
RESOURCE AND KNOWLEDGE DISCOVERY FROM

THE INTERNET AND MULTIMEDIA REPOSITORIES

by

Osmar Rachid Zäıane

B.Sc., Université de Tunis, Tunisia, 1988

D.E.A. (M.Sc.), Université Paris XI, France, 1989

M.Sc., Université Laval, Québec, Canada, 1992

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the School

of

Computing Science

c© Osmar Rachid Zäıane 1999

SIMON FRASER UNIVERSITY

March 1999

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Osmar Rachid Zäıane

Degree: Doctor of Philosophy

Title of thesis: Resource and Knowledge Discovery from the Internet and

Multimedia Repositories

Examining Committee: Dr. Ze-Nian Li

Chair

Dr. Jiawei Han

Senior Supervisor

Dr. Hassan Äıt-Kaci

Supervisor

Dr. Veronica Dahl

SFU Examiner

Dr. Laks V.S. Lakshmanan

Concordia University

External Examiner

Date Approved:

ii

Abstract

There is a massive increase of information available on electronic networks. This profu-

sion of resources on the World-Wide Web gave rise to considerable interest in the research

community. Traditional information retrieval techniques have been applied to the document

collection on the Internet, and a panoply of search engines and tools have been proposed and

implemented. However, the effectiveness of these tools is not satisfactory. None of them is

capable of discovering knowledge from the Internet. The Web is still evolving at an alarming

rate. In a recent report on the future of database research known as the Asilomar Report,

it has been predicted that in ten years from now, the majority of human information will

be available on the World-Wide Web, and it has been observed that the database research

community has contributed little to the Web thus far.

In this work we propose a structure, called a Virtual Web View, on top of the existing

Web. Through this virtual view, the Web appears more structured, and common database

technology is applied. The construction and maintenance of this structure is scalable and

does not necessitate the large bandwidth current search engines technologies require. A

declarative query language for information retrieval and networked tool programming is

proposed that takes advantage of this structure to discover resources as well as implicit

knowledge buried in the World-Wide Web.

Large collections of multimedia objects are being gathered for a myriad of applications.

The use of on-line images and video streams is becoming commonplace. The World-Wide

Web, for instance, is a colossal aggregate of multimedia artifacts. However, finding pertinent

multimedia objects in a large collection is a difficult task. Images and videos often convey

even more information than the text documents in which they are contained. Data mining

from such a multimedia corpus can lead to interesting discoveries.

We propose the extraction of visual descriptors from images and video sequences for

iii

content-based visual media retrieval, and the construction of multimedia data cubes which

facilitate multiple dimensional analysis of multimedia data, and the mining of multiple kinds

of knowledge, including summarization, classification, and association, in image and video

databases.

iv

To my father, my mother and my wife

v

The secret of all victory lies in the organization of the non-obvious.

Oswald Spengler

vi

Acknowledgments

For contributions to the form and content of this thesis, my knowledge and my sanity, my

first thanks are to my wife Jane without whom this work wouldn’t have been presented as

it is. I am really indebted to Jane for her everlasting understanding and making the last

steps of writing this thesis enjoyable.

I am very grateful to my parents and my parents-in-law for their continuous moral

support and encouragement. I hope I will make them proud of my achievements, as I am

proud of them.

I wish to express my deep gratitude to my supervisor and mentor Jiawei Han. I thank

him for his continuous encouragement, confidence and support, and for sharing with me his

knowledge and love of this field. I am sure Jiawei will always be my mentor and an example

for perseverance and hard work. As an advisor, he taught me practices and showed me

directions I will use in my academic career.

I am very thankful to Hassan Äıt-Kaci, my supervisor and friend, for his insightful

comments and advice. He was always hearted and cheering when discussing my research.

His observations and suggestions for improvement were very assuring, especially at the end

of this endeavour.

My gratitude and appreciation also goes to Ze-Nian Li for the frequent enthusiastic and

constructive discussions. He not only introduced me to the vision and image processing

area, but also made me confident and eager to pursue more research in multimedia.

My deepest thanks to Laks Lakshmanan and Veronica Dahl for serving as examiners of

my thesis.

I would also like to thank the many people in our department, support staff and faculty,

for always being helpful over the years. A particular acknowledgment goes to Kersti, Carole,

and sumo. I thank my friends and fellow students at Simon Fraser University for making

vii

the last years a memorable, rewarding and enriching experience.

Support for this research was initially funded by the Fonds pour la Formation de

Cherchers et l’Aide à la Recherche (FCAR), and later by Simon Fraser University through

a Graduate Fellowship. Additional support was made by Jiawei Han’s Natural Sciences

and Engineering Research Council of Canada (NSERC) Research Grants OGP0037230 and

OGP36727 and his grants from the Canadian Network of Centres of Excellence (IRIS:HMI-5

and TL:NCE5.2).

viii

Contents

Approval ii

Abstract iii

Dedication v

Quotation vi

Acknowledgments vii

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Motivation and Research Description . 3

1.2 Contributions in this Thesis . 8

1.3 Organization of the Thesis . 9

I Web Mining 11

2 Building a Virtual Web View 12

2.1 Data Mining or Knowledge Discovery on the Internet 15

2.1.1 Web Content Mining . 18

2.1.2 Web Structure Mining . 20

2.1.3 Web Usage Mining . 21

2.2 A Multiple Layered Database Model for Global Information Systems 22

ix

2.3 Metadata Matters . 28

2.3.1 The Dublin Core Metadata Initiative 28

2.3.2 XML The eXtensible Markup Language 31

2.4 Construction and maintenance of MLDBs . 34

2.4.1 Construction of layer-1: From Global Information Base to Structured

Database . 34

2.4.2 Generalization: Formation of higher layers in MLDB 40

2.4.3 Distribution and maintenance of the global MLDB 48

2.5 Reflections on Mediating Virtual Web Views 49

2.6 Discussion . 53

2.7 Conclusions . 54

3 Querying the Web for Resources and Knowledge 56

3.1 Relevant Query Languages for Data and Information Retrieval 58

3.1.1 Relational Database Languages . 58

3.1.2 Querying the World-Wide Web . 61

3.1.3 Data Mining Query Language . 67

3.2 Multi-Layered Database Model - The Short Story 73

3.3 Web Mining Language . 74

3.3.1 A query language for information discovery in the global MLDB . . . 75

3.3.2 WebML Operational Semantics . 77

3.4 WebML Examples . 79

3.5 Preliminary Experiment . 84

3.6 Conclusion and Future Work . 87

II Multimedia Mining 89

4 Content-Based Visual Media Retrieval 90

4.1 Related Work in Multimedia Resource Discovery 92

4.2 A Content-Based Visual Media Retrieval System 95

4.2.1 Similarity Search for Images and Video Frames 96

4.2.2 Template-Based Search . 99

4.2.3 Model-Based Search . 101

x

4.3 Implementation . 107

4.3.1 Retrieving the images from the World-Wide Web 110

4.3.2 C-BIRD database . 113

4.3.3 Content-based retrieval results . 114

4.4 Conclusion and Discussion . 119

5 OLAP and Data Mining from Visual Media 120

5.1 A database mining system prototype . 123

5.2 Obstacles and Challenges with Multimedia Mining 129

5.2.1 Keyword hierarchies . 130

5.2.2 The curse of dimensionality . 132

5.3 On-going work and Conclusions . 137

6 Content-Based Multimedia Data Mining 140

6.1 Multimedia Association Rules . 145

6.1.1 Progressive Resolution Refinement . 150

6.1.2 Generating Synthetic Images . 152

6.1.3 Näıve Approach for Finding Frequent Itemsets with Recurrent Items

at a Given Resolution Level . 155

6.1.4 Max-Occur Algorithm . 156

6.2 Multimedia Association Rules with Spatial Relationships 163

6.2.1 Topological Relationships with Resolution Refinement 167

6.3 Performance of MaxOccur Algorithm . 177

6.4 On-going work and Conclusions . 179

7 Conclusion 184

7.1 Summary of the Thesis Work . 184

7.2 Discussion and Research Directions . 187

7.3 Final Thoughts . 191

A Information Retrieval from the Internet 193

A.1 Information Retrieval Technology . 196

A.1.1 Conventional Document Retrieval . 199

A.1.2 Hypertext and multimedia . 207

xi

A.2 Survey on Resource Discovery on the Internet 209

A.2.1 Internet tools for information Retrieval 211

A.2.2 Catalogues and Directories . 221

A.2.3 Robots and Search Engines . 223

A.2.4 Agents for Information Retrieval . 235

A.3 Summary and Conclusion . 238

B Web Mining Language (WebML) Grammar 240

C Data Mining Query Language (DMQL) Grammar 248

D Defining Metadata for the Internet 260

D.1 META tags in HTML . 260

D.1.1 Examples of HTTP-EQUIV META Tags in HTML 261

D.1.2 Examples of NAME META Tags in HTML 262

D.2 Example of Web Document Described with Dublin Core 263

D.3 Dublin Core XML DTD Fragment . 265

Bibliography 268

xii

List of Tables

2.1 Example of RDF object with vCard and Dublin Core elements. 38

2.2 A portion of doc brief extracted from document at layer-1. 47

2.3 A portion of doc summary extracted from doc brief at layer-2. 48

3.1 New WebML primitives for additional relational operations. 76

3.2 The top level syntax of WebML. 76

3.3 A portion of doc summary. 85

3.4 Affiliations that published about Computational geometry. 86

3.5 Affiliations that published more than 2 documents about Machine Learning

after 1990. 87

6.1 Relation with Visual Atomic Features. 155

6.2 Extended-Relation with Spatial Relationships. 155

6.3 Left: Image transaction table D1. Right: C1 and M tables. 159

6.4 Left: F1 and M tables. Right: Filtered image transaction table D2. 159

6.5 Candidate 2 item-sets C2 and sufficiently frequent 2 item-sets F2. 159

6.6 Candidate 3 item-sets C3 and sufficiently frequent 3 item-sets F3. 160

6.7 Candidate 4 item-sets C4 and sufficiently frequent 4 item-sets F4. 160

6.8 Frequent pairs of objects and Frequent spatial predicates. 165

6.9 Topological relationships based on intersections of boundaries and interiors. . 168

6.10 Sample Databases of Synthetic Image Descriptors. 181

6.11 Average execution times with different number of images. 181

6.12 Average execution time of MaxOccur with different thresholds. 181

xiii

List of Figures

2.1 Text Mining Pyramid. 15

2.2 Taxonomy of Web Mining techniques. 17

2.3 A conceptual route map of the global information base 27

2.4 A VWV abstracts a selected set of artifacts and makes the WWW appear as

structured. 27

2.5 The general architecture of a global MLDB and its construction. 35

2.6 Using tools to generate and update the first layer of the MLDB structure. . . 35

2.7 Extraction of metadata for Layer-1 construction. 39

2.8 A possible concept hierarchy for keywords . 41

2.9 Specification of hierarchies and aliases extracted from an experimental con-

cept hierarchy for computer science related documents. 42

2.10 Mediating Virtual Web Views. 50

2.11 Mediation Scenarios. 51

3.1 Hypothetical example of a WebOQL hypertree. 66

3.2 Snapshots from DBMiner Web Interface (left: main menu - right: rule selec-

tion). 68

3.3 DBMiner Web Interface (left: query selection - right: comparator). 68

3.4 DBMiner Web Interface (barcharts and cross tables for summarization). . . 69

3.5 DBMiner Web Interface (left: association rules - right: classification tree). . 69

4.1 Nine overlapping search windows. 102

4.2 An image of 8× 8 tiles, and locales for colours red and blue. 103

4.3 C-BIRD general architecture. 108

4.4 C-BIRD Web user interface. 110

xiv

4.5 Excavator: The Web crawling process for image extraction. 111

4.6 Output from the Image Excavator . 113

4.7 Conjunction of searches. 115

4.8 Search by Object Model with MultiLevel Resolution Window Matching. . . 116

4.9 (a) Object Models. (b) All solutions for pink book. 116

4.10 The tiles generated for the sample image . 117

4.11 Three-step matching: (a) Retrieved Images after the colour hypothesis; (b)

Images that also have texture support; (c) Images that finally pass the shape

verification step. 118

5.1 General Architecture of MultiMediaMiner. 124

5.2 Selecting (and browsing) data sets of images using keyword hierarchy. 125

5.3 Snapshot of MultiMediaMiner Characterizer 126

5.4 Visualization of association rules. 127

5.5 Excerpt from a classification tree generated by MultiMediaMiner 128

5.6 MultiMediaMiner Classifier user interface with drill-through to the class images.129

5.7 Portion of the keyword hierarchy generated by traversing the Yahoo directories.131

5.8 Keyword Normalization and Concept Hierarchy building using WordNet. . . . 132

5.9 Browsing 3 dimensions of the multimedia data cube. 133

5.10 MultiMediaMiner data warehouse with cubes and dimensions. 135

5.11 Multi-Dimensional Database model with materialization of cuboids. 138

6.1 Example of feature localization based on colour for a multi-level resolution

image. 143

6.2 Feature Relationships for Locales. 143

6.3 Relativity of visual feature concepts at different resolution levels. 153

6.4 Synthetic images. 154

6.5 Examples of images with objects. 165

6.6 Minimum bounding circle and minimum bounding rectangles. 170

6.7 Topology and resolution increase with minimum bounding circles. 173

6.8 Examples of topological refinement with minimum bounding circles. 174

6.9 Locale envelope with boundary tiles. 175

6.10 Progressive tile shrinking. 175

6.11 Topology and resolution increase with tile size shrinking. 178

xv

6.12 Examples of topological refinement with tile size shrinking. 178

6.13 Scale up of the algorithms. 180

6.14 Performance with variable σ′ values. 180

6.15 Frequent item-sets found by the different algorithms. 180

7.1 DBMiner multi-tier client-server architecture for the web-based implementation187

A.1 Internet 3D space representation. 195

A.2 Precision, Recall and fallout in IR. 198

A.3 Inverted Index File structure. 205

A.4 Inverted Index File structure with position file. 206

A.5 Example of a hypertext document. 208

A.6 Growth of the Internet from 1969 to 1998. (Compiled from [185, 283] and

other sites) . 212

A.7 Growth of the Internet in terms of number of unique hosts. 213

A.8 Growth of the Internet in terms of number of unique Internet domains. 213

A.9 Growth of the Internet in terms of number of Web Sites. 213

A.10 Timeline of the Internet. 214

A.11 WAIS general architecture. 218

A.12 UCSTRI general architecture. 219

A.13 Example of a ring with 6 sites. 224

A.14 Crawlers overload Web Servers. 226

A.15 The spider-based search engine general architecture. 228

A.16 A snippet from an HTML document with META tags. 232

xvi

Chapter 1

Introduction

Whatever you do will be insignificant, but it is very important that you do it.

