MEOW apart by transaction

When removing transactions as a set, the first step involves building of a

prefix tree out of ∆. Either a CATS Tree or a FP-Tree with 0% support can be

constructed from ∆. However, a FP-Tree is used here because the construction

is simpler. Instead of using frequency list of ∆ to sort items within transactions of

Chapter 3
CATS Tree algorithms

41

∆, the global frequency list of the CATS Tree is used. This may not provide as

much compression as if local frequency list of ∆ were used. However, the global

frequency list is maintained in CATS Tree header, this allows the FP-Tree to be

built without reading ∆ twice. Every branch of a FP-Tree or a CATS Tree can be

represented as following:

B:m

Y:j

Z:j

M:k

P:l

X:j

…
Repeat n times and n > 0

… ……

Figure 3.13. General form of a prefix tree branch

When n equals one, that means there exists at least (j – k) number of

transactions that contain only single item X in the whole CATS Tree. Since those

transactions are singleton, this guarantees that those transactions are

represented as a child node at the root level. With the index technique discussed

in chapter 4, the branch can be accessed directly and the frequency of the

branch can be decremented by (j – k). If the new frequency of that node equals

zero, the branch is removed from the CATS Tree. The header can be updated

once at the end of removal by subtracting the header of FP-Tree from that of

CATS Tree. This reduces the branch of the FP-Tree to the general form with n

larger than one. Items X to Z form a set called setXZ and |setXZ| equals n. By

Chapter 3
CATS Tree algorithms

42

substituting items X to Z with setXZ, the branch reduces to the general form with

n equals one. By using the same argument as before, it is guaranteed that there

exists setXZ at the root level. By substituting setXZ back to items X to Z, this

means that one of branch that has item X, …, or Z at the root level contains the

transactions to be removed. This reduces the search space significantly from |I|

to n. By applying the boundary property of a CATS Tree, only the branch with the

highest frequency out of those n branches can contain the required transactions.

Since all branches are arranged in descending order from left to right, items in

setXZ will be arranged according to their root level frequency. If the frequency of

item Y at first level is smaller than that of item X, all transactions underneath item

Y cannot contain any item X. By applying this property iteratively, the above

conclusion can be drawn. This solves the straight portion of the branch, but it

does not address the branching section of the branch. As shown in the following

figure, sub branches of a branch can be broken into multiple straight branches.

B:m

Y:j

Z:j

M:k

P:2

X:j

…

… ……

root

P:1

…

Y:2

Z:2

M:2

P:2

X:2

…

… …

Y:m

Z:m

M:m

B:m

X:m

…

Y:j-k

Z:j-k

M:k-2-m

X:j-k

…

root

P:1

Figure 3.14. Branching section broken into multiple straight branches

Chapter 3
CATS Tree algorithms

43

After branching section of the FP-Tree branch is broken into straight branches,

substitution of itemsets can be applied repeatedly until the FP-Tree branch is

removed. Unlike “MEOW apart by transaction”, a single scan of the CATS Tree

can remove multiple transactions. While “MEOW apart by set” removes a

straight branch, it can look ahead of the sub branches to be removed. In the

above example, “MEOW apart by set” checks frequency of node P at the root

level if there is one. As shown in Figure 3.14., the frequency of node P at the

root level is 1. If root level frequency of item P is smaller than that of X before

deletion or there does not exist a node P at the root, by boundary property of

CATS Tree, the transaction containing P is underneath the current position. The

transactions can be removed without restarting at the root. Therefore it is

possible to remove the whole branch of FP-Tree by a single path traversal. Once

all branches in the FP-Tree have been removed, the header of the FP-Tree is

subtracted from that of the CATS Tree. The pseudo code of “MEOW apart by

set” is given as following:

Algorithm : MEOW apart by set
Input : a CATS Tree, CATS1 and removal dataset or CATS Tree, CATS2
Output : a CATS Tree: CATS1

1) PROCEDURE MEOW_apart(removal_dataset or CATS Tree CATS2)
2) If (removal_dataset is not NULL)
3) Build a FP-Tree out of removal_dataset with global

 frequency
4) prefix_tree = FP-Tree
5) else
6) prefix_tree = CATS2
7) for every branch b in prefix_tree
8) removeBranch(b)
9) subtract prefix_tree header from CATS1.header

10)PROCEDURE removeBranch(branch b) {

Chapter 3
CATS Tree algorithms

44

11) At each level, locate the child node that has the highest
 frequency and the node’s item is same as one the node in
 the straight portion of the branch

12) repeat until straight portion is gone
 break the branching portion of b into multiple straight
 branches

13) for every straight branch c
14) removeBranch(c)

Pseudo Code 3.4. MEOW apart by set

3.4. FrEquent/Large patterns mINing with CATS Tree (FELINE)

Unlike FP-tree, once the CATS Tree is built, it can be mined repeatedly

for frequent patterns with different support thresholds without the need to rebuild

the tree. Like FP-growth [10], FELINE employs divide and conquer, fragment

growth method to generate frequent patterns without generating candidate

itemsets. FELINE partitions the dataset based on what patterns do transactions

have. For a pattern called p, a p’s conditional CATS Tree is a CATS Tree built

from all transactions that contain pattern p. Transactions contained in conditional

CATS Tree can be easily gathered by traversing the item links of pattern p. A

condensed CATS Tree is a CATS Tree with all infrequent items removed. It can

be built by traversing the CATS Tree and at each node, the support of the node

label is found from the header. If the frequency of that label in the header is

smaller than the required frequency, the node is removed. The children of that

node are added to its parent node. Like FP-Tree, only frequent items have a

node in a condensed CATS Tree; unlike FP-Tree, the order of items within a

branch of a condensed CATS Tree is arranged based on the local frequencies of

items within the branch instead of global frequencies that are used in FP-Tree.

Chapter 3
CATS Tree algorithms

45

Removal of infrequent nodes can be incorporated into the construction of

conditional CATS Tree. This allows conditional condensed CATS Tree to be built

with a single traversal. Although a conditional condensed CATS Tree is very

similar to a conditional FP-Tree, a conditional condensed CATS Tree is different

enough that FP-growth cannot be applied directly. It is because the order of

items within a branch of CATS Tree is arranged based on local frequency. By

traversing upward only like FP-growth, it cannot be guaranteed that all frequent

patterns are gathered.

CATS Tree FP Tree

F:4

A:3

C:3

M:3

P:2

Root

B:1

B:1

B:1

C:1

P:1

F:4

C:3

A:3

M:2

P:2

Root

M:1

B:1

C:1

B:1

P:1

B:1

Figure 3.15. FP-growth cannot be applied to CATS Tree

In the above example, if B’s conditional condensed CATS Tree were built

by traversing upward only, pattern <B, C, P> would be missed. If C’s conditional

condensed CATS Tree were built by traversing upward only, pattern <F, A, C, M,

B> would be missed. In order to ensure all frequent patterns are captured,

FELINE has to traverse both upward and downward to build conditional

condensed trees. However, this may cause duplications of frequent patterns

because frequent patterns could appear in all conditional condensed trees of

Chapter 3
CATS Tree algorithms

46

items that constitute the pattern. To avoid duplications, FELINE excludes items

that either are infrequent or have been mined. Once a conditional condensed

CATS Tree is built, pattern fragment growth algorithm such as FP-growth can be

used to mine frequent patterns. The pseudo code for FELINE is given as

following:

Algorithm : FELINE
Input : a CATS Tree and required support
Output : a set of frequent pattern

1) PROCEDURE FELINE(required support ε)
2) sort frequent items in the header in descending order
3) for each frequent item α
4) build αTree = α’s conditional condensed CATS Tree
5) mineCATSTree(αTree, α)

6) PROCEDURE mineCATSTree(αTree, α)
7) if (αtree’s support > ε)
8) if (αtree’s contains a straight path P)
9) generate frequent patterns in P with support equals

 that of constituents of P
10) else
11) at branching area for each frequent item αi generates

 αi Tree = αi ’s conditional CATS Tree
12) generate pattern β=αi ∪α with support = support of αi
13) βTree = β’s conditional condensed CATS Tree
14) mineCATSTree(βTree, β)

Pseudo Code 3.5. FELINE

In the following section, FELINE is demonstrated with the database shown

in Table 3.2. The required support is 3. The first step of FELINE is to build a

sorted frequent item list in a descending order based on the frequency of items

(line 2). For items with the same frequency, the ordering would be resolved with

predefined scheme. In the following example, ascending lexicographical ordering

is used.

Chapter 3
CATS Tree algorithms

47

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1

L:1

E:1

C:4, F:4, A:3, B:3, M:3, P:3, L:2, O:2, D:1, E:1, G:1, H:1, I:1, J:1, K:1, N:1, S:1

Sorted item frequency list

B:1

C:4

F:3

A:3

M:3

P:2

C:3

P:3

<C, P>:3

<C>:4

<C,F,A,M>:3

CATS tree C’s conditional condensed CATS Tree

P:1

B:1

Figure 3.16. FELINE: C’s conditional condensed CATS Tree

Conditional condensed CATS Trees are built according to the frequency list.

Since item C is the first item in the frequency list, C’s conditional condensed

CATS Tree is built first and then passed to mineCATSTree (line 6). <C>:4 is the

first frequent pattern produced and then mineCATSTree is called recursively to

mine the remaining frequent items. Since node C has more than one child, sub

conditional condensed trees are built according to the local header list (line 11).

As shown in the Figure 3.16., branch <C, F, A, M> section is a straight branch.

All combinations of <C, F, A, M> are generated and frequencies of those

frequent patterns equal the minimum support of their constituent items (line 9).

However, based on previous works [22,23,24,28], all frequent patterns can be

generated from <C, F, A, M>:3. Therefore only <C, F, A, M>:3 has been shown.