Mahatma Gandhi

In this thesis, we demonstrate the inefficiency and inadequacy of the current information

retrieval technology applied on the Internet. We propose a framework, called Virtual Web

Views, for intelligent interactive information retrieval and knowledge discovery from global

information systems, and put forward a query language, WebML, for resource discovery

and data mining from the Web using the virtual web views. We illustrate how descriptors

collected for virtual web view building can be exploited for content-based image retrieval,

and show how to carry out on-line analytical processing and data mining on visual data

from the World-Wide Web, or other multimedia repositories.

More than 50 years ago, at a time when modern computers didn’t yet exist, Vannevar

Bush wrote about a multimedia digital library containing human collective knowledge, and

filled with “trails” linking materials of the same topic[44]. At the end of World War II,

Vannevar urged scientists to build such a knowledge store and make it useful, continuously

extendible and more importantly, accessible for consultation. Today, the closest to the

materialization of Vannevar’s dream is the World-Wide Web hypertext and multimedia

document collection. However, the ease of use and accessibility of the knowledge described

by Vannevar is yet to be realized. Since the 1960s, extensive research has been accomplished

in the information retrieval field, and free-text search was finally adopted by many text

repository systems in the late 1980s. The advent of the World-Wide Web in the 1990s

helped text search become routine as millions of users use search engines daily to pinpoint

resources on the Internet. However, resource discovery on the Internet is still frustrating and

sometimes even useless when simple keyword searches can convey hundreds of thousands of

1

2 CHAPTER 1. INTRODUCTION

documents as results.

The dramatic drop in the price of storage devices and the advent of the World-Wide

Web, an unprecedented information disseminator, are promoting the proliferation of massive

collections of multimedia resources, either text documents, or images, or other media. Never

has it been easier than with the World-Wide Web to publish all manner of digital documents

and make them almost instantly available to everyone. However, given the monumental

size of the collection, availability does not necessarily indicate universal accessibility or

even visibility of the published artifacts. It is an extremely difficult task to find pertinent

documents (either text, images, or other media) in this agglomerate. Finding relevant digital

documents in a large collection is known as Resource Discovery. In a recent report on the

future of database research [29] written by prominent authorities in database research, it

has been foretold that the Web and other on-line data stores will hold the majority of

published human knowledge. Despite the richness of this massive knowledge collection, the

report underlines the challenges still ahead for the research community to produce methods

for sorting out through this collection. The authors comment on the lack of considerable

contribution from the database research community in the development of striking methods

for the management and effective exploitation of the resources available on the Web.

In this thesis, we are concerned with resource discovery in the World-Wide Web context

and in the context of large visual media collections, as well as the discovery of implicit

information from those same collections. The information is implicit in the sense that it is

not specifically stored in a clear and visible manner, but rather tacitly implied, in contrast

to explicit information, which is apparent and certain, example, information conveyed by

hyperlinks, properties of content components, or Web access behaviours.

The content of the dissertation is composed of two distinct parts. The first part covers

resource discovery from the Internet and Web Mining. The makeup of a structure for the

description of on-line artifacts and a query language that takes advantage of the structure are

proposed. The second part pertains to resource and knowledge discovery from multimedia

repositories. It deals specifically with visual artifacts like images and videos. This division

is simply organizational to help the reader. Multimedia repositories are indeed an integral

part of the Internet. In the second part of the thesis, however, visual media is treated as a

particular example and is taken beyond the structure presented in part one.

In this work we pose the following theses:

Thesis 1 : (Web Overload) Search engines using Web crawling technology are the state

1.1. MOTIVATION AND RESEARCH DESCRIPTION 3

of the art in resource discovery from the World-Wide Web. However, this technology is

not scalable, is overloading the networks, and is not viable in the long term. While search

engines are necessary, the underlying approach for building indices by crawling the Web

ought to be improved or replaced.

Thesis 2 : (Virtual Web View) The Internet artifact collection is unstructured and

difficult to manage. There exists a possibility to create a view on this collection to make it

appear structured and to use the database technology to partially manage it.

Thesis 3 : (Web Mining) It is possible to extract explicit and implicit knowledge from

the World-Wide Web document collection as implied by the content of the documents, the

inter-connections between documents in hyperspace, and the access to these documents.

Thesis 4 : (WebML as a query language) There exists an SQL-like query language

that combines capabilities for resource discovery and knowledge discovery using Virtual Web

Views.

Thesis 5 : (Media Content) It is possible to use image content features like colours and

textures to solve object similarity search in image and video collections.

Thesis 6 : (Media Repository Mining) Mining visual media metadata can yield inter-

esting though unrevealed information about a medium or media collections.

1.1 Motivation and Research Description

We motivate the thesis by discussing a number of open problems related to the theses

presented in the previous section.

1. Web Overload: Due to the huge amount of data rapidly accumulated in the World-

Wide Web space, “surfing” the web to find information has become cumbersome.

Finding real information is often a hit-and-miss process. Catalogues and searchable

directories are somehow prohibited by the very dynamic nature of the Web and its

resources which make these catalogues stale and useless very rapidly. Automatic collec-

tion of resources has partially solved the information retrieval problem on the World-

Wide Web. Processes known as robots, spiders or crawlers, recursively traverse the

Web space by retrieving web documents and following all links in them until no docu-

ments remain to be retrieved. This automatic document retrieval method exhaustively

visits all documents assuming that all documents in cyberspace are somehow inter-

connected with the initial web documents with which the crawling process started.

4 CHAPTER 1. INTRODUCTION

By visiting web documents, indexes can be created to allow resource discovery using

search engines. Notice that to index the whole Web space, all documents have to be

downloaded one by one. In other words, the entire content of the Web is downloaded.

Moreover, due to the continuous growth and change of the Web space, the crawl-

ing process has to be repeated continuously in order to assert a current index. This

means that the content of the Web is continuously downloaded. Given the fact that

today there are more than 400 different crawlers traversing the Web at all times[156],

the content of the Web is continuously downloaded many times. The network traffic

generated by crawlers is extremely high. Moreover, it has been demonstrated [237]

that the network traffic on many web sites is in a high percentage constituted from

search engine crawlers requests for web content for indexing purposes. In addition,

spiders generate unnecessary localized load on already overloaded information servers.

By continuously and consecutively requesting all documents from the same server,

spiders can flood servers and prevent them from serving other users. This has precip-

itated controversy. Based on these concerns, guidelines for implementing spider-like

programs were proposed [154, 155] in order to reduce the number of localized requests

in a given lapse of time. Obviously, at the rate the Web space is growing and the

number of crawlers is increasing, the current web crawling technology is not viable for

effective Web space indexing, even with availability of larger bandwidth.

2. Virtual Web View: The World-Wide Web is a collection of artifacts with com-

plex structures. Artifacts are physical objects like documents, images, videos, sound,

maps, data files, games, applications etc. Artifacts can also be virtual objects, like

users, hosts, networks etc., playing a role on the World-Wide Web. These objects are

distributed and stored, or represented, on a large set of heterogeneous repositories.

Querying such data is very costly, if not impossible, due to the semantic ambiguities

and the heterogeneity of the data sources. Processing and generalizing (summarizing)

the raw data can resolve certain ambiguities. By storing the processed data in a rela-

tional table at a more general conceptual level, the cost of query processing is reduced

[208]. High level queries can be applied directly on the processed data. Moreover,

users may prefer to scan the general description of the information on the Internet,

rather than read the details of large pieces of information (i.e. web artifacts). This

may lead to cooperative query answering [124] in which the user can successively refine

1.1. MOTIVATION AND RESEARCH DESCRIPTION 5

the query by following the description of the selected general summaries. The idea of

generalizing data at a higher conceptual level can be repeated to form layers of gen-

eralization. These layers constitute a Multiple-Layered DataBase (MLDB) [127, 276].

The philosophy behind the construction of the MLDB is information extraction. Ide-

ally, the extraction of information from the primitive data to build the first layer of

the MLDB is automated. However, in many cases, depending upon the artifacts pro-

cessed, manual help from the document author, the server administrator, or other,

might be necessary. The advent of the eXtensible Markup Language (XML) [180],

a new standard for defining and describing artifacts on-line, is a promising accom-

plishment that would facilitate the automation of the information extraction from the

primitive layer. The adoption of XML applications for describing documents on-line

could indeed be key in the efficient and automatic extraction fundamental data from

within the documents. Once constructed, the MLDB provides a global view of the

current artifacts in the World-Wide Web. We call it a Virtual Web View (VWV).

Definition 1.1.1 A Virtual Web View is a set of relations organized in layers.

Relations in a given layer summarize the relations in the lower layers, and are ab-

stracted in the relations of the layers above, starting from the lowest layer containing

descriptors of artifacts in the World-Wide Web. 2

A VWV is a view on the World-Wide Web artifact collection, thus abstracting a

selected set of artifacts. Many VWVs can co-exist to cover the whole World-Wide

Web. Another motivation promoting the layered VWV is the possibility of querying

the view at different abstraction levels. In general, higher level relations of the VWV

are much smaller than their corresponding lower ones. Thus, querying higher layers

is faster and less costly. Higher layers of a VWV can be cached for efficiency and for

reduction of network traffic.

3. Web Mining: Knowledge Discovery in Databases (KDD) is a process in which im-

plicit knowledge is discovered and extracted from large databases. Data Mining, which

locates and enumerates valid patterns in large databases, is one step among other steps

in the KDD process. The steps of KDD as described in [202] are: selection during

which data sets or data samples are selected, preprocessing during which the data is

cleaned and preprocessed to eliminate noise, transformation during which the data

6 CHAPTER 1. INTRODUCTION

is reduced to its useful features, data mining during which some specific tasks locate

patterns in the data, and interpretation during which the patterns discovered are eval-

uated and consolidated into knowledge. The heterogeneous, unstructured and chaotic

World-Wide Web is not a database. The Web is a set of different data sources with

unstructured and interconnected artifacts that continuously change. The selection,

preprocessing and transformation steps of Knowledge Discovery in the Web (KDW)

have to take into account the dynamic and heterogeneous nature of the Web. More-

over, the transformation step has to consider the fact that the artifacts on the web (i.e.

web pages and media) are not structured like records in a database. In addition, the

hyperlink structure inherent to the Web can yield interesting information that should

be taken into account. An artifact linked by many documents is obviously popular,

hence probably more important or relevant than a document that is not linked to by

other artifacts. However, an artifact linked by many non-important (or irrelevant)

documents is less pertinent than an artifact link by one relevant document. Obvi-

ously, links are a rich knowledge source. In addition, the access patterns of users on

the Internet can reveal interesting knowledge about accessed artifacts.

Definition 1.1.2 Web Mining is the extraction of interesting and potentially useful

patterns and implicit information from artifacts or activity related to the World-Wide

Web. 2

Definition 1.1.3 The taxonomy of Web Mining domains includes Web Content

Mining which pertains to the extraction of information from artifact content, Web

Structure Mining which educes information from artifact link structure, and Web Us-

age Mining which tracks access patterns to Web artifacts. 2

4. WebML as a query language: SQL is a widely accepted declarative query language

for relational databases. Many optimizers have been implemented for it, making it

fast and reliable.

WebML, the language we propose, exploits the Virtual Web Views and the concept

hierarchies with which the layers of the VWV are constructed. New primitives and

functions allow browsing, progressive browsing and knowledge discovery. Proposing

a high level SQL-like language that enhances and enriches SQL syntax for resource

1.1. MOTIVATION AND RESEARCH DESCRIPTION 7

and knowledge discovery has straightforward advantages. First, the new language can

take advantage of the powerful SQL syntax structure and SQL expressive power. Sec-

ond, an interpreter can be implemented to translate the queries into SQL and take

advantage of the fast and reliable SQL query optimizers. Third, the new language

has a better chance for acceptance by database users and Web programmers. SQL is

a powerful query language, but is also a programming language for database applica-

tions. WebML is also intended as a high level programming language for information

retrieval and data mining applications on the World-Wide Web.

5. Media Content: The use of image and video in multimedia databases has proven

extremely effective in various applications such as education, entertainment, medicine,

commerce, and publishing. Multimedia data is much richer than simple textual

data. However, collections of multimedia objects present many management and re-

trieval challenges. The most commonly used indexing methods for visual artifacts are

description-based. These approaches use manually entered keywords to index images

or videos. They are inadequate in terms of scalability, and are very poor in retrieval

effectiveness. Moreover, querying in this context is restricted to keywords and can not

take advantage of image content like colours, textures, shapes or objects represented

in the images. However, automatically extracting visual features from images poses

many challenges regarding scalability of the process and efficiency in the use of these

features for content-based retrieval.

6. Media Repository Mining: Knowledge discovery in multimedia databases has not

been widely analyzed or studied. Data mining is a young field but it has already

produced impressive results. Multimedia is very popular and the proliferation of mul-

timedia repositories is significant. The marriage between data mining and multimedia

is very tempting and logical. The structure of multimedia objects is however complex,

and the descriptors of multimedia objects are unlike any common data processed by

standard data mining techniques. Multimedia mining poses interesting challenges

due to the complexity of the media artifacts and the high dimensionality of artifacts

descriptors.

8 CHAPTER 1. INTRODUCTION

1.2 Contributions in this Thesis

The major contributions of this thesis are summarized as follows:

• Proposal of a framework and model, Virtual Web View, for hierarchical organization

and management of Web objects for resource and implicit knowledge discovery form

the Internet.

• Presentation of strategies for mediating between different virtual web views with dis-

tinct or interoperable ontologies.

• Definition of WebML, a declarative query and mining language for the Web.

• Definition of DMQL, a data mining query language for mining large databases.

• Proposal of automatic descriptors extraction means for image and video summariza-

tion aimed at content-based retrieval and data mining from visual media.

• Proposal of an architecture for a data mining and OLAP system from visual media

using data cubes.

• Presentation of new efficient and scalable algorithms for content-based multimedia

association rules with recurrent items and spatial relationships at different image res-

olution levels.

The following implementations were realized in the context of the thesis:

1. Implementation on the Web of a client server version of DBMiner, a data mining and

OLAP system for large relational databases.

2. Implementation of an image discovery and indexing agent, Excavator, which retrieves

images and related web pages and indexes images using visual descriptors for the

images and keywords from the web pages.

3. Implementation of C-BIRD, a content-based image retrieval system from image repos-

itories. The system was implemented as a Web-based application allowing image re-

trieval and resource discovery form the Web.

4. Implementation of a data mining and OLAP system, MultiMediaMiner, for mining

characteristic, association, and classification rules from images retrieved form the Web.

1.3. ORGANIZATION OF THE THESIS 9

1.3 Organization of the Thesis

The thesis is structured in two parts. The first part (Part I) presents our work pertaining

to resource and knowledge discovery from the Internet, and is divided into two chapters:

Chapter 2 and Chapter 3. The second part (Part II) covers data mining from visual media

repositories, and is divided into three chapters: Chapter 4 through Chapter 6.

Chapter 2 introduces our stratified architecture used to build structured views on arti-

facts distributed on the Internet. We show how a layered structure can abstract information

about Internet artifacts and offers to view the resources at high conceptual levels. We call

these structures Virtual Web Views. A Virtual Web View covers part of the Web and uses

local concept hierarchies to represent the “world” it exhibits. This work has been published

in technical reports and various conference proceedings [127, 128, 276, 277]. Different vir-

tual web views can coexist, each with its own set of concept hierarchies. Mediating between

virtual web views to solve inter-view queries is also put forth in this Chapter. This work

has been submitted for publication at the Conference on Cooperative Information Systems

(CoopIS’99) [278].

In Chapter 3 we present a declarative query language, WebML, that takes advantage of

the multi-layered structure and concept hierarchies present in virtual web views to discover

resources as well as knowledge from the Internet. The complete syntax is unveiled and some

examples are given to demonstrate the expressive power of the query language. WebML

and its predecessors, WebQL and NetQL, were presented in the following articles [127, 128,

276, 277].

In Chapter 4 we present an overview of content-based visual media retrieval techniques

and discuss our implementation of C-BIRD, our content-based image retrieval system. The

chapter provides details on visual feature extraction from images and video frames for

content-based querying and object localization. Our research related to content-based image

retrieval has been published in [168, 169, 167].

Chapter 5 discusses the implementation of MultiMediaMiner a system for On-line Ana-

lytical Processing and high-level knowledge discovery from multimedia descriptors. The

challenges we faced and the compromises we adopted are described in detail. Multi-

MediaMiner has been demonstrated at the SIGMOD Conference 1998 [279].

Finally, we show in Chapter 6 how data mining can be applied on image content to

discover relationships between localized features in images or video frames. The research

10 CHAPTER 1. INTRODUCTION

related to data mining on image content has been submitted for publication at the SIGKDD

Conference 1999 [281].

There are four appendices. In Appendix A we present a survey of information retrieval

techniques used for resource discovery on the Internet and outline some of the recent ap-

proaches and attempts for data mining from the web. A more extended survey has been

published as a technical report [270] and submitted to the ACM Computing Surveys Journal

[271].

Appendix B and C present the Backus-Naur Form grammar of the Web Mining Language

WebML and the Data Mining Query Language DMQL, respectively.

Appendix D present available means for defining metadata for objects on the Internet.

Examples of the Dublin Core elements are presented using HTML META tags and XML

document type definition (DTD).

Part I

Web Mining

11

Chapter 2

Building a Virtual Web View

The problems that we have today were created at a particular level of thinking.

We can not solve these problems at the same level of thinking.

Albert Einstein

Nam et ipsa scientia potestas est.

Francis Bacon

With the rapid expansion of the information base and the user community in the Internet,

efficient and effective discovery and use of the resources in the global information network

has become an important issue in the research into global information systems.

Although research and developments of database systems have been flourishing for many

years, with different kinds of database systems successfully developed and delivered to the

market, a global information system, such as the Internet, stores a much larger amount

of information in a much more complicated and unstructured manner than any currently

available database systems. Thus, the effective organization, discovery and use of the rich

resources in the global information network poses great challenges to database and infor-

mation system researchers. In a recent report on the future of database research known as

the Asilomar Report [29], it has been predicted that in ten years from now, the majority

of human information will be available on the World-Wide Web, and it has been observed

that the database research community has contributed little to the Web thus far.

The first major challenge of a global information system is the diversity of informa-

tion in the global information base. The current information network stores hundreds of

tera-bytes of information including documents, softwares, images, sounds, commercial data,

library catalogues, user directory data, weather, geography, other scientific data, and many

other types of information. Since users have the full freedom to link whatever information

they believe useful to the global information network, the global information base is huge,

heterogeneous, in multimedia form, mostly unstructured, dynamic, incomplete and even

inconsistent, which creates tremendous difficulty in systematic management and retrieval in

comparison with the structured, well-organized data in most commercial database systems.

12

13

The second challenge is the diversity of user community. The Internet currently connects

about 40 million workstations [185, 283], and the user community is still expanding rapidly

(See Figures A.6 and A.7 in Appendix A). Users may have quite different backgrounds,

interests, and purposes of usage. Also, most users may not have a good knowledge about

the structure of the information system, may not be aware of the heavy cost of a particular

search (e.g., a click may bring megabytes of data over half of the globe), and may easily

get lost by groping in the “darkness” of the network, or be bored by taking many hops and

waiting impatiently for a piece of information.

The third challenge is the volume of information to be searched and transmitted. The

huge amount of unstructured data makes it unrealistic for any database systems to store

and manage and for any queries to find all or even most of the answers by searching through

the global network. The click-triggered massive data transmission over the network is not

only costly and unbearable even for the broad bandwidth of the communication network,

but also too wasteful or undesirable to many users. Search effectiveness (e.g., hit ratio) and

performance (e.g., response time) will be bottlenecks for the successful applications of the

global information system.

There have been many interesting studies on information indexing and searching in the

global information base with many global information system servers developed. Some of

these studies and systems are presented in Appendix A, including attempts made to discover

resources in the World Wide Web. Crawlers, spider-based indexing techniques used by search

engines, like the WWW Worm [179], RBSE database [77], Lycos [178] and others, create

a substantial value to the web users, but generate an increasing Internet backbone traffic.

They not only flood the network and overload the servers but also lose the structure and

the context of the documents gathered. These wandering software agents on the World

Wide Web have already created controversies [154, 155] as mentioned in Appendix A. Other

indexing solutions, like ALIWEB [153] or Harvest [34], behave well on the network but still

struggle with the difficulty to isolate information with relevant context and cannot solve

most of the problems posed for systematic discovery of resources and knowledge in the

global information base.

In this chapter, a different approach, called a Multiple Layered DataBase (MLDB) ap-

proach for building Virtual Web Views (VWV) is proposed to facilitate information discov-

ery in global information systems. We advocate spider-less indexing of the Internet. Authors

or web-server administrators send their own indexes or pointers to artifacts to be indexed.

14 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

When documents are changed, added or removed, the indexing process is triggered again.

A multiple layered database (MLDB) is a database composed of several layers of information,

with the lowest layer (i.e., layer-0) corresponding to the primitive information stored in the

global information base and the higher ones (i.e., layer-1 and above) storing generalized

information extracted from the lower layers.

The proposal is based on the previous studies on multiple layered databases [208, 124]

and data mining [203, 119] and the following observations.

With the development of data analysis, transformation and generalization techniques, it

is possible to generalize and transform the diverse, primitive information in the network into

reasonably structured, classified, descriptive and higher-level information. Such information

can be stored into a massive, distributed but structured database which serves as the layer-

1 database in the MLDB. By transforming an unstructured global information base into a

relatively structured “global database”, most of the database technologies developed before

can be applied to manage and retrieve information at this layer.

However, the layer-1 database is usually still too large and too widely distributed for

efficient browsing, retrieval, and information discovery. Further generalization should be

performed on this layer at each node to form higher layer(s) which can be then merged with

the corresponding layered database of other nodes at some backbone site in the network.

The merged database can be replicated and propagated to other remote sites for further

integration [66]. This integrated, higher-layer database may serve a diverse user commu-

nity as a high-level, global information base for resource discovery, information browsing,

statistical studies, etc.

The multiple layered database architecture transforms a huge, unstructured, global in-

formation base into progressively smaller, better structured, and less remote databases to

which the well-developed database technology and the emerging data mining techniques

may apply. By doing so, the power and advantages of current database systems can be

naturally extended to global information systems, which may represent a promising direc-

tion. Moreover, data mining can be put to use in such hierarchical structure in order to

perform knowledge discovery on the World-Wide Web (or the Internet). The next section

surveys some techniques and approaches relevant to Knowledge Discovery on the Internet

also known as Web Mining. We intend to integrate most of these techniques in our proposal.

2.1. DATA MINING OR KNOWLEDGE DISCOVERY ON THE INTERNET 15

Keywording

Association

Classification Clustering

Visualization

Similarity Search

Term

Categorization
Document

Visualization
Document

Text Analysis

Text Interpretation

Figure 2.1: Text Mining Pyramid.

2.1 Data Mining or Knowledge Discovery on the Internet

Data mining, as defined in [202], is the process of non-trivial extraction of implicit, pre-

viously unknown and potentially useful information from data in large databases. Data

mining is the principal core of the knowledge discovery process, which also includes data

integration, data cleaning, relevant data selection, pattern evaluation and knowledge visu-

alization. Traditionally, data mining has been applied to databases. The wide spread of the

World-Wide Web technology has made the large document collection in the World-Wide

Web a new ground for knowledge discovery research. In contrast to resource discovery

that finds and retrieves resources from the Internet, knowledge discovery on the Internet

aims at deducing and extracting implicit knowledge not necessarily contained in a resource.

Traditional knowledge discovery functions put to use on databases, like characterization,

classification, prediction, clustering, association, time series analysis, etc. can all be applied

on the global information network. Not all these functionalities were attempted on the In-

ternet but a few were applied to document repositories with some success. Text mining for

instance has been attracting much interest.

One of the most important assets in any corporate organization is the collection of doc-

uments regularly amassed, like technical reports, articles, memos, presentations, patents,

16 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

e-mail messages, web pages, etc. This collection of free text documents embodies the corpo-

rate cumulated expertise. When time is of the essence for success, even precise information

retrieval systems pinpointing relevant documents can become insufficient. Text mining,

however, can drastically improve the precision of information retrieval systems, or extract

relevant knowledge from documents, alleviating the need for going through the retrieved doc-

uments manually in the search for pertinent knowledge. Text mining includes most of the

knowledge discovery steps, from data cleaning to knowledge visualization. The dominant

categories in text mining are text analysis, text interpretation, document categorization,

and document visualization. Text analysis scrutinizes text document content to investigate

syntactical correlation and semantic association between terms. Key concepts and phrases

are extracted to represent the document or document sections (i.e. keywording). Text in-

terpretation abstracts documents in concise form by paraphrasing the document content.