Then FELINE builds CFAM’s conditional condensed CATS Tree. Since the

frequency of item P underneath <C, F, A, M> is smaller than the required

support, the mining process for that branch ends. After that, node B is checked.

However item B is infrequent, it is ignored. After the mining of branch <C, F, A,

Chapter 3
CATS Tree algorithms

48

M> has been finished, FELINE builds CP’s conditional condensed CATS Tree.

This leaves <C, P>:3 the only frequent pattern in that branch and completes the

mining of C’s conditional condensed CATS Tree. Then FELINE builds F’s

conditional condensed CATS Tree, and skips mined items and infrequent items.

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1

L:1

E:1

C:4, F:4, A:3, B:3, M:3, P:3, L:2, O:2, D:1, E:1, G:1, H:1, I:1, J:1, K:1, N:1, S:1

Sorted item frequency list

B:1

F:4

A:3

M:3

P:2

<F>:4

CATS tree F’s conditional condensed CATS Tree

B:1

Figure 3.17. FELINE: F’s conditional condensed CATS Tree

The frequency list in the header can be used to determine whether an item has

been mined or not. If the frequency of an item in the header is larger than that of

the current item, that item must have been mined. In the above example (Figure

3.17.), F’s conditional condensed CATS Tree is built without infrequent item or

item C. Item B and item P are skipped because they are infrequent in F’s

conditional condensed Tree. <F>:4 is mined first and FELINE continues to mine

the remaining of the tree. FELINE mines <F, A, M>:3. The same process is

repeated until all frequent items are mined.

Chapter 3
CATS Tree algorithms

49

 The algorithms presented in this chapter have been submitted for

publication in SIAM International Conference on Data Mining (2003) 1

1 A version of this chapter has been submitted for publication. SIAM International Conference on
Data Mining (2003), Cathedral Hill Hotel, San Francisco, CA, May 1-3, 2003.

Chapter 4
Implementation And Challenges

50

CHAPTER 4

4. Implementation And Challenges

4.1. Introduction

The initial development of CATS Tree is based on the belief that single

pass frequent pattern mining is achievable and feasible. It is assumed that there

is no limitation on the main memory. The assumption is realistic for a reasonably

large database due to the following reasons: 1) the current trend of modern

computing moves towards computers with large amounts of main memory

(gigabytes sized); 2) memory management techniques in the CATS Tree

manage to minimize memory wastage; 3) data compression technique in the

CATS Tree compresses multiple transactions into a single path. Most of the

previous published literature deals with database sized around 100k

[5,10,12,17,19,25,29,33]. In our experiments, our database size is over a million

transactions, which is a reasonable size for a respectable department store-like

transactional database. By comparing memory usage of the CATS Tree with that

of the FP-Tree, in some of our experiments, the CATS Tree is so memory

efficient that the CATS Tree successes in our tests, while the FP-tree fails the

tests with memory trashing. In addition, CATS Tree allows removal of

transactions concurrently. Even a very huge database can be processed by

CATS Tree if out of date transactions are removed concurrently.

Chapter 4
Implementation And Challenges

51

As a proof of concept, a prototype of CATS Tree algorithms is

implemented with JAVA 1.3.1_01 using high-level data structures, e.g., tree,

vectors and hash tables. JAVA is chosen as the test platform because of its

portability, well-documented libraries and availability of integrated development

environment. These attributes allow fast prototyping without consuming too many

resources. The prototype is a success in terms of single pass frequent patterns

mining. The prototype is able to perform single pass mining, incremental update,

tree merging and deletion. However, from the feasibility and efficiency point of

view, the prototype requires too much physical memory and it does not scale

with a large number of transactions. Due to the nature of JAVA, it is difficult to

exercise tight control on the memory usage. As a result, CATS Tree algorithms

need to be implemented with a different language.

We rewrote our algorithms in C++ that allows tighter memory control and

more efficient code. However, single pass frequent pattern is not the only goal

for the CATS Tree. We want to store data in a data structure that minimizes

memory requirement and at the same time, facilitates frequent pattern mining. In

this chapter, first we address issues related to memory usage of CATS Tree by

reducing the size of a node and circumventing software and hardware

architectural memory constraints. After that, we discuss techniques that improve

the performance of CATS Tree algorithms by reducing redundancy, improving

efficiency with indexes, as well as other miscellaneous performance

enhancements.

Chapter 4
Implementation And Challenges

52

4.2. Memory Management

Each node in the CATS Tree contains the node’s label and its frequency.

Shown in Figure 4.1. is the content of a CATS node. In addition, each node also

contains pointers to its parent, children and item links. Finally, the root node also

contains a pointer to its header. In order to minimize memory usage, a block of

memory is used as an array for the children pointers. In addition to the array, two

counters are needed to store the capacity of the array and the number of

children.

Children Pointers Array

Max Array Size

Number of Children

Item Link pointer previous Node

Item Link pointer next Node

Parent Pointer

Frequency

Label

Parent Node

Cousin Node
Cousin Node

Child NodeChild Node

Figure 4.1. Content of a CATS Node

Assuming the source data is stored in a normalized relational database,

each item in a transaction is represented as transaction ID and item pair. There

is a 4 to 1 ratio in the data size between a node and the data source when there

is no compression. Therefore, memory usage has to be managed carefully in

order to make CATS Tree feasible. Memory used in a CATS Tree can be

classified as data memory, structural memory or external memory. Data memory

stores transactional information from the data file. Attributes included in data

Chapter 4
Implementation And Challenges

53

memory are parent pointer, children pointers, label and frequency. Structural

memory maintains the structure of CATS Tree that includes header pointer, item

links pointers and array counters. External memory is the total amount of

memory used by CATS Tree minus the memory for the data and the structural

memory. Data memory depends solely on the data source. On the other hand,

there are some controls over the usage of structural and external memories. In

this section, memory management techniques that help to minimize structural

memory and external memory are discussed.

4.2.1. Structural Memory Management

Structural memory is used to maintain the necessary structure of CATS

Tree, however, structural memory does not contain user data. By employing an

alternative representation of the CATS Tree, it is possible to reduce structural

memory without affecting the performance of building and mining of CATS Tree.

Maximum array size counter removal technique is discussed.

Removal of array capacity counter

The set of children pointers array is implemented as a simple array.

Capacity counter and number of children counter are the side product of simple

array implementation. If the size of an array can be determined at run time, the

capacity counter can be removed. Unfortunately, the function to determine the

size of a memory block is not part of the standard C++ library and it is not

available in all platforms. If the function to determine memory block size were

available in multiple platforms, it would often be named differently. Because of

Chapter 4
Implementation And Challenges

54

non-portability of the memory size determining function, only a limited number of

platforms suppose the function. Conditional compilation is used to remove array

capacity counter in platforms that support memory block size determining

function. Microsoft Visual C++ is the primary tested platform that supports the

memory size determining function. The function is also supported in GNU g++

under WIN32, but it is not supported by the version under Linux.

4.2.2. External Memory Management

During experiments, it is found that the actual amount of memory

consumed by CATS Tree algorithms is much higher than that accounted for by

data memory and structural memory; the extra memory is called external

memory. External memory includes all inaccessible or unused memory from

over-allocation of memory in an array to memory wastage due to software or

hardware architecture. In this section, issues with memory allocation of children

pointers array are discussed first. Then memory manager, that minimizes

memory overhead with dynamic memory, is introduced.

Issues With Memory Allocation Of Children Pointers Array

All nodes in the CATS Tree except leaf nodes have children. Therefore

any wastage in children pointers array has a huge impact on the total size of the

CATS Tree. In general, the number of children that a node can have is not

known in advance, therefore the memory for the children pointers array has to be

allocated dynamically. When a children pointers array is filled up, the memory

block has to be resized. Issues related to children pointers array are: 1) when to

Chapter 4
Implementation And Challenges

55

allocate the memory; 2) how big the initial array size should be; 3) how big the

incremental size should be; 4) when to free the array.

In order to preserve memory, memory allocation for the children pointers

array is delayed until a child is added. This helps to prevent memory wastage in

the leaf nodes.

Based on experiments, the majority of CATS nodes have low

compactness and each of them has only a small number of children. Therefore it

is reasonable to allocate the smallest feasible amount of memory to the children

pointers array. Currently, memory of size of 2 pointers is allocated when a child

is first added to a node. The rationale for the size of 2 pointers are both software

and hardware architectures constraints that are discussed in the following

sections.

When the children pointers array is filled, the array has to be resized. In

most hardware architectures, the address of a memory block has to be aligned in

a certain manner. Because of the alignment requirement, memory can only be

allocated in the multiple of a minimum allocation size. If the requested memory

size is not a multiple of the minimum allocation size, the allocated memory size

will be rounded up to the next multiple of the minimum allocation size. Any

memory between the requested size and the actual allocated size would be

inaccessible. In all tested platforms, the minimum allocation units are found to be

16 bytes or the size of 4 pointers. Therefore the incremental size of children

pointers array should be in the multiple of the size of 4 pointers. Because of local

Chapter 4
Implementation And Challenges

56

memory management strategy and the compactness property of the CATS Tree,

nodes with low compactness are pushed farther away from the root. As the node

is further from the root, it is less likely to be merged with new transactions, since

transactions are merged starting from the root of the tree. Therefore, there is

need for larger incremental size of children pointers array when the node has a

high compactness, i.e., at the beginning of the tree. The incremental size is set

as a fraction the current array size with the size rounded up to the next multiple

of the minimum allocation size. Currently, the incremental fraction equals 0.3.

Based on experiments, the amount of memory wasted in over-allocation is

minimal.

Because of the split and merge operations, occasionally, a node can lose

some of its children. This results in over-allocation of children pointers array.

However, split and merge operations happen infrequently. The amount of

memory wastage does not warrant the extra effort to reduce it. On the other

hand, when a non-leaf node becomes a leaf node, memory for the children

pointers array should be de-allocated.