Document categorization organizes a document collection in groups, while the document

visualization consists of the representation of document concentration in groups and the

group intersections. Figure 2.1 shows a pyramid of text mining themes ordered by category.

The pyramid illustrates the top-down relationship between text mining functions. The dif-

ferent functions are:

Keywording: Extraction of relevant key phrases/words from documents. This extraction

is limited to the only terms or concepts that are pertinent to the topic of the whole docu-

ment (or section).

Summarization: Extraction of relevant key information from documents. The essential

ideas of a document (or section) are abstracted and paraphrased in a synopsis.

Similarity search: Search for documents (or sections) containing similar concepts as a

given document (or section).

Classification: Organization of a collection of documents by predefined themes. Given

a set of classes and descriptions of classes, the documents are classified (or categorized).

Documents can belong to one or more classes.

Clustering: Search for predominant themes in a collection of documents and categorization

of all documents in the found themes.

Text mining is only one of the technologies that constitute knowledge discovery from the

Internet. It primarily acts on textual content. The Internet is a highly dynamic multimedia

environment involving interconnected heterogeneous repositories, programs, and interacting

users. Obviously, text mining has a limited grasp on knowledge in such an environment.

2.1. DATA MINING OR KNOWLEDGE DISCOVERY ON THE INTERNET 17

Web Structure
Mining

Web Content
Mining

Web Usage
Mining

Search Result

Mining

General Access

Pattern Tracking

Customized

Usage Tracking

Web Page

Content Mining

Web Mining

Figure 2.2: Taxonomy of Web Mining techniques.

Data mining on the Internet, commonly called webmining, needs to take advantage of the

content of documents, but also of the usage of such resources available and the relationships

between these resources. Web mining, the intersection between data mining and the World-

Wide Web, is growing to include many technologies conventionally found in artificial in-

telligence, information retrieval, or other fields. Agent-based technology[81], concept-based

information retrieval, information retrieval using case-based reasoning[64], and document

ranking using hyperlink features and usage (like CLEVER) are often categorized under web

mining. Web mining is not yet clearly defined and many topics will continue to fall into its

realm.

We define Web Mining as the extraction of interesting and potentially useful patterns

and implicit information from artifacts or activity related to the World-Wide Web.

Figure 2.2 shows a classification of domains that we believe to be akin to Web Mining. In

the World-Wide Web field, there are roughly three knowledge discovery domains that pertain

to web mining: Web Content Mining, Web Structure Mining, and Web Usage Mining. Web

content mining is the process of extracting knowledge from the content of documents or their

descriptions. Web document text mining, resource discovery based on concepts indexing or

agent-based technology may also fall in this category. Web structure mining is the process

of inferring knowledge from the World-Wide Web organization and links between references

18 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

and referents in the Web. Finally, web usage mining, also known as Web Log Mining, is the

process of extracting interesting patterns in web access logs.

2.1.1 Web Content Mining

Most of the knowledge in the World-Wide Web is buried inside documents. Current tech-

nology barely scratches the surface of this knowledge by extracting keywords from web

pages. This has resulted in the dissatisfaction of users regarding search engines and even

the emergence of human assisted searches1 on the Internet. Web content mining is an auto-

matic process that goes beyond keyword extraction. Since the content of a text document

presents no machine-readable semantic, some approaches have suggested to restructure the

document content in a representation that could be exploited by machines. Others con-

sider the web structured enough to do effective web mining. Nevertheless, in either cases

an intermediary representation is often relied upon and built using known structure of a

limited type and set of documents (or sites) or using typographic and linguistic proper-

ties. The semi-structured nature of most documents on the Internet helps in this task.

Essence[129], the technology used by the harvest system[34] relies on known structure of

semi-structured documents to retrieve information. The usual approach to exploit known

structure in documents is to use wrappers to map documents to some data model. Many

declarative languages have been proposed to query such data models. Weblog[161] relies

on Datalog-like rules to represent web documents. WebOQL[19] uses graph trees to extract

knowledge and restructure web documents. WebML[127, 128, 276], presented in Chapter

3, uses relational tables to take advantage of relational database power and data mining

possibilities. Techniques using lexicons for content interpretation are yet to come.

There are two groups of web content mining strategies: Those that directly mine the

content of documents and those that improve on the content search of other tools like search

engines.

1Some sites like http://www.humansearch.com, http://www.searchmill.com and
http://www.searchforyou.com offer search services with human assistance.

2.1. DATA MINING OR KNOWLEDGE DISCOVERY ON THE INTERNET 19

Web Page Summarization

There has been some research work on retrieving information from structured documents,

hypertext, or semi-structured documents[1, 2, 42]. However, most of the suggested ap-

proaches are limited to known groups of documents, and use custom-made wrappers to map

the content of these documents to an internal representation. Perhaps the most prominent

research results for knowledge discovery from heterogeneous and irregular documents, like

web pages, were presented by the Ahoy!, WebOQL, and the Shopbot Project. Ahoy!2[226]

specializes in discovering personal homepages. Given information about a person, Ahoy!

uses Internet services like search engines and e-mail listservers to retrieve resources related

to the person’s data. Ahoy! uses heuristics to identify typographic or syntactic features in-

side the documents that could betray the document as being a personal homepage. WebOQL

is a query language for web page restructuring. Using a graph tree representation of web

documents, it is capable of retrieving information from on-line news sites like CNN3 or

tourist guides. The shopping agent described in [71] learns to recognize document struc-

tures of on-line catalogues and e-commerce sites, and extracts price lists and special offers.

This agent is capable of compiling information retrieved from different sites and discovering

interesting bargains.

The major obstacle for efficient information extraction from within documents is the

absence of metadata, and the lack of a standard way to describe, manipulate and exchange

data in electronic documents. The recommendations for XML 1.0 (eXtendible Markup

Language) standard by the World-Wide Web Consortium in 1998, and its endorsement by

many companies major players in the Web arena, is bringing relief for resource discovery.

XML provides a flexible data standard that can encode the content, semantics, and

schema for a wide variety of electronic documents. XML is a universal data format that

separates the data from the presentation of the document and enables documents to be

self-describing using Document Type Definitions (DTD). See Section 2.3 for more details

about XML.

2http://www.cs.washington.edu/research/ahoy
3http://www.cnn.com

20 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

Search Engine Result Summarization

The heterogeneity of the World-Wide Web and the absence of structure has lead some re-

searchers to mine subsets of known documents or data from documents known to pertain

to a given topic. One such subset can be a search result of a query sent to search engines.

The system presented in [183] uses a small relational table containing minimal information

to provide a query language (WebSQL) for better result refining. The system accesses the

documents retrieved by search engines and collects information from within the document

or from the data usually provided by servers like the URL, title, content type, content

length, modification date, and links. The SQL-like declarative language provides the ability

to retrieve pertinent documents from within the search result. Zamir and Etzioni present

in [284] a technique for clustering documents retrieved by a set of search engines. The tech-

nique relies solely on information provided in search result like titles, URLs, snippets (i.e.

descriptions or first lines of the page content), etc. to induce clusters and categorize the

retrieved documents in these discovered clusters. The clusters, which can present overlap-

ping, represent a higher-level view on top of the list of retrieved documents and facilitate

the sifting through the often very large search engine result list.

2.1.2 Web Structure Mining

Thanks to the interconnections between hypertext documents, the World-Wide Web can

reveal more information than just the information contained in documents. For example,

links pointing to a document indicate the popularity of the document, while links coming

out of a document indicate the richness or perhaps the variety of topics covered in the

document. This can be compared to bibliographical citations. When a paper is cited often,

it ought to be important. The PageRank[40] and CLEVER[46] methods take advantage of

this information conveyed by the links to find pertinent web pages.

We will present later in this chapter the virtual web views, using a multi-layered database

approach, which also benefits from the structure of the Web by abstracting relevant infor-

mation from web artifacts and keeping relationships between them. The virtual web views

exploit the knowledge conveyed by the information network but not explicitly stated in doc-

uments. By means of counters, higher levels cumulate the number of artifacts subsumed by

the concepts they hold. Counters of hyperlinks, in and out documents, retrace the structure

of the web artifacts summarized.

2.1. DATA MINING OR KNOWLEDGE DISCOVERY ON THE INTERNET 21

2.1.3 Web Usage Mining

Despite the anarchy in which the World-Wide Web is growing as an entity, locally on each

server providing the resources there is a simple and well structured collection of records: the

web access log. Web servers record and accumulate data about user interactions whenever

requests for resources are received. Analyzing the web access logs of different web sites

can help understand the user behaviour and the web structure, thereby improving the

design of this colossal collection of resources. There are two main tendencies in Web Usage

Mining driven by the applications of the discoveries: General Access Pattern Tracking and

Customized Usage Tracking. The general access pattern tracking analyzes the web logs to

understand access patterns and trends. These analyses can shed light on better structure

and grouping of resource providers. Many web analysis tools exist4 but they are limited and

usually unsatisfactory. We have designed a web log data mining tool, WebLogMiner, and

proposed techniques for using data mining and OnLine Analytical Processing (OLAP) on

treated and transformed web access files. These studies were presented in [282]. Applying

data mining techniques on access logs unveils interesting access patterns that can be used

to restructure sites in a more efficient grouping, pinpoint effective advertising locations,

and target specific users for specific selling ads [141]. Customized usage tracking analyzes

individual trends. Its purpose is to customize web sites to users. The information displayed,

the depth of the site structure and the format of the resources can all be dynamically

customized for each user over time based on their access patterns. One innovative study

has proposed such adaptive sites: web sites that improve themselves by learning from user

access patterns[200].

While it is encouraging and exciting to see the various potential applications of web log

file analysis, it is important to know that the success of such applications depends on what

and how much valid and reliable knowledge one can discover from the large raw log data.

Current web servers store limited information about the accesses. Some scripts custom-

tailored for some sites may store additional information. However, for an effective web

usage mining, an important cleaning and data transformation step before analysis may be

needed[282].

4The university of Illinois maintains a list of web access analyzers on a HyperNews page accessible at
http://union.ncsa.uiuc.edu/HyperNews/get/www/log-analyzers.html

22 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

2.2 A Multiple Layered Database Model for Global Informa-

tion Systems

In this section we present the multi-layered database structure underlying the virtual web

views. This structure takes into account the three aspects of web mining presented above:

web content mining, web structure mining, and web usage mining.

Although it is difficult to construct a data model for the primitive global information base

(i.e., layer-0), advanced data models can be applied in the construction of better structured,

higher-layered databases. To facilitate our discussion, we assume that the nonprimitive

layered database (i.e., layer-1 and above) is constructed based on an extended-relational

model with capabilities to store and handle complex data types, including set- or list- valued

data, structured data, hypertext, multimedia data, etc. Multiple layered databases can also

be constructed similarly using other data models, including object-oriented and extended

entity-relationship models.

Definition 2.2.1 A global multiple layered database (MLDB) consists of 3 major compo-

nents: 〈S, H, D〉, defined as follows.

1. S: a database schema, which contains the meta-information about the layered database

structures;

2. H: a set of concept hierarchies; and

3. D: a set of (generalized) database relations at the nonprimitive layers of the MLDB and

files in the primitive global information base. 2

The first component, a database schema, outlines the overall database structure of the

global MLDB. It stores general information such as structures, types, ranges, and data

statistics about the relations at different layers, their relationships, and their associated

attributes as well as the location where the layers reside and are mirrored. Moreover, it

describes which higher-layer relation is generalized from which lower-layer relation(s) (i.e., a

route map) and how the generalization is performed (i.e., generalization paths). Therefore,

it presents a route map for data and metadata (i.e., schema) browsing and for assistance of

resource discovery.

The second component, a set of concept hierarchies, provides a set of predefined concept

hierarchies which assist the system to generalize lower layer information to high layer ones

2.2. A MULTIPLE LAYERED DATABASE MODEL FOR GLOBAL INFORMATION SYSTEMS23

and map queries to appropriate concept layers for processing. These hierarchies are also

used for query-less browsing of resources like drill-down and roll-up operations.

The third component consists of the whole global information base at the primitive infor-

mation level (i.e., layer-0) and the generalized database relations at the nonprimitive layers.

In other words, it contains descriptions of on-line resources summarized in each layer.

The third component is by definition dynamic. Note that the first, as well as the second

component, can also dynamically change. The schema defined in the first component of the

MLDB model can also be enriched with new fields, and new route maps can be defined after

the system has been initially conceived. The updates are incremental and are propagated,

in the case of the schema update, from lower layers to higher ones. New concept hierarchies

can be defined as well, or updated. While updates to current concept hierarchies imply

incremental updates in layered structure, new concept hierarchies may suggest the definition

of a new set of layers or an analogue MLDB.

We first examine the database schema. Because of the diversity of information stored in

the global information base, it is difficult, and even not realistic, to create relational database

structures for the primitive layer information base. However, it is possible to create rela-

tional structures to store reasonably structured information generalized from primitive layer

information. For example, based on the accessing patterns and accessing frequency of the

global information base, layer-1 can be organized into dozens of database relations, such

as document, person, organization, images, sounds, software, map, library catalogue, com-

mercial data, geographic data, scientific data, games, etc. The relationships among these

relations can also be constructed either explicitly by creating relationship relations as in an

entity-relationship model, such as person-organization, or implicitly (and more desirably)

by adding the linkages in the tuples of each (entity) relation during the formation of layer-1,

such as adding URL 5 pointers pointing to the corresponding authors (“persons”) in the

tuples of the relation “document” when possible.