Dynamic Memory Overhead Management

During experiments, the actual memory consumed by CATS Tree is about

40% larger than the theoretical memory size. It has been found that standard

new operator in C++ and dynamic memory allocator, malloc(), reserves 8 bytes

at the beginning of each allocated memory block for house keeping. Combining

with hardware architecture of minimum memory allocation size of 16 bytes, the

Chapter 4
Implementation And Challenges

57

smallest useable allocation size of children pointers array is 2. In this section, a

technique to reduce memory wastage in CATS node allocation is discussed.

Furthermore, high-level implement design for the memory manager to reduce

wastage in children pointers array is discussed.

External CATS node Memory Management

In order to reduce memory wastage, a partial memory manager, called

CATS allocator, is implemented; the new and delete operators of CATS node are

overloaded. CATS allocator is constructed in a way that there is at most one

instance of CATS allocator that exists at any moment. CATS allocator contains

an outer array of pointers; each pointer within the outer array points to a large

block of memory that is used as an array of CATS nodes. The memory

management scheme of the CATS allocator is shown in Figure 4.2.

0
1
2
3

n

…

Outer array of pointers

…

…

Array of CATS nodes

NextFree

Figure 4.2. CATS Nodes Management Scheme

The array size of the CATS node is set to a large number; currently it is set to

100,000, and the amount of memory wasted in the memory block header is

negligible. Although there is wastage in over allocating, the over-allocation is

Chapter 4
Implementation And Challenges

58

insignificant when millions of transactions are added to the CATS Tree. In

addition, CATS allocator also contains two integer counters that are used to keep

track of the current size and the maximum size of the array of pointers. A

variable, NextFree, stores the next available memory location in the array of

CATS nodes.

Instead of using standard memory allocation routines, the new and delete

operators of CATS node request CATS allocator to carry out the functions.

When the new operator is used, CATS allocator returns the address from

NextFree and NextFree is incremented. If the array of CATS nodes is filled up, a

new memory block is allocated. The address of the newly allocated memory

block is put into the outer array of pointers. Furthermore, CATS allocator

contains a free memory linked list; each node of the linked list contains a pointer

to a free address within array of CATS nodes. When the outer array of pointers

is full, the array is resized with realloc(). When delete operator of CATS node is

called, the address to be freed is added to the free memory linked list. Whenever

a new operator of CATS node is called, the address in the free memory linked

list is returned if the free memory linked list is not empty. Since the addition of a

transaction is the most often used function in CATS Tree algorithms, most of the

time the free memory linked list would be very short and there is no need to

manage it. The actual size of a leaf node, before CATS allocator is implemented,

equals 8 attributes times 4 bytes + 8 bytes for house keeping = 40 bytes. With

Chapter 4
Implementation And Challenges

59

the partial memory manager, the actual node size is reduced to 32 bytes, i.e., a

20% saving.

Other than reducing memory consumption, the partial memory manager

also increases the performance of CATS Tree Builder by about 2-3% based on

experiments. This is because memory is allocated in a large chunk; the program

does not need to search for free space every time new operator is used.

External Children Pointers Array Memory Management

Due to lack of time, the memory manger for children pointers arrays has

not been implemented. However, we discuss how it can be implemented. As

discussed previously, the children pointer array increments in a constant fraction.

The possible number of different array sizes is limited. Multiple children pointers

arrays having the same size can be packed together as a large memory block.

Pointers to the same size arrays of children pointers array are put into another

array. Finally, all pointers to the same size arrays are put into another array

called array of pointers to all sizes arrays. The relationships between different

arrays are shown in Figure 4.3.

Chapter 4
Implementation And Challenges

60

2
4
6
9

|I|

0
1
2

0
1
2

…

Array of pointers
to all sizes arrays

Array of pointers to array of array of children CATS node pointers

Array of
size two
array of
children
pointers

Array of
size four
array of
children
pointers

Entry
size

Figure 4.3. Structure map of children pointers arrays

The first element of array of pointers to all sizes arrays points to the

collection of the smallest possible array of children pointers. The second element

points to the collection of second smallest array of children pointers and so on.

The address of each individual children pointers array can be expressed as a

combination of positions of those three arrays. For each collection of array of

children pointers, the number of entries in each memory block is constant.

However, different collections of children pointers arrays can have different entry

sizes. This is important to allow customization of entry size because different

sizes of children pointers arrays could have different distribution characteristics.

Customization of entry size helps to reduce wastage in over-allocation. For each

collection of array sizes, there is a free memory list just like the free memory

linked list in CATS node memory management. The position of the element in

array of pointers to all sizes arrays can be used to determine the size of the

children pointers array. Therefore it is not necessary to keep track of the

maximum array size of the children pointers array. When a CATS node requests

Chapter 4
Implementation And Challenges

61

memory for children pointers array, CATS allocator assigns memory address

from the free memory linked list if it is available. Otherwise, CATS allocator

returns the next available address. Unlike CATS node memory management that

has one size only, distribution of different sizes children pointers arrays can

change. Therefore it is possible for a particular size of children pointers array to

be in demand at one moment and then there is no demand for it at another

moment. Therefore the memory manager has to be more active to manage the

free memory linked list. If the free memory linked list becomes larger than the

threshold, the memory manager has to combine free memory together and

release the memory as required. Although the address of the CATS node

containing the children pointers array is not provided directly, it can be obtained

from the parent pointer of the first element in the children pointers array. The

content of the last allocation children pointers array is copied to one of the free

addresses in the free array list. The host CATS node’s children pointers array

can be replaced with that from the free list. The current size of the array of

children pointers array can be reduced. If the last entry in the memory block is

freed, the memory block is de-allocated. The swapping process is repeated until

the free list is empty. When the CATS allocator is completely implemented, the

actual node size of a non-leaf node with 2 children equals that of 8 attributes + 8

bytes for children pointers array = 40 bytes. Without the CATS allocator, the

actual size of the same node equals size of 8 attributes + 8 bytes for node’s

Chapter 4
Implementation And Challenges

62

header block +16 bytes for children pointers array = 56 bytes. The memory

saving is over 29%.

4.3. Performance Enhancement

CATS Tree Builder is the slowest step in CATS Tree algorithms. CATS

Tree is a single pass algorithm; therefore it does not have prior knowledge of the

database that allows building of CATS Tree in the optimal manner. This reduces

the performance of CATS Tree Builder. Furthermore, when a new transaction is

added, only linear search is available to locate the best merging node. This

further degrades the performance of CATS Tree Builder. In this section, a

technique to reduce redundancy in CATS Tree Builder is introduced. A data

structure that enables non-linear search is also discussed. Finally, other

miscellaneous performance enhancing techniques are discussed.

4.3.1. Reducing Redundancy

CATS Tree algorithms are based on local optimization. Therefore, it is

possible that CATS Tree algorithms could behave in a way that is counter-

productive in the global sense. For example, if two items are added alternatively,

it is possible that CATS Tree algorithms would split and merge those nodes

continuously. Splitting a node requires to undo some of previous work. If the

global information about those nodes were given, a CATS Tree can be

constructed without any split. Therefore all the work done before the final split

and merge is redundant.

Chapter 4
Implementation And Challenges

63

Benefit and cost analysis has been applied successfully in a large variety

of problems. Whenever a node is required to be split, benefit and cost analysis

can be applied. The problem is transformed into defining suitable benefit and

cost functions. The benefit of split and merge of nodes is the increment in the

support of the highest frequent node. The cost of splitting includes the

decrement in the support of the split node. Furthermore, the cost of splitting

should include the cost of undoing the previous work that can be assigned as a

percentage of the support of the node to be split. After benefit and cost analysis,

only split and merge operations that have net positive value will occur.

Furthermore, the cost can be used as one of pruning factor when searching for a

merge target.

It is found that the root node has different characteristics from the other

nodes. Therefore, there are two weights for CATS Tree Builder, one for the root

and the other for the remaining nodes. The reasons why root node behaves

differently are: 1) root is the densest node in the tree; 2) root can have all items

as children branches. In the remaining nodes, the number of possible children

nodes is bounded by the boundary property of CATS Tree. The number of

possible children nodes decreases as the distance from the root increases. If the

weight were set too small, the cost would not reflect the true cost of splitting and

CATS Tree algorithms would behave as if benefit and cost analysis had not been

performed. On the other hand, if the weights were set too high, some beneficial

split and merge operations could be blocked by the benefit and cost analysis.

Chapter 4
Implementation And Challenges

64

This results in a bushy CATS Tree. Therefore it is important to select weights

that are well balanced. Experiments are performed to obtain the weights. The

weight for the root is set to 0.1. The time required to build a CATS Tree is

recorded and the same process is rerun with the weight reduced by 0.05. The

time required is plotted on a graph. The process is repeated until the time curve

forms a concave curve. The experiment is repeated with a weight near to the

trough of the time graph and the decrement in the weight is also reduced. The

process is repeated until the change in the time required is smaller than 1% of

the time required to build the CATS Tree. The same process is repeated to find

the weight for non-root nodes. The weight used in the root is 0.0015 and the

weight from non-root nodes is 0.015. Based on experiments, with the above

weights, the performance of CATS Tree Builder increases by 50%.

4.3.2. Deployment of Index

One of the major features of CATS Tree is that CATS Tree rearranges

itself based on the local features to minimize the memory overhead. However,

the same step also slows down the construction of a CATS Tree. As a CATS

Tree gets more complex and larger, it becomes more difficult to locate the node

to merge. Since children of CATS node are arranged based on their frequencies,

search methods that depend on item label cannot be used on the children

pointers array. Hence, only sequential searches can be used to locate the best

merging node. On average, a sequential search requires examining half of all

items in the search space. This can be very inefficient especially at the root level

Chapter 4
Implementation And Challenges

65

where the root node may contain up to |I| number of children. Because of the

bias in children nodes distribution, i.e., high frequency nodes appear first in the

search space, in most cases, a sequential search does not need to examine as

many items as that in the case of uniform distribution. Nevertheless, sequential

search still requires examining a substantial number of items. Furthermore,

CATS Tree Builder has to search for the best merging node not only for the

immediate children, but also for all descendants. Therefore a global optimization

technique is required to enhance the system performance.