To simplify our discussion, we assume that the layer-1 database contains only two rela-

tions, document and person. Other relations can be constructed and generalized similarly.

Example 2.2.1 Let the database schema of layer-1 contain two relations, document and

person, as follows (with the attribute type specification omitted).

5Uniform Resource Locator. Reference is available by anonymous FTP from ftp.w3.org as
/pub/www/doc/url-spec.txt

24 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

1. document(file addr, authors, title, publication, publication date, abstract, language, table of contents,

category description, keywords, index, multimedia attached, num pages, format, first paragraphs, size doc,

timestamp, access frequency, URL links in, URL links out, . . .).

2. person(last name, first name, home page addr, position, picture attach, phone, e-mail, office address,

education, research interests, publications, size of home page, timestamp, access frequency, . . .).

Take the document relation as an example. Each tuple in the relation is an abstraction

of one document from the information base (layer-0). The whole relation is a detailed ab-

straction (or descriptor) of the information in documents gathered from a site. The first

attribute, file addr, registers its file name and its “URL” network address. The key could

have been a system generated object identifier doc id, used to identify the documents which

may be duplicated and have different URL addresses, such as in [233]. However, for simplic-

ity we chose to retain the URL of a document as a key and duplicate the entries in document

if necessary, allowing documents to evolve independently. There is a possibility to have two

URLs for the same on-line document, especially with virtual domain addresses, but it is

difficult to identify and thus we chose not to add another identifier other than the document

URL. There are several attributes which register the information directly associated with

the file, such as size doc (size of the document file), timestamp (the last updating time), etc.

There are also attributes related to the formatting information. For example, the attribute

format indicates the format of a file: .ps, .dvi, .tex, .troff, .html, text, compressed, uuen-

coded, etc. One special attribute, access frequency, registers how frequently the entry is

being accessed. This is either access relative to the record in layer-1 or access collected from

the web log file of the web server where the document resides. URL links in, URL links out,

register the number of known pointers pointing to the document (i.e. popularity of the doc-

ument), and the number of pointers coming out of the documents (i.e. number of URLs in

the document). The popularity of a document can be weighted relatively to the importance

of the initial document that point at it. If the initial document (i.e. parent document) is in

the same topic or is popular itself, the counter is multiplied by a higher coefficient, however,

if the initial document is not relevant or from the same site as the current document, the

counter is multiplied by a low coefficient. URL Links in ≡ ∑
i,j Ci, where j is the number

of distinct URLs pointing to the document, and Ci is 1 for an irrelevant parent page from

the same web site, and higher otherwise. Relevance in this context can be measured by

intersection of the document keyword sets (topics). The same applies for URL Links out:

URL Links out ≡ ∑
i,k Ci, where k is the number of distinct URLs in the document, and

2.2. A MULTIPLE LAYERED DATABASE MODEL FOR GLOBAL INFORMATION SYSTEMS25

Ci their “importance”. Other attributes register the major semantic information related

to the document, such as authors, title, publication, publication date, abstract, language,

table of contents, category description, keywords, index, multimedia attached, num pages,

first paragraphs, etc. 2

Note that getting the Links out list of a document is straightforward, however, the

Links in list can be difficult if we look at the links as a sparse matrix between all existing

URLs. Such a matrix for the Web can not be computed in a realistic manner. In the VWV

context, Links in contains only “known links”, that is links from documents in the VWV.

When a document is added, its Links out is divided into two sets: the known links and the

outside VWV links. The known links are used to update the Links in of those documents

in the VWV. The Links in of the new document is computed by checking for the URL of

the new document in the Links out lists of the VWV.

Layer-1 is a detailed abstraction (or descriptor) of the layer-0 information. The relations

in layer-1 are substantially smaller than the primitive layer global information base but

still rich enough to preserve most of the interesting pieces of general information for a

diverse community of users to browse and query. Layer-1 is the lowest layer of information

manageable by database systems. However, it is usually still too large and too widely

distributed for efficient storage, management and search in the global network. Further

compression and generalization can be performed to generate higher layered databases.

Example 2.2.2 Construction of an MLDB on top of the layer-1 global database.

The two layer-1 relations presented in Example 2.2.1 can be further generalized into

layer-2 database which may contain two relations, doc brief and person brief, with the fol-

lowing schema,

1. doc brief(file addr, authors, title, publication, publication date, abstract, language, category description,

keywords, num pages, format, size doc, access frequency, URL links in, URL links out).

2. person brief (last name, first name, publications, affiliation, e-mail, research interests, size home page,

access frequency).

The resulting relations are usually smaller with less attributes and records. Least pop-

ular fields from layer-1 are dropped, while the remaining fields are inherited by the layer-2

relations. Relations are split according to different classification schemes, while tuples are

merged relying on successive subsumptions according to the concept hierarchies used. Gen-

eral concept hierarchies are provided explicitly by domain experts. Other hierarchies are

26 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

built automatically and stored implicitly in the database. We have proposed and imple-

mented a technique for the construction of a concept hierarchy for keywords extracted from

web pages using an enriched WordNet semantic network[263]. This approach [274, 275] is

presented later in this Chapter.

Further generalization can be performed on layer-2 relations in several directions. One

possible direction is to partition the doc brief file into different files according to different

classification schemes, such as category description (e.g., cs document), access frequency

(e.g., hot list document), countries, publications, etc., or their combinations. Choice of

partitions can be determined by studying the referencing statistics. Another direction is

to further generalize some attributes in the relation and merge identical tuples to obtain a

“summary” relation (e.g., doc summary) with data distribution statistics associated [119].

The third direction is to join two or more relations. For example, doc author brief can

be produced by generalization on the join of document and person. Moreover, different

schemes can be combined to produce even higher layered databases.

A few layer-3 relations formed by the above approaches are presented below.

1. cs doc(file addr, authors, title, publication, publication date, abstract, language, category description,

keywords, num pages, format, size doc, access frequency, URL links in, URL links out).

2. doc summary(affiliation, field, publication year, first author list, file addr list, average popularity, count).

3. doc author brief(file addr, authors, affiliation, title, publication, pub date, category description, key-

words, num pages, format, size doc, access frequency, URL links in, URL links out).

4. person summary (affiliation, research interest, year, num publications, count).

The attribute count, is a counter that reckons the records from the lower layer gener-

alized into the current record. average popularity averages the URL links in count of the

generalized records from the lower layer.

In general, the overall global MLDB structure is constructed based on the study of

frequent accessing patterns. It is also plausible to construct higher layered databases for a

special-interest community of users (e.g., ACM/SIGMOD, IEEE/CS) on top of a common

layer of the global database. This generates partial views on the global information network,

hence, the name Virtual Web View (VWV). A VWV provides a window to observe a subset

of Web artifacts, and gives the illusion of a structured world.

2.2. A MULTIPLE LAYERED DATABASE MODEL FOR GLOBAL INFORMATION SYSTEMS27

doc_brief person_brief

document person . . .

. . .

person_summarydoc_summary doc_author_briefcs_doc_brief

Global Information Base

Layer 2

. . . Layer 3

Layer 1

Layer 0

Figure 2.3: A conceptual route map of the global information base

VWV

Physical and Virtual
artifacts

Figure 2.4: A VWV abstracts a selected set of artifacts and makes the WWW appear as
structured.

28 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

This customized local higher layer acts as cache which may drastically reduce the overall

network traffic [67, 15]. Some systems like Lagoon6 “mirror” remote documents, but we

believe that caching indexes (i.e. high layers containing descriptors) would be definitely

more profitable.

One possible schema of a global MLDB (containing only two layer-1 relations) is pre-

sented in Figure 2.3. 2

2.3 Metadata Matters

The first step, and probably the most challenging one in the construction of the layered

structure of the VWV, is the transformation and generalization of the unstructured data of

the primitive layer into relatively structured data, manageable and retrievable by databases.

The challenge is mostly due to the common and persistent absence of information describing

information in the primitive layer: Metadata.

2.3.1 The Dublin Core Metadata Initiative

Since 1995, the Dublin Core invitational workshop series has gathered librarians, digital

library researchers, content experts, text-markup experts from around the world to discuss

and promote better discovery standards for digital resources [259]. These experts in the

library and digital library research community have stressed the importance of metadata in

networked digital documents to facilitate resource discovery. With the phenomenal growth

of networked resources, finding relevant information on the Internet became problematic.

The lack of document semantic descriptors hinders the progress in indexing techniques. The

primary goal that motivated the participants at the Dublin Core workshop series was to find

a simple international consensus for describing metadata for digital documents on the In-

ternet or other information systems. They insisted on simple and commonly understood

semantics, conformity to emerging standards, extensibility, and interoperability with index-

ing systems. What emerged from this effort is a set of 15 element descriptors to describe

the content and the representation of digital documents, as well as intellectual properties

related to the documents. The elements have descriptive names intended to convey com-

mon semantic understanding. To promote and insure interoperability, some of the element

6Lagoon Caching Software Distribution, available from ftp://ftp.win.tue.nl/pub/infosystems/www/README.lagoon

2.3. METADATA MATTERS 29

descriptions (such as SUBJECT, TYPE, and FORMAT) are associated with a controlled

vocabulary for the respective element values. Some of these enumerated lists of values are

still under development in the Dublin Core workshop series. Other elements (such as DATE

or LANGUAGE) follow strict ISO standards or Network Working Group recommendations

(rfc for “request for comments”).

The following element descriptions are taken from the RFC 2413 Description of Dublin

Core Elements [258]:

1. Title (Label: TITLE)

The name given to the resource, usually by the Creator or Publisher.

2. Author or Creator (Label: CREATOR)

The person or organization primarily responsible for creating the intellectual content

of the resource. For example, authors in the case of written documents, artists, pho-

tographers, or illustrators in the case of visual resources.

3. Subject and Keywords (Label: SUBJECT)

The topic of the resource. Typically, subject will be expressed as keywords or phrases

that describe the subject or content of the resource. The use of controlled vocabularies

and formal classification schemes is encouraged.

4. Description (Label: DESCRIPTION)

A textual description of the content of the resource, including abstracts in the case of

document-like objects or content descriptions in the case of visual resources.

5. Publisher (Label: PUBLISHER)

The entity responsible for making the resource available in its present form, such as a

publishing house, a university department, or a corporate entity.

6. Other Contributor (Label: CONTRIBUTOR)

A person or organization not specified in a CREATOR element who has made sig-

nificant intellectual contributions to the resource but whose contribution is secondary

to any person or organization specified in a CREATOR element (for example, editor,

transcriber, and illustrator).

7. Date (Label: DATE)

A date associated with the creation or availability of the resource. Recommended best

30 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

practice is defined in a profile of ISO 8601 that includes (among others) dates of the

forms YYYY and YYYY-MM-DD. In this scheme, for example, the date 1994-11-05

corresponds to November 5, 1994.

8. Resource Type (Label: TYPE)

The category of the resource, such as home page, novel, poem, working paper, technical

report, essay, dictionary. For the sake of interoperability, Type should be selected from

an enumerated list that is currently under development in the workshop series.

9. Format (Label: FORMAT)

The data format and, optionally, dimensions (e.g., size, duration) of the resource. The

format is used to identify the software and possibly hardware that might be needed to

display or operate the resource. For the sake of interoperability, the format should be

selected from an enumerated list that is currently under development in the workshop

series.

10. Resource Identifier (Label: IDENTIFIER)

A string or number used to uniquely identify the resource. Examples for networked

resources include URLs and URNs (when implemented). Other globally-unique iden-

tifiers, such as International Standard Book Numbers (ISBN) or other formal names

are also candidates for this element.

11. Source (Label: SOURCE)

Information about a second resource from which the present resource is derived. While

it is generally recommended that elements contain information about the present re-

source only, this element may contain metadata for the second resource when it is

considered important for discovery of the present resource.

12. Language (Label: LANGUAGE)

The language of the intellectual content of the resource. Recommended best practice

is defined in RFC 1766.

13. Relation (Label: RELATION)

An identifier of a second resource and its relationship to the present resource. This

element is used to express linkages among related resources. For the sake of inter-

operability, relationships should be selected from an enumerated list that is currently

2.3. METADATA MATTERS 31

under development in the workshop series.

14. Coverage (Label: COVERAGE)

The spatial or temporal characteristics of the intellectual content of the resource.

Spatial coverage refers to a physical region (e.g., celestial sector) using place names

or coordinates (e.g., longitude and latitude). Temporal coverage refers to what the

resource is about rather than when it was created or made available (the latter be-

longing in the Date element). Temporal coverage is typically specified using named

time periods (e.g., Neolithic) or the same date/time format ISO 8601 as recommended

for the Date element.

15. Rights Management (Label: RIGHTS)

A rights management statement, an identifier that links to a rights management state-

ment, or an identifier that links to a service providing information about rights man-

agement for the resource.

While the order of the elements is not important, each element is optional and may be

repeated in the same resource.