Indexing techniques have been used with good results for many

information retrieval systems. The effectiveness of an index depends on the

structure of the index and the selection of indexed attributes. The most

commonly used operation in CATS Tree is addition of a transaction. A

transaction contains item label only, therefore, item label should be used for the

indexes. One of the major properties of CATS Tree is the boundary property.

The boundary property of item provides 2 dimensional layouts of nodes having

the same label. Item label is a single dimension in nature. It is logical to project

the 2 dimensional layouts into a single dimension space. Although, CATS Tree

can be extended to handle multiple occurrences of item in a transaction, for

simplicity, items in a transaction can only have single occurrence, i.e., binary

transactions as opposed to transactions with reoccurring items [31]. Therefore, at

most one node of a certain item label can exist in each vertical space. CATS

nodes having the same item label can be projected into a single horizontal space

Chapter 4
Implementation And Challenges

66

without fear of collision. Items can be ordered based on the ordering of their

ancestors at the root level. If there are two CATS nodes having the same

ancestor at the root level, the ordering can be resolved with the paths from the

root to those nodes. From the boundary property of CATS node, no two CATS

nodes having the same parent can exist together at the same level. This

guarantees that the ordering of CATS nodes can be resolved. For each item

underneath the indexed node, nodes having the same item label can be

expressed as a range of nodes where starting node and the ending node are the

left most node and the right most node respectively. The projection B’s index is

shown in Figure 4.4. If total frequencies of items underneath are added to the

indexes, the indexes can also be used to facilitate merging of nodes. The role of

indexes in merging of nodes is discussed later in this section.

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

C:1

B:1

N:1

L:1

E:1

B:1B:1

Projection of B

CATS tree

B:1

Projection of F

F:4

Indexes relationship

Figure 4.4. Projection of items in CATS Tree

The best merging node at an indexed node can be identified by locating the

node that occurs in a transaction with 2 properties: 1) The node is the ending

node underneath the current indexed node that has the highest frequency; 2)

Chapter 4
Implementation And Challenges

67

The ending node can be made as a child of the indexed node without causing

splitting of any node. If no such node exists, there is no chance for the

transaction to be merged with any node that can improve compression of the

CATS Tree. Therefore, the transaction should be inserted without further

searching. In order to make a merging node into a child node without splitting,

the merging node must be either: 1) a child of the current node, or 2) having the

same frequency as that of its ancestor which is a child of the current node. In

Figure 4.4., all nodes in the branch B (B, C, K, S, S, P) and node F can be made

into a child node of the root. Assuming the merging node is a child of the current

node and it is not the ending node for the current node, this implies there exists a

node that is on the lower right hand side of the merging node. This node would

violate the boundary property of CATS Tree. Therefore, if a node is a child for a

given indexed node, the node must be the ending node for the indexed node.

Now assuming the merging node is not an ending node, there could exist a node

on the right hand side of the merging node. Since the merging node can be

made as a child of the indexed node, by compactness property of CATS Tree,

the frequency of the merging node is greater than all nodes on its right hand

side. Therefore the merging node should have merged with all nodes with the

same item on the right hand side and such CATS Tree should not have existed

in the first place. This satisfies the assertion that the merging node is the ending

node and it can be made into a child of the indexed node without splitting.

Chapter 4
Implementation And Challenges

68

Let us assume that there are multiple ending nodes that can be merged

with the transaction. If the ending node with the highest frequency, h, is not

merged with transaction, this implies that the transaction is merged with node, l,

that has frequency lower than that of node h. Since the frequency of h is larger

than that of l, h is on the left hand side of l. When the transaction is merged with

I, a node having the same label as that of h will be added to the lower right hand

side of h. This violates the boundary property of CATS Tree. Therefore the

transaction has to merge with the candidate ending node that has the highest

frequency.

The final assertion that a transaction should be added when there is no

ending node that can be made into a child node without splitting, can be proved

as follows: Let us assume that there is a node that can be merged with the

transaction and it cannot be made into a child of the indexed node without

splitting. Since the node cannot be made into a child of the indexed node without

splitting, the difference between the frequency of merging node and its ancestor

that is a child of the indexed node must be equal to or greater than one. With the

increment frequency equals 1, the resulted frequency is at most equal to that of

its ancestor. Therefore there is no benefit to merge with the given node.

Chapter 4
Implementation And Challenges

69

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

C:1

N:1

L:1

E:1

C:1C:3

CATS tree

A:3

Projections of
A, C, B

B:1 C:1B:1A:1

Transaction A, B, C

B:1B:1

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:2

C:2

N:1

L:1

E:1

C:2C:3

CATS tree

A:3

Projections of
A, C, B

B:1 C:1B:1A:1

Transaction A, B, C

B:2B:1

A:1

A:1

Figure 4.5. Addition of a transaction with indexes

The workings of the indexes are illustrated with Figure 4.5. When

transaction (A, B, C) is added, the ending nodes for A, B and C are checked.

Both ending nodes of B and C can be made into children nodes of the root

without splitting, while the ending node of A cannot. Since node C:1 is an

ancestor of node B:1, node C:1 is merged with the transaction. After that, the

ending nodes of A and B under node C:2 are checked. Since A:3 is not a

descendant of node C:2, there is no ending for node A under node C:2. This

leaves node B:1 to merge with the transaction. A new node A is created and it is

the rightmost node A in the CATS Tree. The new node is added as the ending

node of item A. That finishes the addition of the transaction. Since node C:2 is a

child of the root and its support has been increased, CATS Tree Builder

traverses along C’s index to check for violation of the boundary property. Node

C:2 is at the proper location. However node C:2 and node C:3 can be merged

and the resulting node will have frequency greater than that of node F:4. Since

Chapter 4
Implementation And Challenges

70

merging of node C:2 and node C:3 requires splitting of node F:4, benefit and

cost analysis is applied.

 

0

11 benefit net The

1

4015034 merge andsplit ofcost The

1

45 merge andsplit ofbenefit The

=
−=

=
×+−=

=
−=

.

Since the net benefit is not greater than 0, node C:2 and node C:3 are not

merged.

Because of the indexes, the search space at each level is reduced from

O(|t||f|) to O(|t|) where |t| is the length of the transaction and |f| is the average

number of comparison required to locate the best merging node. Assuming the

transaction is fully assimilated into the CATS Tree, i.e., every item in the

transaction can be merged with a node in the CATS Tree, the total addition cost

of a transaction equals the sum of cost at each level,
2

2||

1

tt
n

t +
=∑ . If the

transaction cannot be fully assimilated, the total cost is even smaller because the

process is preempted when no merging node is found. This is a very significant

improvement compared to the linear search model. The indexes allow addition of

transactions, with a given length, at a constant cost no matter how complicated

or how big the CATS Tree is. This ensures the scalability of CATS Tree Builder

with respect to adding transactions. Other than improving addition performance,

the indexes can also help to maintain the CATS Tree. After a transaction is

Chapter 4
Implementation And Challenges

71

merged with a node, the increase in frequency may cause the node to move

leftward and passes by some nodes. Some nodes underneath the passed by

nodes may contain nodes having the same label as the merged node; this

violates the boundary property. Without the indexes, all nodes underneath the

passed by nodes need to be searched. With the indexes, the merged node can

step along the indexes until it reaches the proper position. Any nodes between

new and old position for the emerged node are the nodes that violate the

boundary property. As long as the node remains a child of the indexed node, the

merged node must be the ending node for the indexed node. In other words, the

merged node can traverse along the index and merges with nodes that it passes

by. This removes the need to search for nodes that violate boundary property.

Furthermore, the indexes can also help to merge nodes, p1 and p2, in an optimal

manner. Since the indexes contain information about frequencies of nodes

underneath the indexed node, nodes containing the most frequency item

underneath both indexed nodes, p1 and p2, are extracted and are merged to form

the first child for the combined node of p1 and p2. In the next iteration, nodes with

the highest frequency remaining underneath p1 and p2 are extracted and they

are combined into the next child of the combined node of p1 and p2. Extraction of

nodes with the highest frequency item is repeated until p1 and p2 are empty.

Although the indexes are useful in many ways, there are costs associated

with the indexes as well. The major costs are the storage requirement, creation

and maintenance costs. Given that the whole CATS Tree is already stored in the

Chapter 4
Implementation And Challenges

72

main memory, any additional memory requirement could be prohibitive.

Therefore the memory usage of the indexes should be kept to a minimum.

For the complete indexes, each node has to store the starting node, the

ending node and the total frequency for all distinct descendants. The extra

memory required depends on not only the distinctiveness of descendants, but

the length of transactions as well. This is because the information of the leaf

node has to be repeated in all of its ancestors. Therefore, the longer the

transactions are, the higher the overhead is. Because of that, the memory

required for the complete indexes can easily be more than that of the whole

CATS Tree. Scarcity of main memory becomes the biggest obstacle against

deployment of complete indexes. Within the index, the ending node is the most

important component because it determines the merging node. If the ending

nodes for the root level can be indexed, a significant performance improvement

can be achieved. It turns out that ending node for the root level can be indexed

very easily. All nodes with the same label are connected with the item links. The

last node of the item link can be used as the ending node. When a node is

added, the item link for the new node can be inserted as the first node in the item

link. With the root level partial index, the best merging node for the root level can

be found with transaction length number of comparisons. The performance

increase of CATS Tree Builder, determined by experiments, by this simple

improvement is 50% comparing with sequential search. There is no additional

memory overhead and the maintenance cost is very low. Second level partial

Chapter 4
Implementation And Challenges

73

indexes can be added, however, they are not implemented because of the

additional memory overhead and maintenance cost.

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:1

C:1

N:1

L:1

E:1

C:1C:3

CATS tree

A:3

Projections of
A, C, B

B:1 C:1B:1A:1

Transaction A, B, C

B:1B:1

I:1

G:1 O:1

L:1

B:1

F:4

A:3

C:3

M:3

P:2

D:1

Root

O:1

J:1

H:1

B:1

P:1

S:1

K:1

B:2

C:2

N:1

L:1

E:1

C:2C:3

CATS tree

A:1

Projections of
A, C, B

B:1 C:1B:1A:1

Transaction A, B, C

B:2B:1

A:1

A:3

Figure 4.6. Addition of a transaction with partial indexes

Using the same example in the complete indexes, the ending nodes of

items A, B and C are checked. The transaction is merged with the ending node

of item C. At the second level, the partial indexes are no longer available. CATS

Tree Builder has to use sequential search to locate the node to be merged. Node

C:1 is merged with the transaction. Since all descendants of the branch (C, B)

have the same frequency, CATS Tree Builder has to compare with branch (K, S,

P), dashed rectangle in Figure. 4.6., with item A in the transaction before item A

can be added as a new branch. In this example, CATS Tree Builder makes 4

comparisons excluding the root level comparisons to add the transaction. In the

case of complete indexes, only 3 comparisons are needed. If the transaction

were changed to <A, C, N>, only 2 comparisons are required for the complete

indexes while 8 comparisons are needed for the partial indexes.

Chapter 4
Implementation And Challenges

74

The item links can be converted into an array easily. It is possible to

project the item links into an ordered array and use them as indexes; the starting

node and the ending node at each level can be searched on fly with a binary

search. This idea turns out to be infeasible. First of all, the ordering function, i.e.,

comparing paths to the root, requires too many comparisons. The biggest

problem is the maintenance cost of the sorted arrays. When a node moves or

merges, items underneath the node may have to reorder their positions within

their indexes. Unlike the complete indexes, item link indexes do not contain

information about nodes underneath it. In order to find out which indexes need to

be updated, every node underneath the moving or merging node has to be

visited. After determining which indexes need to be updated, the starting and

ending nodes still have to be found as well. Hence the maintenance costs of

indexes can easily exceed the benefits of the indexes.

4.3.3. Miscellaneous Improvement

Miscellaneous enhancements include improvements that provide small

performance gain, but when multiple of them are applied, observable

improvements can be noticed. Those enhancements include hybrid transaction,

removal recursion and sorting of transaction.

Hybrid Transaction

Initially, a transaction is considered as a single branch of CATS Tree. All

comparisons are done in sequential manner. Instead of considering transaction

as a CATS Tree branch, the transaction class is converted into a hash table.

Chapter 4
Implementation And Challenges

75

Only one comparison is required to determine whether or not a transaction can

be merged with a node. However, a hash table requires an exhaustive search to

find all elements. That could cause a significant performance hit when a long

transaction is added without merging with existing nodes. A new hybrid data

structure that combines both hash table and sequential links is used to construct

the transaction. With the hybrid transaction implementation, the performance of

CATS Tree Builder is increased by 25% based on experiments performed.

Sorting Transaction

Unlike most other algorithms, which require a transaction to be sorted with

either lexicographical ordering, e.g., Apriori, or global frequency ordering, e.g.,

FP-Tree, CATS Tree Builder does not require ordering of transactions. As a

matter of fact, ordering items within a transaction with a fixed ordering scheme,

like lexicographical ordering, could actually decrease the performance of CATS

Tree Builder. The reason of ordering is to take advantage of the predefined data

structure of the algorithm. However, in the case of CATS Tree, the structure of

CATS Tree changes as transactions are being added. Static ordering schemes

cannot capture the dynamic of CATS Tree. As a result, the effort of sorting the

items within a transaction becomes totally wasted and causes about 2% drop in

the performance. This does not mean that CATS Tree Builder cannot take

advantage of sorting of items within a transaction. The ordering scheme has to

consider the current state of the CATS Tree. During updating the CATS header,

the global support of each item can be obtained. The transaction can be ordered

Chapter 4
Implementation And Challenges

76

by the global support of each item. Sorting of transactions increases the chance

of finding common items between the transaction and the CATS Tree. The

performance increase with sorted transaction is about 3-5% based on

preliminary tests.

Removal of Recursion

Most of the functions in CATS Tree algorithms are recursive functions.

During a recursive call, the program has to push the current memory address

and local variables into a stack and allocates and reinitializes all local variables in

the function. Although the cost of making a recursive call is low, it can becomes

enormous if millions of recursive calls are made. Standard recursive function

removal techniques are applied. Based on experiments, the performance of

CATS Tree Builder increases by about 5% when recursions are removed.

4.4. Summary

The memory management techniques presented in this chapter has been

shown to be able to reduce the memory footprint of CATS Tree by more than

25%. As shown in the experiments and results in the next chapter, memory

usage of CATS Tree is far more superior than that of FP-Tree. In some tests,

even though CATS Tree containing all items in the database, the memory

consumed is smaller than the memory footprint of FP-Tree that contains only

frequent items.

After implementing all previously discussed enhancements, the overall

performance of CATS Tree Builder increases by about 10 folds. Furthermore,

Chapter 4
Implementation And Challenges

77

the time required to construct CATS Tree is found linearly proportional only to

the number of transaction and the average transaction length.

Chapter 5
Experiment and Results

78

CHAPTER 5

5. Experiments and Results

5.1. Introduction

With most theories, there is often a gap between theoretical and practical

benefits. The purpose of this chapter is to find out if such a gap exists in our

algorithms and at the same time to compare the relative performance of CATS

Tree algorithms with other well-known data mining algorithms. It has been

argued by many researchers that there is no universal algorithm that would work

well in every dataset [10,12,25]. There are many parameters, like transaction

length, |I|, |D|, etc., that can have profound effects on CATS Tree performance.

By studying the behaviours of CATS Tree algorithms, we can gain insight about

the strength and weakness of our algorithms. The strength of our algorithms

could be applied in other application areas. Furthermore, improvements can be

made to reduce the weakness of CATS Tree algorithms. In addition, the results

can be used to infer the conditions for which our algorithms would work the best.

5.2. Experimental design

The goal of the experiments is to find out how different dataset properties

can affect the performance and resource usage of CATS Tree algorithms.

The resource usages are measured with the memory consumption and

the total processing time that includes CPU time and I/O time. The memory

Chapter 5
Experiment and Results

79

usage is normalized into memory premium that is defined as the memory used

by CATS Tree minus the original data file size and then divided by the original

data file size.

Datasets used in the experiments are generated with a data generator by

IBM QUEST [15] that has been used by many researchers [10,12,18,19,25].

CATS Tree algorithms are compared with the first efficient and published data

mining algorithm, Apriori and FP-growth. To avoid implementation bias, third

party Apriori implementation, by Christian Borgelt [3], and FP-growth written by

its original authors are used. Apriori experiments are run into two different

modes. In the original mode, Apriori is run as the original Apriori implementation

where a complete data scan is required to verify the candidate frequent itemsets

at each level. In the cached mode, all transactions are loaded into the main

memory. In this case, there is no additional I/O overhead. All data scans are

performed on the main memory. This allows a fair comparison of algorithms that

CATS Tree algorithms, FP-growth and Apriori perform data mining in the main

memory. Frequent patterns mined from CATS Tree algorithms are verified

against that of Apriori to check for completeness and accuracy. Experiments are

performed on a Pentium 4 1.6GHz PC with 512Mb RAM running on Windows

2000 server. All programs are compiled with Microsoft Visual C++ 6.0. All

experiments are done with default parameters of the data generator: 106

transactions; average pattern length is 4; average transaction length is 10;

Chapter 5
Experiment and Results

80

number of unique items is 23,890 and support is 0.15% unless stated otherwise.

Experiments are divided into two sections:

The first portion of the experiments measures the scalability of single pass

frequent patterns mining with various parameters. The dataset properties used

are average transaction length, average pattern length, support of frequent

patterns, number of transactions and number of unique items in the dataset. In

each experiment, one of the parameters is changed while the other parameters

are kept the same. Experiments with average pattern length and average

transaction length are combined as one experiment. It is because any single

change in average pattern length or average transaction length affects the ratio

between average pattern length and average transaction length. Therefore

instead of changing average pattern length or average transaction length, ratio

between average pattern length and average transaction length is used.

The second portion of the experiments measures the ability of CATS Tree

to handle transactional streams. Transactions are added to the CATS Tree one

at a time. Frequent patterns are mined from the CATS Tree at a regular interval,

every fifty thousand transactions. Transactions are continuously being added to

the tree. The accumulated time is measured from the beginning of the first

transaction to the end of frequent pattern mining process. Its performance is

compared with original Apriori, cached Apriori and FP-growth. In the last portion

of the experiment, a limit, L, specifies how many transactions CATS Tree can

hold. Once the limit is reached, transactions are removed from CATS Tree at the

Chapter 5
Experiment and Results

81

same rate as transactions are added. Unlike SWF, L can be set to any number

and L can be changed at run time. There are two modes for the removal of

transactions, real time mode and batch mode. In the real time mode, a

transaction is removed after a transaction is added to the CATS Tree except in

the first L transactions. This keeps a constant number L of transactions in the

CATS Tree. In the batch mode, transactions to be removed are used to build a

FP-Tree and then the FP-Tree is subtracted from CATS Tree. The maximum

number of transactions in the CATS Tree equals L plus the batch size.