The Dublin Core element set is already sanctioned by the World Wide Web Consortium

(W3C) and is approved by a multitude of organizations. Many international digital library

projects7 have already adopted and are using the Dublin Core Metadata element set to de-

scribe their electronic networked resources. The promotion of the Dublin Core Metadata set

of commonly understood descriptors improves the possibilities of semantic interoperability

across disciplines and information systems, and, if widely ratified and used, it would greatly

assist the interpretation of on-line artifacts and hence, facilitate the construction of Virtual

Web Views.

2.3.2 XML The eXtensible Markup Language

Although there exist search engines for postscript documents8 and others for other types of

documents like images, most documents considered for indexing on the Internet are HTML

(Hypertext Markup Language) documents. HTML is a simple language composed of a fixed

7A list of projects is available at http://purl.org/dc/projects
8“ML Papers”, first released in 1997 by Andrew Ng, is a search engine that automatically ex-

tracts titles, authors and abstracts from postscript papers found on the Web. It can be accessed at
http://gubbio.cs.berkeley.edu/mlpapers/.

32 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

set of tags that describe how a document should be displayed. The simplicity and the

portability of HTML made it extremely popular and widely accepted standard. However,

while HTML provides rich facilities for visualization of document content, it does not provide

any standard-based way to manage or “comprehend” the data. Although standards like

HTML are necessary for the visual part of the digital documents, they are insufficient for

managing, representing and manipulating data on-line. There is a need for a better format

that allows data exchange and intelligent search. These are the needs that lead to the XML

(eXtensible Markup Language) recommendations by the World-Wide Web Consortium9.

While XML resembles HTML, it complements it by describing data, such as authors and

keywords, or even temperature and price. XML has also tags, but the set of tags is unlimited

since developers can define their own. A document such as the following is perfectly valid

in XML:

<THESIS>

<TITLE> Resource and Knowledge Discovery from the Internet and Multimedia Repositories </TITLE>

<AUTHOR>Osmar Rachid Zäıane</AUTHOR>

<DEGREE>Doctor of Philosophy</DEGREE>

<UNIVERSITY>Simon Fraser University</UNIVERSITY>

<DEPARTMENT>Computing Science</DEPARTMENT>

<COPYRIGHTYEAR>1999</COPYRIGHTYEAR>

<DEFENCE>MARCH 1999</DEFENCE>

</THESIS>

The language is not about tags but is a framework that provides a uniform method for

describing and exchanging structured data. This is a significant improvement on HTML

since XML, which is actually a meta-language, facilitates more precise declarations of con-

tent and more meaningful search results across multiple platforms. XML is a meta-language

because it gives the possibility to define tags that in turn describe content. In other words,

with XML, one can define a set of tags (i.e. an XML-based markup language) with which

documents or records can be described. An XML-based markup language, once defined, is

an XML application, like HTML is an application of SGML (Standard Generalized Markup

Language-ISO 8879). There are already many industry standard XML-based languages (or

applications) such as MML (Mathematical Markup Language) for mathematical documents,

9http://www.w3c.org

2.3. METADATA MATTERS 33

CML (Chemical Markup Language) for chemistry, OTP (Open Trading Protocol) and OFX

(Open Financial Exchange) for electronic commerce.

The interesting factor in XML, is that an XML document can describe its own format.

An XML-based markup language consists of a set of element types that were given a label

and a semantic. This set of element types serve to define a type of documents and is referred

to as Document Type Definition (DTD). An XML document is associated to a DTD, but a

DTD can be associated to many documents. The DTD describes the format of a document

by defining data tags, their order, and their nested structure. A validating XML parser

would use the DTD to verify that the document contains all required tags in the specified

order. DTDs allow the creation of vertical applications. The industry standards mentioned

above, such as MML, CML, OTP, OFX, etc., are all using their own standard DTDs for

interchangeable data. A standard DTD will eventually be proposed for web documents, to

aid search engines and web mining applications in better extracting content from web pages.

We present in Appendix D an XML document type definition for the Dublin Core elements.

This DTD, if used, would help an XML parser interpret the information of a web document

to readily build the first layer of our virtual web views.

There are many projects in progress related to XML still in working draft stage at the

World-Wide Web Consortium, such as XSL (eXtensible Stylesheet Language) for formatting

semantics of XML documents, XLL (eXtensible Link Language) which captures hypertext

and hypermedia information, and XQL a query language for querying XML documents.

While XML allows the creation of powerful vertical applications (i.e. specialized in

a given domain or domains), the development of horizontal XML application is limited

by the semantic interpretation of tags defined in the different DTDs. Since the creator

of XML documents gets to define the tags, tags can indeed have mnemonic names like

<AUTHOR> to describe the author or authors of a document. While this may seem very

interesting and powerful, this freedom to create tag label at will limits interoperability

between applications. As a matter of fact, an XML parser may not be able to distinguish

between <AUTHOR>, <AUTHORS>, <AUT>, <AUTEUR>, <CREATOR>, <CRT>,

<WRITTENBY>, <WRITER>, etc., even though the goal of all these labels, defined in

their respective DTDs, would be to describe the document’s authors list. This is the reason

we believe there is a need for a limited standard set of descriptors and we recommend the

Dublin Core element set (see Appendix D).

Interoperability between web resource applications requires conventions not only about

34 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

structure and syntax (i.e. organization of metadata and encoding grammar), which XML

provides, but also requires conventions about semantics: the meaning of elements in the

markup language. Providing common and consistent semantics is what current standards

lack. A particular application of XML that supports a consistent structural representation

of semantics, RDF, is being studied and will be presented and endorsed by the World-Wide

Web Consortium. RDF stands for Resource Description Framework [162]. Its essential

purpose is to support metadata interoperability using XML as syntax for interchange .

It provides the infrastructure that will enable interoperability between applications that

exchange metadata. In this general purpose framework, vocabularies can be declared using

properties defined by specific expert communities that put constraints on values to use in

these vocabularies. We believe that RDF, relying on the support of XML will help the

deployment of metadata on the World-Wide Web and will make the enrichment of on-line

documents with useful and practical metadata a common practice.

2.4 Construction and maintenance of MLDBs

A philosophy behind the construction of MLDB is information abstraction, which assumes

that most users may not like to read the details of large pieces of information (such as com-

plete documents) but may like to scan the general description of the information. Usually,

the higher level of abstraction, the better structure the information may have. Thus, the

sacrifice of the detailed level of information may lead to a better structured information

base for manipulation and retrieval.

Figure 2.5 presents the general architecture of a multiple layered global information

base, where the existing global information base forms layer-0, and the abstraction of layer-

0 forms layer-1. Further generalization of layer-1 and their integration from different sites

form layer-2, which can be replicated and propagated to each backbone site, and then be

further generalized to form higher layers.

2.4.1 Construction of layer-1: From Global Information Base to Struc-

tured Database

The goal for the construction of layer-1 database is to transform and/or generalize the un-

structured data of the primitive layer at each site into relatively structured data, manageable

and retrievable by the database technology. Three steps are necessary for the realization

2.4. CONSTRUCTION AND MAINTENANCE OF MLDBS 35

. . . Layer 2

. . . Higher Layer

. . .
Layer 0

Layer 1

Figure 2.5: The general architecture of a global MLDB and its construction.

Text
abc

Site 1 Site 2 Site n

Layer0

Layer1

Layer2

Layer3

G
en

er
al

iz
in

g
R

es
tr

uc
tu

rin
g

Can be replicated in
backbones or server sites

Updates
are
propagated

Log
file

Figure 2.6: Using tools to generate and update the first layer of the MLDB structure.

36 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

of this goal: (1) standardization of the layer-1 schema, (2) development of a set of softwares

which automatically perform the layer-1 construction, and (3) layer construction and database

maintenance at each site.

Obviously, it is neither realistic nor desirable to enforce standards on the format or

contents of the primitive layer information in the global information network. However, it is

desirable to construct a rich, shared and standardized layer-1 schema because such a schema

may lead to the construction of a structured information base and facilitate information

management and sharing in the global information network.

While enforcing a standard for describing document content, which would considerably

help in the construction of the first layer of the MLDB, is a difficult and probably, and

arguably, an utopian task, some industry standards such as XML (and XML-based appli-

cations) and other recommendations such as the Dublin Core Metadata initiative and the

W3C Resource Description Framework, are gaining momentum and will become in the near

future a great asset that will facilitate the implementation of the first MLDB stratum in

an efficient and economical way. Metadata and a uniform interpretation of descriptors of

metadata are key issues in this respect. Initially, a Virtual Web View can either be restricted

to a niche of resources with metadata attached, or compromise with information extracted

or deduced by specialized tools and agents.

A standard layer-1 schema can be worked out by studying the accessing history of a

diverse community of users and predicting the future accessing patterns by experts. Such a

schema is constructed incrementally in the process of increasingly popular use of the infor-

mation network, or standardized by some experts or a standardization committee. However,

it is expected that such a schema may need some infrequent, incremental modifications, and

the layer-1 database would be modified accordingly in an automatic and incremental way.

To serve a diverse community of users for flexible information retrieval, the layer-1

schema should be rich enough to cover most popular needs, and detailed enough to reduce

excessive searches into the layer-0 information base. Notice that different VWVs can coexist

to serve different community needs. Because of the diversity of information in a global

information base, there often exist cases in which data have complex structures or cannot

match the specified schema. We examine a few such cases.

1. Attribute values with complex structures or in multimedia forms.

Some attributes may contain set- or list- valued data or nested structures. For example,

2.4. CONSTRUCTION AND MAINTENANCE OF MLDBS 37

the attribute “authors” contains a list of authors each having a structure: name,

affiliation, e-mail, etc. Some attributes may be of a long text form (e.g., abstract,

first paragraphs) or in a multimedia form (e.g., the picture of a person could be a photo

or a segment of video). Such nested structures, sets, lists, hypertext or multimedia

data can be defined by extended data types, as in many extended-relational or object-

oriented database systems [79, 152].

2. Missing attribute values.

Since different users may have different conventions to connect the information to the

network, it often happens that some attribute values may be missing. For example,

publication, publication date, and table of contents may not exist in a particular doc-

ument. Descriptive elements from the Dublin Core are not mandatory but are all

optional. Although missing values can be handled in a straight forward manner by

introducing a null value, such as value unavailable, efforts should be paid to dig up

the values implicitly stored in the global information base. Index can be constructed

automatically and/or selectively by searching through a document for frequently oc-

curring terms. Keywords may need to be extracted, if not already present, from the

frequently appearing technical terms in the text. The document publication informa-

tion, if not existing in the document, can be extracted from the corresponding authors’

publication record, or other relevant information. Tools like Ahoy! [226] can be used

to find automatically personal home pages of authors. A person’s research interest,

may be extractable from his/her home page or from the researcher’s frequently used

keywords in his/her publications.

3. Inconsistent or variant attribute values.

Some attributes of an entry may consist of multiple, potentially inconsistent values due

to multiple entries of information. For example, a person may have several working

addresses. Also, some attributes may contain a set of variant values. For example,

one document may have several variant forms (such as .tex, .dvi, or .ps forms) on the

network. The layer-1 schema should be flexible enough to allow variations. Multiple

variations or their pointers should be stored in the corresponding attributes, with flags

identifying their distinctions.

Since the layer-1 construction is a major effort, a set of softwares should be developed to

38 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

automate the construction process. (Notice that some existing global information index con-

struction softwares, like the Harvest Gatherer [34], have contributed to such practice).Layer-

1 construction softwares are a collection of such tools. The eminent appearance of standards

and recommendations for metadata availability such as Dublin Core, XML and RDF, will

simplify these tools. The schema of the relation document in the example 2.2.1 can be

easily filled with the Dublin Core element set and automatic extraction of some additional

already existing attributes: doc size, modif date, access, links, format, etc. Some already

existing tools and standards extract and represent other necessary information needed for

layer-1 construction. vCard10, for instance, is used to exchange information about people

on-line. Table 2.1 shows an example how RDF vCard objects can be integrated with other

metadata standards, in this case the Dublin Core metadata standard, and encoded with

RDF. Tools exist to find personal homepages, e-mail addresses, and even phone numbers of

people on-line.

<? xml version=”1.0” ?>
<RDF xmlns = ”http://w3.org/TR/WD-rdf-syntax#”

xmlns:DC = ”http://purl.org/DC/1.0#”
xmlns:vCard = ”http://imc.org/vCard/3.0#” >

<Description about = ”http://www.cs.sfu.ca/~zaiane/thesis.html”>
<DC:Title> Resource and Knowledge Discovery from the Internet and Multimedia Repositories </DC:Title>
<DC:Creator parseType=”Resource”>

<vCard:FN> Osmar Zaiane </vCard:FN>
<vCard:N parseType=”Resource”>

<vCard:Family> Zaiane </vCard:Family>
<vCard:Given> Osmar </vCard:Given>

</vCard:N>
<vCard:EMAIL>

<value> zaianecs.sfu.ca</value>
<type resource =”http://imc.org/vCard/3.0#internet” />

</vCard:EMAIL>
</DC:Creator>
<DC:Date> 1999-01-12 </DC:Date>
<DC:Subject> Data Mining, WWW, Knowledge Discovery, Visual Data, Content-Based Retrieval </DC:Subject>
<DC:Publisher> Simon Fraser University </DC:Publisher>
<DC:Rights> Copyright 1999 </DC:Rights>
</Description>
</RDF>

Table 2.1: Example of RDF object with vCard and Dublin Core elements.

XML standard applications are in the works to describe and exchange information about

software (games, business applications, etc.), databases, and other entities on-line that we

consider Web artifacts worth being abstracted in Layer-1. We will describe in Chapter 4

10vCard (The Electronic Business Card) is a standard to automate the exchange of personal information
typically found on a traditional business card. Information can be found in RFC 2425 (MIME Content-Type
for Directory Information) and RFC 2426 (vCard MIME Directory Profile), and specification for version 2.1
in http://www.imc.org/pdi/vcard-21.doc.

2.4. CONSTRUCTION AND MAINTENANCE OF MLDBS 39

Text
abc

Site with
Extraction Tools

Layer0

Layer1

Layer2

Log
file

Text
abc

XML
DTD

XML
DTD

Site with
Translation Tools

Site with
XML Documents

Figure 2.7: Extraction of metadata for Layer-1 construction.

tools that we developed for extraction of relevant information from visual media such as

images and video. The gathering of metadata to create Layer-1 is already possible to a

certain extent, but will eminently be possible for major artifacts available on the Internet

thanks to metadata description standards and the availability of new tools.

A VWV can also be limited to a subset of documents accompanied with metadata and

progressively augmented with new documents as metadata becomes available. This strategy

might encourage authors and artifact creators to describe their documents with established

standards if they wish their documents to be accessible in a VWV-like system. In our

experiment presented in Section 3.5 of Chapter 3, we have restricted our VWV to a set of

documents for which we had metadata available.

Figure 2.7 shows two types of layer-1 construction software: Extraction tools and trans-

lation tools. Web sites with XML-like documents that follow metadata semantic guidelines

would just need an XML parser to build the first layer. However, for other sites, documents

can either be translated to XML form with translation tools for the parser to process, or

extraction tools are used to retrieve the relevant and available information from the docu-

ments to be directly added to the first layer. Notice that these tools can be managed and

executed on site by the site administrators (or even the document authors) when even they

feel necessary or possible. This would avoid unnecessarily overloading the servers to retrieve

the needed information.

40 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

The layer-1 construction softwares, after being developed and tested, should be released

to the information system manager in a regional or local network, which acts as a “local

software robot” for automated layer-1 construction. Customization may need to be per-

formed on some softwares, such as handling multilingual information, etc., before they can

be successfully applied to their local information bases to generate consistent layer-1 lo-

cal databases. Softwares for upgrading database structures and information transformers

should also be released to local information system managers to keep their local layer-1

database upgraded and consistent with others.

2.4.2 Generalization: Formation of higher layers in MLDB

Since local layer-1 databases are all connected via Internet, they collectively form a globally

distributed, huge layer-1 database. Although information retrieval can be performed directly

on such a global database, performance would be poor if global-wide searches have to be

initiated frequently.

Higher layered databases are constructed on top of the layer-1 database by generalization

techniques. Generalization reduces the size of the global database, makes it less distributed

(by replicating the smaller, higher-layer databases at, for example, network backbone sites

or local server sites), while still preserving the general descriptions of the layer-1 data.

Clearly, successful generalization becomes a key to the construction of higher layered

databases. Following studies on attribute-oriented induction for knowledge discovery in re-

lational databases [119, 123], an attribute-oriented generalization method has been proposed

for the construction of multiple layered databases [124]. According to this method, data in

a lower layer relation are generalized, attribute by attribute, into appropriate higher layer

concepts. Different lower level concepts are generalized into the same concepts at a higher

level and are merged together, which reduces the size of the database.

We examine in detail the generalization techniques for the construction of higher layered

databases.

Concept generalization

Nonnumeric data (such as keywords, index, etc.) is the most popularly encountered type

of data in the global information base. Generalization on nonnumerical values should rely

on the concept hierarchies which represent necessary background knowledge that directs

2.4. CONSTRUCTION AND MAINTENANCE OF MLDBS 41

All

Management
Transaction

Computing Physics

Data Mining

Database
Systems

Science

ArtScience

. . .

. . .

. . .

. . .

Programming
Languages

Figure 2.8: A possible concept hierarchy for keywords

generalization. Using a concept hierarchy, primitive data is expressed in terms of generalized

concepts in a higher layer.

Concept hierarchies are provided explicitly by domain experts or stored implicitly in the

database. For the global MLDB, a set of relatively stable and standard concept hierarchies

should be provided as a common reference by all the local databases in their formation of

higher layered databases and in their browsing and retrieval of information using different

levels of concepts.

The concept hierarchies for keywords and indexes can be obtained by referencing a

standard concept hierarchy catalogue which specifies the partial order of the terms frequently

used in the global information base.

A portion of the concept hierarchy for keywords that we used in our experiments de-

scribed in Section 3.5 is illustrated in Figure 2.8, and the specification of such a hierarchy

and alias is in Figure 2.9. Notice that a contains-list specifies a concept and its immediate

subconcepts; and an alias-list specifies a list of synonyms (aliases) of a concept, which avoids

the use of complex lattices in the “hierarchy” specification. The introduction of alias-lists

allows flexible queries and helps dealing with documents using different terminologies and

languages. Also, the dashed lines between concepts in Figure 2.8 represent the possibility

to have other layers of concepts in between.

Such a concept hierarchy is either provided by domain experts, or constructed as follows:

1. Collect the frequently used words, technical terms and search keys for classification.

2. Build up a skeleton classification hierarchy based on the technical term specification

42 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

All contains: Science, Art, . . .
Science contains: Computing Science, Physics, Mathematics, . . .
Computing Science contains: Theory, Database Systems, Programming Languages, . . .
Computing Science contains: database systems, Programming Languages, . . .
Computing Science alias: Information Science, Computer Science, Computer technologies, . . .
Theory contains: Parallel Computing, Complexity, Computational Geometry, . . .
Parallel Computing contains: Processors Organization, Interconnection Networks, PRAM, . . .
Processor Organization contains: Hypercube, Pyramid, Grid, Spanner, X-tree, . . .
Interconnection Networks contains: Gossiping, Broadcasting, . . .
Interconnection Networks alias: Intercommunication Networks, . . .
Gossiping alias: Gossip Problem, Telephone Problem, Rumor, . . .
Database Systems contains: Data mining, transaction management, query processing, . . .
Database Systems alias: Database technologies, Data management, . . .
Data mining alias: Knowledge discovery, data dredging, data archaeology, . . .
Transaction management contains: concurrency control, recovery, . . .
Computational Geometry contains: Geometry Searching, Convex Hull, Geometry of Rectangles, Visibility, . . .
. . .

Figure 2.9: Specification of hierarchies and aliases extracted from an experimental concept
hierarchy for computer science related documents.

standards in each field, such as ACM Computing Review: Classification System for

Computing Reviews, etc. Notice that most of such classification standards are on-line

documents.

3. Consult on-line dictionaries (such as Webster dictionary and thesaurus, etc.) for auto-

matically attaching the remaining words to appropriate places in the hierarchy (which

may need some human interaction).

4. Consult experts in the fields to make sure that the hierarchy is reasonably complete

and correct.

5. Incrementally update such a hierarchy, when necessary, due to the introduction of new

terminologies.

In the preliminary experiment described in Section 3.5 of Chapter 3, the used concept hi-

erarchy (also shown in Figure 2.9) was built manually using the set of all keywords extracted

from our document collection. We had also first hand experience automatically building a

concept hierarchy for the MultiMediaMiner project described in Chapter 5. The hierarchy

shown in Figure 5.2 was built using WordNet semantic network [263, 25], a collection of more

than 95,000 English words with their relationships, commonly used in cognitive science and

computational linguistics.

Algorithm 2.4.1 Creating a concept hierarchy of recognized keywords using WordNet se-

mantic Network.

2.4. CONSTRUCTION AND MAINTENANCE OF MLDBS 43

Input: (i) List of keywords Lkw; (ii) List of domain specific terms and phrases domain,

(iii) enriched WordNet EWordNet.

Output: (i) List of rejected keywords R, (ii) Concept hierarchy CH.

Method. For all given words, accept only those that are domain specific, recognized in

WordNet or their canonical form is recognized by WordNet. Organize the accepted

words in a hierarchy given the parent-child relationship in WordNet. The pseudo-code

for creating the keyword hierarchy is as follows:

begin

(1) R← ∅ ; L ← ∅
(2) foreach word in Lkw do {
(3) if (word ∈ domain) add word to L; next word

(4) accept ← false

(5) CanonicalForms ← MorphologicalAnalysis(word)

(6) foreach form in CanonicalForms do {
(7) if (form ∈ EWordNet) add form to L; accept ← true

(8) }
(9) if (¬ accept) add word in R
(10) }
(11) foreach word in L do {
(12) if (word /∈ CH)

(13) parent ← lookup(ParentOf(word),EWordNet)

(14) while parent /∈ CH do {
(15) descendant ← parent; parent ← lookup(ParentOf(descendent),EWordNet)

(16) }
(17) D ← GetChildren(parent, CH
(18) add word to CH
(19) draw arc from parent to word in CH
(20) foreach descendent in D do {
(21) if (IsParent(word, descendent, EWordNet)

(22) remove arc from parent to descendant in CH
(23) draw arc from word to descendent in CH

44 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

(24) endif

(25) }
(26) endif

(27) }
end 2

Line 1 to 10 are the cleaning step retaining in L only recognized words. The rejected

words are put in R (line 9) which is later consulted by an ontology expert who would either

discard the words or consider them new domain related terms by adding them manually to

the concept hierarchy and WordNet for future runs. MorphologicalAnalysis is a procedure

that extracts all possible forms and declinations of a given term. Line 11 to 27 are the

hierarchy tree building.

The constructed concept hierarchies are replicated to each server participating in the

VWV, together with the higher layered databases, for information browsing and resource

discovery. Managing very large concept hierarchies is a challenge. An efficient encoding tax-

onomies and managing of dynamic partial orders techniques for reasoning with taxonomies

(concept hierarchies, lattices, or complex semantic networks) in computer applications have

been proposed in [86, 87].

Generalization on numerical attributes is performed in a more automatic way by the

examination of data distribution characteristics [5, 96, 68]. In many cases, it may not require

any predefined concept hierarchies. For example, the size of document can be clustered into

several groups, such as {below 10Kb, 10Kb-100Kb, 100Kb-1Mb, 1Mb-10Mb, over 10Mb},
according to a relatively uniform data distribution criteria or using some statistical clustering

analysis tools. Appropriate names are assigned to the generalized numerical ranges, such as

{tiny-size, small-size, middle-size, large-size, huge-size} to convey more semantic meaning.

With the availability of concept hierarchies, generalization can be performed to produce

the strata of the MLDB structure.

Attribute-oriented generalization

Data generalization refers to generalizing data within an attribute in a relational tuple, such

as merging generalized data within a set-valued data item, whereas relation generalization

refers to generalizing a relation, which often involves merging generalized, identical tuples

in a relation.

2.4. CONSTRUCTION AND MAINTENANCE OF MLDBS 45

By removing nongeneralizable attributes (such as long text data, etc.) and generalizing

data in other attributes into a small set of values, some different tuples may become identical

at the generalized concept level and can be merged into one. A special attribute, count,

is associated with each generalized tuple to register how many original tuples have been

generalized into the current one. This process reduces the size of the relation to be stored

in a generalized database but retains the general description of the data of the original

database at a high concept level. Such a summarized view of data may facilitate high-level

information browsing, statistical study, and data mining.

With data and relation generalization techniques available, the next important question

is how to selectively perform appropriate generalizations to form useful layers of databases.

In principle, there could be a large number of combinations of possible generalizations by

selecting different sets of attributes to generalize and selecting the levels for the attributes

to reach in the generalization. However, in practice, a few layers containing most frequently

referenced attributes and patterns are sufficient to balance the implementation efficiency

and practical usage.

Frequently used attributes and patterns are determined before generation of new layers

of an MLDB by the analysis of the statistics of query history or by receiving instructions

from users and experts. It is wise to remove rarely used attributes but retain frequently

referenced ones in a higher layer. Similar guidelines apply when generalizing attributes

to a more general concept level. For example, for a document, the further generalization

of layer-1 document to layer-2 doc brief can be performed by removing the less frequently

inquired attributes table of contents, first paragraphs, etc.

Notice that a new layer could be formed by performing generalization on one relation or

on a join of several relations based on the selected, frequently used attributes and patterns.

Generalization [119] is performed by removing a set of less-interested attributes, substituting

the concepts in one or a set of attributes by their corresponding higher level concepts,

performing aggregation or approximation on certain attributes, etc.

Since most joins of several relations are performed on their key and/or foreign key at-

tributes, whereas generalization may remove or generalize the key or foreign key attributes

of a data relation, it is important to distinguish between the following two classes of gener-

alizations.

1. key-preserving generalization, in which all the key or foreign key values are preserved.

46 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

2. key-altering generalization, in which some key or foreign key values are generalized,

and thus altered. The generalized keys should be marked explicitly since they usually

cannot be used as join keys at generating subsequent layers.