Distributed computing can be used to build FP-Tree; this allows the primary

processor to focus on the maintenance of CATS Tree. Different batch sizes are

used to test the impact of variable sizes. There is no performance comparison

with Apriori or FP-growth, since both of them cannot remove transactions and

perform data mining in real time or batch mode without data pre-processing.

However, the frequent patterns produced by Apriori with pre-processed are used

to verify the accuracy of our algorithms.

5.3. Experimental Results

5.3.1. Single Pass Scalability and Memory Usage Experiments

Experiment One

The first experiment measures scalability and memory usage of CATS

Tree algorithms with respect to number of transactions.

Chapter 5
Experiment and Results

82

0

10

20

30

40

50

60

70

80

90

0k 250k 500k 750k 1000k 1250k 1500k 1750k

Number of Transactions

T
im

e(
s)

CATS Tree Builder
FELINE
Total CATS Tree
Apriori
Cached Apriori
FP-growth

Figure 5.1. Scalability of CATS Tree With Respect to Number of Transactions

CATS Tree algorithms can be broken into two steps. The first step is the

building of the tree. Once the tree is built, FELINE can be used to mine frequent

itemsets. As shown in the first scalability test, Figure 5.1., both CATS Tree

Builder and FELINE scale linearly proportional to the number of transactions.

Although the tree becomes more complex as transactions are added,

comparisons required to insert a transaction depends only on the length of the

transaction. With the average length of transaction holding constant, the

construction cost of CATS Tree is simply a multiplication of a constant time

factor with the number of transactions. The number of frequent itemsets

generated from each data file is more or less constant. Theoretically, FELINE

should be able to perform data mining with constant time. Although pruning

strategy in FELINE reduces the work to build a conditional CATS Tree, the

degradation of performance with number of transactions can be attributed to the

fact that FELINE performs “prune and grab first, and prune again” strategy. The

Chapter 5
Experiment and Results

83

cost of traversing the whole tree is proportional to the complexity and the number

of nodes in the tree. Incremental construction of conditional CATS Tree may be

the answer to this problem.

In all cases, CATS Tree algorithms complete the test using one third of

the time required by original Apriori. On the other hand, cached Apriori runs twice

as fast as CATS Tree algorithms in the number of transaction scalability test.

FELINE is very efficient, while building the CATS Tree may seem expensive.

However, the cost of building the CATS tree is quickly amortized in an ad-hoc

interactive association rule-mining context, since the tree needs only be built

once, “build once, mine many”. This matches the design goal: building once and

mining multiple times with low overhead.

0

100

200

300

400

500

600

700

800

900

0k 500k 1000k 1500k 2000k 2500k 3000k 3500k 4000k

Number of Transactions

M
em

or
y

R
eq

ui
re

d(
M

B
)

Tree Size

Data File Size

Figure 5.2. Memory Usage With Respect to Number of Transactions

Chapter 5
Experiment and Results

84

0

100

200

300

400

500

600

700

800

900

0k 1000k 2000k 3000k 4000k

Number of Transactions

M
em

or
y

R
eq

ui
re

d(
M

B
)

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

M
em

or
y

P
re

m
iu

m

Tree Size

Data File Size

Memory Premium

Figure 5.3. Memory Premium With Respect to Number of Transactions

Most published experiments of the previous work deal with database sizes

around 100k [5,10,12,17,19,25,29,33]. In the case of our experiments, the tree

scales to millions of transactions. In terms of memory usage, CATS Tree size is

linearly proportional to the number of transactions. Figure 5.2. shows results up

to 4 million transactions. However, the rate of increase in CATS Tree size is

smaller than that of data file size. In the beginning, there is only small number of

transactions in the CATS Tree; most newly added transactions cannot find a

node to merge or only one or two items can be merged with existing nodes. This

explains why the memory premium has such high value at the beginning. As

transactions are added, the tree becomes more crowded. Therefore it is more

likely that a new transaction can be completely or partially merged with existing

nodes. As shown in Figure 5.3., there is a downward trend for memory premium

as the number of transactions increases. As more transactions are added to the

CATS Tree, the tree size may eventually become smaller than that of the data

Chapter 5
Experiment and Results

85

file. There are two dips in the memory premium curve. At both dips, the data file

sizes are larger than expected. The number of transactions and the average

transaction length determines the data file size. Since the number of transactions

increases linearly, any deviations from expected file sizes can only be explained

by changes in the average transaction length. The data files are created with

synthetic data generator, it is possible that the extended portions of the

transactions are repeats of previous patterns. CATS Tree Builder is able to

merge the extended portions of the transactions; hence, the tree sizes continue

to increase linearly. When data file sizes are larger than the expected sizes and

the tree sizes remain at the expected sizes, memory premium dips are created.

After the changes in the average transaction length at the memory premium dips,

the average transaction length returns to the previous average transaction

length. Therefore, the memory premium curve returns to the expected values.

Experiment Two

The goal of the second experiment is to examine the effect of support on

CATS Tree algorithms. In addition, unique characteristic of CATS Tree, that

“build once, mine many”, is put to test. A single CATS Tree is built from the data

file. Data mining with different supports are performed. All results are expected

to be identical to that of Apriori. Memory usage is not measured in this

experiment because only one CATS Tree is built regardless of the support

threshold. For a single data-mining comparisons purpose with Apriori and FP-

growth, the time required to build CATS Tree is added to the time for the FELINE

Chapter 5
Experiment and Results

86

as if CATS Tree algorithms had to rebuild the tree. Cumulated time from the

addition of the first transaction until the completion of frequent pattern mining at

each data point is calculated. The cumulated time for CATS Tree, cached Apriori

and FP-growth are used to show the effect of “build once, mine many” of CATS

Tree.

0

50

100

150

200

0.00%0.10%0.20%0.30%0.40%0.50%
Support

T
im

e
(s

)

CATS Tree Builder

FELINE

Total CATS Tree

Cached Apriori

FP-growth

Figure 5.4. Single Mining Scalability of CATS Tree With Respect to Support

In most cases of single frequent pattern mining, CATS Tree algorithms

outperform the original Apriori. However, the original Apriori outperforms CATS

Tree algorithms when the support is 0.4% or 0.5%. In those cases, the support is

so large that only one or no frequent one itemset can be found. Notice that

original Apriori also outperforms FP-growth in those cases when the support is

high. In reality, high support is rarely used. Even if it is used, it is almost certain

Chapter 5
Experiment and Results

87

that the support will be changed to a lower value and the data mining process is

rerun again. In that situation with our approach, only FELINE needs to be rerun;

the CATS Tree algorithms will end up faster than the original Apriori. Therefore it

is safe to assume that our algorithms outperform the original Apriori in all

situations.

In the second experiment, the time required by all algorithms increases as

the support decreases. However, the rate of time increase for the cached Apriori

is much faster than that of FELINE. Eventually, CATS Tree algorithms become

faster than the cached Apriori. CATS Tree algorithms run faster than the cached

Apriori because FELINE, like FP-growth, does not generate candidate frequent

itemsets for testing. Other than performance, the memory required by Apriori to

hold generated candidate frequent itemsets becomes an issue when support is

small. When the support is 0.02%, Apriori generates so many candidate frequent

itemsets that the memory required to hold them exceeds the main memory and

causes the program to halt. On the other hand, CATS Tree algorithms do not

have such problem. As long as the tree can be held in the main memory,

FELINE performs fine. Furthermore, CATS Tree is more memory efficient than

FP-tree. When the support is lower than 0.125%, FP-tree and FP-growth require

so much memory that memory trashing occurs.

Chapter 5
Experiment and Results

88

Frequent Pattern Mining Support (%)
1 0.5
2 0.4
3 0.3
4 0.25
5 0.2
6 0.175
7 0.15

Table 5.1. Frequent Pattern Mining Parameter

0.15%

0.25%0.30%0.40%
0.50% 0.20% 0.18%

0

20

40

60

80

100

120

140

1 3 5 7
The number of Frequent Pattern Mining

T
im

e
(s

)

Cumulated CATS Tree
Cumulated Cached Apriori
Cumulated FP-growth
5

Figure 5.5. Multiple Mining with CATS Tree With Different Supports

Since all support scalability tests are performed with the same data file,

frequent pattern with different supports can be mined from the same CATS Tree

without rebuilding it. On the other hand, both Apriori and FP-growth have to start

all over again when the support is decreased. As shown in Figure 5.5., the

cumulated time curves, the cumulated cached Apriori and FP-growth curves are

Chapter 5
Experiment and Results

89

very steep when compared with cumulated CATS Tree curve. Other than the first

data point in the cumulated time curves, our algorithms outperform both cached

Apriori and FP-growth. As the number of frequent pattern mining rerun

increases, the gap between cumulated the CATS Tree curve and cumulated

curves of other algorithms increases.

Experiment Three

The goal of the experiment measures the effect of Pattern Length Ratio

on the performance and memory usage of CATS Tree algorithms. The Pattern

Length Ratio is changed by keeping average pattern length the same and

varying average transaction length. This experiment measures not only the

effects of transaction length on CATS Tree algorithms, but also the effects of

data sparsity on the tree. As Pattern Length Ratio increases, the data becomes

dense. On other hand, the data becomes sparse as Pattern Length Ratio

decreases.

Chapter 5
Experiment and Results

90

0

10

20

30

40

50

60

70

30% 48% 65% 83% 100%

Pattern Length Ratio

T
im

e
(s

)

CATS Tree Builder

FELINE

Total CATS Tree

Apriori

Cached Apriori

FP-growth

Figure 5.6. Scalability of CATS Tree With Respect to Pattern Length Ratio

At the beginning of decrease in Pattern Length Ratio, all algorithms are

rather insensitive to the changes. As shown in Figure 5.6., the time required by

all algorithms increases slowly as Pattern Length Ratio decreases. However,

after the Pattern Length Ratio drops below 66%, all algorithms’ performance start

to deteriorate non-linearly. CATS Tree Builder is less sensitive to Pattern Length

Ratio changes than FELINE. As the Pattern Ratio decreases, the data becomes

sparser; the resulted CATS Tree becomes bushier. Since the partial indexes are

available only at the root level, CATS Tree Builder has to use linear search to

locate nodes to merge at the other levels. This decreases the performance of

CATS Tree Builder. For every extra branch in the CATS Tree, it could potentially

cause FELINE to build a conditional CATS Tree. This is also true for FP-tree and

FP-growth. H-struct was proposed solely to deal with the sparsity problem.

Chapter 5
Experiment and Results

91

30

80

130

180

230

30% 48% 65% 83% 100%
Pattern Length Ratio

M
em

or
y

R
eq

ui
re

d(
M

B
)

-20%

0%

20%

40%

60%

80%

100%

M
em

or
y

P
re

m
iu

m

Tree Size
Data File Size
Memory Premium
TrendLine of Memory Premium

Figure 5.7. Memory Usage Respect to Pattern Length Ratio

When the Pattern Length Ratio is close to 100%, the data is very dense.

CATS Tree Builder compresses multiple transactions into a single branch. As a

result, the size of the tree is smaller than that of original file and the memory

premium is negative. As the Pattern Length Ratio decreases, the data becomes

sparse. CATS Tree builder is not able to compress as many transactions as

before; hence, the memory premium increases.

Chapter 5
Experiment and Results

92

0
5

10
15
20
25
30
35
40
45
50

4 6 8 10 12

Transaction Length

T
im

e(
s)

CATS Tree Builder
FELINE
Apriori
Cached Apriori
FP-growth

Figure 5.8. Scalability With Respect to Transaction Length

As the transaction length increases, the time required by all algorithms

increase. As expected, CATS Tree Builder scales linearly with transaction length.

The time required by FELINE increases progressively with transaction length.

Degradation in FELINE’s performance could be attributed by the fact that the

tree becomes bushier as transaction length increases. As shown in Figure 5.8.,

FP-tree and FP-growth do not handle long transactions very well; they cause

memory trashing when the average transaction length is 11 or 12. On other

hand, CATS Tree algorithms manage memory very well and pass the

experiment.

Chapter 5
Experiment and Results

93

Experiment Four

The goal of the experiment measures the effect of the number of unique

items on the performance and memory usage of CATS Tree algorithms.

0

20

40

60

80

100

120

140

160

7k 12k 17k 22k 27k 32k

Number of Unique Items

T
im

e
(s

)

CATS Tree Builder
FELINE
Total CATS Tree
Apriori
Cached Apriori
FP-growth

Figure 5.9. Scalability of CATS Tree With Respect to Number of Items

There is a surprise in the number of unique items scalability test. Given

that the other parameters of the data file are being kept constant, as the number

of unique items decreases, the occurrence of frequent patterns should increase.

Therefore, the density of data file should increase as the number of items

decreases. As shown in Figure 5.9., all algorithms perform relatively constant

over a large range. However, when the number of unique items drops below

10,000, the performance of FELINE decreases significantly while the

performance of Apriori and FP-growth decrease a little. Theoretically, CATS Tree

algorithms should perform well in dense data file, where larger number of

transactions can be compressed into small number of branches. The experiment

Chapter 5
Experiment and Results

94

result is completely opposite to what has been expected. Frequent Patterns

mined from each data file are compared. The number of 2+ frequent itemsets in

each data file is more or less the same as each other; however, the number of

one itemset frequent patterns varies inversely proportional to the number of

unique items. When the structure of CATS Tree is examined, it is found that

nodes in the first or second levels have high frequencies and have a large fan

out factor. Nodes in three level or lower have very low frequency. Contrarily to

initial belief, the data file with the smallest number of unique item is actually

sparse.

100

120

140

160

180

200

220

7k 12k 17k 22k 27k 32k

Number of Unique Items

M
em

or
y

R
eq

ui
re

d(
M

B
)

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

M
em

or
y

P
re

m
iu

m

Tree Size
Data File Size
Memory Premium
Trendline of Memory Premium

Figure 5.10. Memory Usage With Respect to Number of Items

This also explains why the memory premium is the highest when the

number of unique items is the smallest. As shown in Figure 5.10., CATS Tree

algorithms are insensitive to the number of unique items between 10,000 and

30,000. Within that range, memory premium of CATS Tree decreases as the

Chapter 5
Experiment and Results

95

number of unique items increases. The decrease in memory premium cannot be

explained by the increase in the number of unique items or decrease in data file

size because the file size has been increasing with the number of unique items.

The only possible explanation is that the density of data file has been increasing.

Based on the above observations, CATS Tree algorithms are not sensitive to the

number of unique items, but they are sensitive to the data density. There is an

anomaly point on the memory premium curve that is due sudden decrease in the

data file size.

5.3.2. Incremental Data Mining Experiments

Experiment Five

The goal of the experiment measures the efficiency of incremental data

mining of CATS Tree algorithms. After every 50,000 transactions are added,

frequent pattern mining is performed. Cumulated times measure the time from

the addition of the first transaction until the end of frequent pattern mining.

Chapter 5
Experiment and Results

96

0

2

4

6

8

10

0k 200k 400k 600k 800k 1000k

Number of Transactions

T
im

e(
s)

Incremental CATS Tree Builder
Incremental FELINE
Total Incremental CATS Tree

Figure 5.11. Individual Time for CATS Tree algorithms during incremental data mining

FELINE scales linearly with the total number of transactions. As shown in

Figure 5.11., incremental CATS Tree Builder requires approximately the same

amount of time to process every 50,000 transactions.

0

50

100

150

200

250

0k 200k 400k 600k 800k 1000k

Number of Transactions

T
im

e(
s)

Cumulated CATS Tree
Cumulated Apriori
Cumulated Cached Apriori
Cumulated FP-growth

Figure 5.12. Incremental Data Mining

Chapter 5
Experiment and Results

97

As shown in Figure 5.12., the cumulated time for CATS Tree algorithms

scales linearly with respect to the total number of transactions. On other hand,

the cumulated time for Apriori and FP-growth increase non-linearly with respect

to the total number of transactions. CATS Tree algorithms are more than twice

faster than cached Apriori or FP-growth. This is due to the CATS Tree

algorithms’ “build once, mine many”. The gap between the cumulated curve of

our algorithms and that of other algorithms curves increases as the number of

data mining performed increases.

Experiment Six

The goal of this experiment measures the effect of concurrent and batch

addition and deletion of transaction in CATS Tree algorithms. After 100,000

transactions are added, transactions are added and removed at the same rate.

This keeps a slide window of constant 100,000 transactions in the CATS Tree.

Batch sizes of 50,000 transactions and 100,000 transactions are used to test

effect of batch size. There is no performance comparison because there is no

known and published algorithm that allows frequent patterns mining with both

addition and deletion of transactions at the same time

Chapter 5
Experiment and Results

98

0

20

40

60

80

100

120

140

0k 200k 400k 600k 800k 1000k

Number of Transactions

T
im

e(
s)

Cumulated Concurrent Deletion 50k Mining

Cumulated Batch with FP Tree Building 50k Mining

Cumulated Batch without FP Tree Building 50k Mining

Cumulated Concurrent Deletion 100k Mining

Cumulated Batch with FP Tree Building 100k Mining

Cumulated Batch without FP Tree Building 100k Mining

Figure 5.13. Concurrent Vs Batch Deletion

The time required by CATS Tree Builder and FELINE are constant

throughout the experiment. From the concurrent deletion experiments,

concurrent deletion roughly doubles the time required to add a given number of

transactions compared with CATS Tree Builder alone. This implies the time

required to delete a transaction roughly equals that of addition.

Building of a FP-Tree requires about 80% of the time required to build a

CATS Tree. This is a surprise because building of a FP-Tree is much simpler

than building a CATS Tree. There could be few reasons for that: 1) FP-Trees

constructed in previous work were constructed with frequent items only; in our

experiments, FP-Trees are constructed with all items in the data file; 2)

implementation bias may have affected the performance; 3) FP-Tree is only

efficient when the number of nodes in the tree is small.

Chapter 5
Experiment and Results

99

Since FP-Tree can be constructed with secondary processor, construction

time for FP-Tree is excluded for comparison purpose. Without considering the

time for FP-Tree construction, batch deletion is about 4% faster than concurrent

deletion when the batch size is 50,000 transactions. The time difference is tested

for statistical significance. The t-score is 7.41; the difference is statistically

significant. When the batch size is increased to 100,000 transactions, the

difference between concurrent deletion and batch deletion (without considering

cost of building FP-Tree) increases to 6%. Again the difference is also

statistically significant. As the batch size increases, the chance of having other

identical or similar transactions in the same batch increases. This allows multiple

transactions to be compressed into a single branch that allows removal of

multiple transactions with single scan.

Although batch deletion allows higher removal rate of the transactions,

batch deletion requires more resources. First of all, batch deletion requires a

secondary processor to process the removal transactions. Without the

secondary processor, the time required by batch deletion is higher than that of

concurrent deletion. Secondly, larger amount of main memory is required. The

main memory has to be able to hold FP-Tree of size of batch size and CATS

Tree size of L plus the batch size where L is the slide window size.

Chapter 5
Experiment and Results

100

 The experiment results presented in this chapter have been

submitted for publication in SIAM International Conference on Data Mining

(2003) 2

2 A version of this chapter has been submitted for publication. SIAM International Conference on
Data Mining (2003), Cathedral Hill Hotel, San Francisco, CA, May 1-3, 2003.

Chapter 6
Conclusions and Future Works

101

CHAPTER 6

6. General Conclusions and Future Works

6.1. Conclusions

We have successfully designed a novel data structure, CATS Tree, and

an algorithm to build it, as well as MEOW algorithms that are to add or delete

transactions from the CATS Tree in a batch mode or on the fly. We have also

designed another algorithm, FELINE that is to mine frequent patterns from the

CATS Tree.

There are many advantages of CATS Tree algorithms over the existing

algorithms.

1) The building algorithm consists of single pass data mining.

2) Once the tree is built, data mining with different supports can be

performed without having to rebuild the tree structure. The benefit

of “build once, mine many” increases with the number of interactive

mining stages with different supports. The construction cost of

CATS Tree is amortized over multiple frequent pattern mining

interactions. This makes our approach appropriate for ad hoc data

mining.

3) MEOW algorithms allow addition and deletion of transactions in the

finest granularity, i.e., transaction by transaction. Currently, there is

no known and published algorithm that allows addition and deletion

of single transaction and able to perform frequent mining efficiently.

Chapter 6
Conclusions and Future Works

102

Mining non-stop streams of transactions becomes possible

especially that single scan of the data suffices.

We have implemented CATS Tree algorithms and compared our

approach with other algorithms that had been implemented and optimized by

either their own authors or third party developers to avoid implementation bias.

Experiments were performed on a dataset with over a million transactions. In this

thesis work, CATS Tree algorithms have been shown efficient and scalable to

handle large amounts of transactions. Furthermore, CATS Tree algorithms have

been shown to outperform the other known algorithms in interactive and

incremental data mining. In addition, CATS Tree algorithms can perform addition

and deletion of single transaction that no other known published algorithm can

handle.

6.2. Future Work

There are many data mining issues that can be built upon the foundation

of CATS Tree based algorithms that include:

1) In this thesis work, it has assumed that there is an unlimited amount of

main memory. In reality, there is possibility that computer may run out

of memory while it is running with CATS Tree algorithms. This problem

can be resolved by using disk based CATS Tree algorithms. Disk

based CATS Tree algorithms allows frequent pattern mining with

databases that cannot be fitted into the main memory. CATS Tree

contains all items in the database and hence can be used as the

Chapter 6
Conclusions and Future Works

103

native format for transactional databases, allowing direct frequent

pattern mining on the data without further overhead.

2) Although CATS Tree algorithms are efficient, there are non-linear run

time behaviours in both “MEOW together” and FELINE. The sequence

in which trees are merged and incremental building of conditional

condensed CATS Tree could be further investigated.

3) Extension of CATS Tree based algorithms to other application areas

including privacy preserving frequent itemset mining [32], negative

frequent pattern mining [27] and many other issues related to

association rule mining.

Bibliography

104

Bibliography

 1. Agrawal Rakesh, Imilienski T., and Swami Arun. Mining association rules between sets of

items in large datasets. SIGMOD, 207-216, 1993.

 2. Bayardo Roberto J. Efficiently Mining Long Patterns from Databases. SIGMOD, 83-93,
Seattle, Washington, June 1998.

 3. Borgelt Christian, Apriori, http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori/apriori.html

 4. Brin Sergey, Motwani Rajeev, and Silverstein Craig. Beyond market baskets: Generalizing
association rules to correlations. SIGMOD, 265-276, Tucson, AZ, USA, May 1997.

 5. Brin Sergey, Motwani Rajeev, Ullman Jeffrey D., and Tsur Shalom. Dynamic itemset
counting and implication rules for market basket data. SIGMOD, Tucson, AZ, USA, May
1997.

 6. Chen Ming Syan, Park J. S., and Yu P. S. Efficient Data Mining for Path Traversal Patterns.
IEEE Transactions on Knowledge and Data Engineering 10(2), 209-221, 1998.

 7. Chen Xiaodong and Petrounias Ilias. Discovering temporal association rules: Algorithms,
language and system. 2000 IEEE 16th International Conference on Data Engineering,
San Diego, CA, USA, February 2000.

 8. Cheung David W., Lee S. D., and Kao Benjamin. A General Incremental Technique for
Maintaining Discovered Association Rules. Proc.International Conference On Database
Systems For Advanced Applications, April 1997.

 9. Han Jiawei, Pei Jian, Mortazavi-Asl Behzad, Chen Qiming, Dayal Umeshwar, and Hsu Mei-
Chun. FreeSpan: Frequent pattern-projected sequential pattern mining. Proc.Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD'2000), Boston, Ma, August 2000.

 10. Han Jiawei, Pei Jian, and Yin Yiwen. Mining Frequent Patterns without Candidate
Generation. SIGMOD, 1-12, Dallas, TX, May 2000.

 11. Hipp Jochen, Güntzer Ulrich, and Nakhaeizadeh Gholamreza. Algorithms of Association
Rule Mining - A General Survey and Comparison. SIGKDD Explorations 2(1), 58-64,
2000.

 12. Hipp Jochen, Güntzer Ulrich, and Nakhaeizadeh Gholamreza. Mining Association Rules:
Deriving a Superior Algorithm by Analyzing Today's Approaches. Proceedings of the 4th
European Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD '00), 159-168, Lyon, France, September 2000.

 13. Hong Tzung P., Kuo Chan S., and Chi Sheng C. Mining fuzzy sequential patterns from
quantitative data. IEEE International Conference on Systems, Man, and Cybernetics
'Human Communication and Cybernetics', 962-966 Tokyo, Japan, October 1999.

Bibliography

105

 14. Huang Hoa, Wu Xindong, and Relue Richard. Association Analysis with One Scan of
Databases. Proceedings of the 2002 IEEE International Conference on Data Mining,
Maebashi City, Japan, December 2002.

 15. IBM, QUEST Data Mining Project, http://www.almaden.ibm.com/cs/quest

 16. Korn Flip, Labrinidis Alexandros, Kotidis Yannis, and Faloutsos Christos. Quantifiable data
mining using ratio rules. The VLDB Journal 8, 254-266, 2000.

 17. Lee Chang Hung, Lin Cheng Ru, and Chen Ming Syan. Sliding Window Filtering: An
Efficient Method for incremental Mining on a Time-Variant Database. Proceedings of
10th International Conference on Information and Knowledge Management, 263-270,
November 2001.

 18. Lin Dao-I and Kedem Zvi M. Pincer search: A new algorithm for discovering the maximum
frequent sets. Proc.of the 6th Int'l Conference on Extending Database Technology,
Valencia, Spain, 1998.

 19. Lin Jun L. and Dunham Margaret H. Mining association rules: Anti-skew algorithms. The
1998 14th International Conference on Data Engineering, 486-493, Orlando, FL, USA,
February 1998.

 20. Orlando Salvatore, Palmerini P., and Perego Raffaele. Enhancing the Apriori Algorithm for
Frequent Set Counting. Proceedings of 3rd International Conference on Data
Warehousing and Knowledge Discovery, Munich, Germany, September 2001.

 21. Ozden Banu, Ramaswamy Sridhar, and Silberschatz Avi. Cyclic association rules. The 1998
14th International Conference on Data Engineering, 412-421, Orlando, FL, USA,
February 1998.

 22. Pasquier Nicolas, Bastide Yves, Taouil Rafik, and Lakhal Lotfi. Closed sets based discovery
of small covers for association rules. Proceedings of the 15th Conference on Advanced
Databases, 361-381, Bordeaux, October 1999.

 23. Pasquier Nicolas, Bastide Yves, Taouil Rafik, and Lakhal Lotfi. Efficient mining of
association rules using closed itemset lattices. Information Systems 24(1), 25-46, 1999.

 24. Pei Jian, Han Jiawei, and Mao Runying. CLOSET: An efficient algorithm for mining frequent
closed itemsets. SIGMOD, Dallas, Tx, May 2000.

 25. Pei Jian, Han Jiawei, Nishio Shojiro, Tang Shiwei, and Yang Dongqing. H-Mine: Hyper-
Structure Mining of Frequent Patterns in Large Databases. Proc.2001 Int.Conf.on Data
Mining, San Jose, CA, November 2001.

 26. Savasere Ashok, Omiecinski Edward, and Navathe Shamkant. An Efficient Algorithm for
Mining Association Rules in Large Databases. Proceedings of the Very Large Data
Base Conference, September 1995.

 27. Savasere Ashok, Omiecinski Edward, and Navathe Shamkant. Mining for strong negative
associations in a large database of customer transactions. The 1998 14th International
Conference on Data Engineering, 494-502, Orlando, FL, USA, February 1998.

Bibliography

106

 28. Taouil Rafik, Pasquier Nicolas, Bastide Yves, and Lakhal Lotfi. Mining bases for association
rules using closed sets. 2000 IEEE 16th International Conference on Data Engineering
(ICDE'00), San Diego, CA, USA, 02/29-03/03/00 , 2000.

 29. Wang Ke, Tang Liu, Han Jiawei, and Liu Junqiang. Top down FP-Growth for Association
Rule Mining. Proc.Pacific-Asia Conference, PAKDD 2002, 334-340, Taipei, Taiwan,
May 2002.

 30. Zaïane Osmar R. and Antonie Maria-Luiza. Classifying text documents by associating terms
with text categories. Proc.of the Thirteenth Australasian Database Conference
(ADC'02), Melbourne, Australia, January 2002.

 31. Zaïane Osmar R., Han Jiawei, and Zhu Hua. Mining Recurrent Items in Multimedia with
Progressive Resolution Refinement. Int.Conf.on Data Engineering (ICDE'2000), 461-
470, San Diego, CA, February 2000.

 32. Zaïane Osmar R. and Oliveira Stanley R. M. Privacy preserving frequent itemset mining.
Workshop on Privacy, Security, and Data Mining, in conjunction with the IEEE
International Conference on Data Mining, Maebashi City, Japan, December 2002.

 33. Zaki Mohammed J, Parthsarathy Srinivasan, Ogihara Mitsunori, and Li Wei. New
Algorithms for Fast Discovery of Association Rules. KDD, 283-286, Newport, California,
August 1997.