It is crucial to identify altered keys since, if the altered keys were used to perform joins

of different relations, it may generate incorrect information [124]. Notice that a join on

generalized attributes, though undesirable in most cases, could be useful if the join is to link

the tuples with approximately the same attribute values together. For example, to search

documents, one may like to consider some closely related but not exactly the same subjects.

Such kind of join is called an approximate join to be distinguished from the precise join.

Usually, only precise join is considered in the formation of new layered relations using

joins because approximate join may produce huge sized joined relations and may also be

misleading in the semantic interpretation at different usages. However, approximate join

will still be useful for searching some weakly connected concepts in a resource discovery

query.

An MLDB construction algorithm

Based on the previous discussion, the construction of an MLDB can be summarized into

the following algorithm, which is similar to attribute-oriented generalization in knowledge

discovery in databases [119].

Algorithm 2.4.2 Construction of an MLDB.

Input: A global information base, a set of concept hierarchies, and a set of frequently

referenced attributes and frequently used query patterns.

Output: A multiple layered database (MLDB) abstracting a given subset of the WWW.

Method. A global MLDB is constructed in the following steps.

1. Determine the multiple layers of the database based on the frequently referenced

attributes and frequently used query patterns.

2. Starting with the global information base (layer-0), generalize the relation step-by-step

(using the given concept hierarchies and generalized schema) to form multiple layered

relations (according to the layers determined in Step 1).

2.4. CONSTRUCTION AND MAINTENANCE OF MLDBS 47

3. Merge identical tuples in each generalized relation and update the count of the gener-

alized tuple.

4. Construct a new schema by recording the definitions of all the generalized relations,

their relationships and the generalization paths.

Rationale of Algorithm 2.4.2.

Step 1 indicates that the layers of an MLDB should be determined based on the fre-

quently referenced attributes and frequently used query patterns. This is reasonable since

to ensure the elegance and efficiency of an MLDB, only a small number of layers should be

constructed, which should provide maximum benefits to the frequently accessed query pat-

terns. Obviously, the frequently referenced attributes should be preserved in higher layers,

and the frequently referenced concept levels should be considered as the candidate concept

levels in the construction of higher layers. Steps 2 and 3 are performed in a way similar

to the attribute-oriented induction, studied previously [119, 124]. Step 4 constructs a new

schema which records a route map and the generalization paths for information browsing

and knowledge discovery. 2

Example 2.4.1 A portion of relation doc brief is presented in Table 2.2.

file addr authors title publication pub date key words · · ·
http://fas.sfu.ca/9/cs/research
/projects/HMI-5/documents
/papers/han/coop94.ps.gz

J. Han Y. Fu
R. Ng

Cooperative Query Answer-
ing Using Multiple Layered
Databases

Proc. 2nd Int’l Conf.
Cooperative Info. Sys-
tems

May
1994

data mining, multiple
layered database, · · · · · ·

· ·
ftp://ftp.cs.colorado.edu
/pub/cs/techreports
/schwartz/FTP.Caching-PS

P.B.Danzig
R.S.Hall
M.F.Schwartz

A Case for Caching File Objects
Inside Internetworks

Proc. SIGCOMM
Sept.
1993

caching, ftp, · · · · · ·

· ·
http://sobolev.mit.edu/people
/jphill/publications/shap.dvi

J.R.Phillips
H.S.J. Zant

Influence of induced magnetic
fields on Shapiro steps in
Josephson junction arrays

Physical Review B 47 1994
magnetic fields,
Josephson array,
Shapiro step, · · ·

· · ·

· ·

Table 2.2: A portion of doc brief extracted from document at layer-1.

By extraction of only the documents related to computing science, a layer-3 relation

cs doc can be easily obtained. Also, performing attributed-oriented induction on doc brief

leads to another layer-3 relation doc summary, a portion of which is shown in Table 2.3.

Notice that backward pointers can be stored in certain entries, such as first author list

and file addr list, in the doc summary table, and a click on a first author or a file address

will lead the presentation of the detailed corresponding entries stored in layer-2 or layer-1.

2

48 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

affiliation field pub year count first author list file addr list · · ·
Simon Fraser Univ. Database Systems 1994 15 Han, Kameda, Luk, · · · · · · · · ·
Univ. of Colorado Global Network Systems 1993 10 Danzig, Hall, · · · · · · · · ·
MIT Electromagnetic Field 1993 53 Bernstein, Phillips, · · · · · · · · ·
· ·

Table 2.3: A portion of doc summary extracted from doc brief at layer-2.

2.4.3 Distribution and maintenance of the global MLDB

Replication and distribution of the global MLDB

A global MLDB is constructed by extracting extra-layers from an existing (layer-0) global in-

formation base using generalization and transformation techniques. A higher layer database

is usually much smaller than the lower layered database. However, since the layer-1 database

is resulted from direct, detailed information extraction from the huge global information

base, its size is still huge. It is unrealistic to have this layer replicated and distributed to

other servers. A possible implementation is to store each local layer-1 database at each

local network server site, but to replicate the higher layered databases, such as layer-2 and

above, and propagate them to remote backbone and/or ordinary network servers. Load can

be further partitioned between backbone and ordinary servers. For example, one may store

a complete layer-2 database at the backbone site but only the relatively frequently refer-

enced portions of layer-2 and/or higher layers at the corresponding sites. Also, specifically

projected layers (e.g., medical database) can be stored at the closely relevant sites (e.g.,

hospitals and medical schools). By doing so, most information browsing and brief query

answering can be handled by searching within the local network. Only detailed requests

will be forwarded to the backbone servers or further to the remote sites which store the

information. Only when the full document is explicitly requested by a user (with the aware-

ness of its size), will the full layer-0 document be sent across the network to the user site.

This will substantially reduce the amount of data to be transmitted across the network and

thereby improve the response time.

Moreover, some higher layered databases could be defined by users for easy reference.

For example, a user may define a new database at a high layer as “all the documents related

to heterogeneous databases published in major conferences or journals since 1990”. An

information manager cannot construct a new database for every user’s definition. Most

such definitions will be treated like views, i.e., no physical databases will be created, and

2.5. REFLECTIONS ON MEDIATING VIRTUAL WEB VIEWS 49

queries on such views will be answered by the query modification technique [79, 152]. Only

if such a view is shared and frequently referenced, may it be worthwhile to create a new

database for it.

Incremental updating of the global MLDB

The global information base is dynamic, with information added, removed and updated

constantly at different sites. It is very costly to reconstruct the whole MLDB database. In-

cremental updating could be the only reasonable approach to make the information updated

and consistent in the global MLDB.

In response to the updates to the original information base, the corresponding layer-1

and higher layers should be updated incrementally. Incremental update can be performed

on every update or at regular times at the local site and propagate the updates to higher

layers.

We only examine the incremental database update at insertion and update. Similar

techniques can be easily extended to deletions. When a new file is connected to the network,

a new tuple t is obtained by the layer-1 construction algorithm. The new tuple is inserted

into a layer-1 relation R1. Then t should be generalized to t′ according to the route map

and be inserted into its corresponding higher layer. Such an insertion will be propagated to

higher layers accordingly. However, if the generalized tuple t′ is equivalent to an existing

tuple in this layer, it needs only to increment the count of the existing tuple, and further

propagations to higher layers will be confined to count increment as well. When a tuple in

a relation is updated, one can check whether the change may affect any of its high layers.

If not, do nothing. Otherwise, the algorithm will be similar to the deletion of an old tuple

followed by the insertion of a new one.

2.5 Reflections on Mediating Virtual Web Views

While in theory it is possible to create a unique global virtual web view that would sum-

marize and represent the entire content of the World-Wide Web, it is neither practical nor

desirable. A VWV is based on concept hierarchies and it is very difficult to find a consensus

on a general ontology11. It is more realistic to build different VWVs specializing in different

11Some general ontologies are being developed in specific domains or applications such as for electronic
commerce: http://www.ontology.org.

50 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

VWV1 VWV2 VWVn

Mediator

Private
ontology

WebML

Possible hierarchy
of Mediators

Figure 2.10: Mediating Virtual Web Views.

topics or restricted geographically, etc. VWVs can also share the same primitive data but

use different ontologies (i.e. concept hierarchies). In such a context, a user of a given VWV

may want to access data not visible but available through other VWVs. The user may not

even know of the existence of these other VWVs. This is an information gathering prob-

lem. Each VWV is using a private ontology to generalize the different strata of the MLDB

structure and thus the distributed VWVs are heterogeneous data sources. An entity which

could transparently translate information requests and integrate the different answers, is

needed. Such entity is typically called an agent. There is no general agreement on what

an agent software should be or be capable of (see Section A.2.4 in Appendix A). In the

context of VWVs, we would like to delegate to this information agent the task of replying

to a query in an understandable way, when a given VWV is unable to provide the answer.

We call such information gathering agent a Mediator since it plays the role of an interme-

diary between VWVs. Basically, it manages, and possibly translates, information exchange

between VWVs. When a requester submits a query to the mediator, there could be many

VWVs that could answer it. The mediator also plays the role of a Matchmaker choosing

the source which would best answer a request. A mediator would be aware of the existence

of some VWVs with which it communicates (i.e. answers their requests and accesses their

data). A hierarchy of different mediators could exist where mediators delegate to each other

2.5. REFLECTIONS ON MEDIATING VIRTUAL WEB VIEWS 51

Q
ue

ry
 Q

Query Q”

Q
uery Q

’CS

AI
DB

Data mining

Classif. Assoc. R.

CS

AI DB Classif.

Assoc. R.

CS

AI DB

Data mining

Classification

Assoc. R.

Mediator

Figure 2.11: Mediation Scenarios.

requests and sub-queries (Figure 2.10). A mediator can also play the role of a Broker by

creating execution plans of queries when requests have to be broken down to sub-queries

and submitted to different VWVs (Figure 2.11).

Being heterogeneous, in the sense that each VWV is using a different set of concept

hierarchies, the ideal model would be to have a global knowledge representation used by

the mediator, and a wrapper around each VWV for interoperability with the mediator.

A wrapper transforms queries from the VWV representation to the mediator’s one, and

converts the mediator’s communications to a format understandable by the VWV. However,

until a global and agreed upon ontology is available, we propose to give the mediator the role

of a wrapper agent (or Elucidator) that rewords queries and answers to forms understandable

by each party it communicates with. To do so, a mediator keeps a table of all VWVs it is

aware of and their respective ontologies.

Without discussing the wrapper function that translates queries and answers based on

different ontologies, we present some possible scenarios for mediating virtual web views:

Scenario 1: Matchmaking with no translation

1 V WV0 Sends a query Q0 to mediator

2 Mediator transmits Q0 to V WVα

3 Mediator receives answer Aα from V WVα

4 Mediator answers V WV0 with Aα and ontology of V WVα

5 V WV0 interprets Aα

52 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

In the first scenario, the mediator simply passes on the query of a requester to a VWV

that might have the answer. The answer is then returned to the requester with the ontol-

ogy of the VWV that answered the query. No translations are done. The requester has

the responsibility to interpret the answer. The role of the Mediator in this case is just a

matchmaker finding the best source to answer the request.

Scenario 2: Mediating with translation

1 V WV0 Sends a query Q0 to mediator

2 Mediator translates Q0 to Qα to fit ontology of V WVα

3 Mediator sends Qα to V WVα

4 Mediator receives answer Aα from V WVα

5 Mediator translates Aα to A0 to fit ontology from V WV0

6 Mediator answers V WV0 with A0

7 V WV0 receives A0

With the second scenario, the mediator has the task to translate the query before sub-

mitting it to the data source (V WVα), and to translate the answer before returning it to the

requester (V WV0). In other words, the mediator holds a wrapper for V WV0 and V WVα to

translate and transform communications.

In the third scenario, the mediator trades with more than one VWV for the same re-

quest. It carries out more sophisticated planning by partitioning the requester’s query into

sub-queries, submitting the sub-queries to different data sources, and integrating the results

before returning the answer to the requester. The mediator has to coordinate between many

heterogeneous data sources. It maintains a list of service providers (i.e. VWVs) and their

capabilities (i.e. ontologies). The query at hand is broken down according the available ser-

vice providers’ capabilities, translated, and sent to the providers in an appropriate sequence.

This may need careful distributed query planning and query optimization.

Scenario 3: Mediating with Planning and translation

1 V WV0 Sends a query Q0 to mediator

2 Mediator expresses Q0 into Q1, Q2, ..., Qn

3 Mediator sends Q1, Q2, ..., Qn to V WV1, V WV2, ..., VWVn

4 Mediator receives answer A1, A2, ..., An from V WV1, V WV2, ..., VWVn

5 Mediator integrates A1, A2, ..., An into A0 using available ontologies

2.6. DISCUSSION 53

6 Mediator answers V WV0 with A0

7 V WV0 receives A0

2.6 Discussion

Virtual Web Views provide the following advantages for information discovery in global

information systems.

1. Application of database technology: The Multiple Layered Database architecture trans-

forms an unstructured global information base into a structured, global database,

which makes the database technology (not just storage management and indexing

techniques) applicable to resource management, information retrieval, and knowledge

discovery in the global information network.

2. High-level, declarative interfaces and views: The architecture provides a high-level,

declarative query interface on which various kinds of graphics user-interfaces can be

constructed for browsing, retrieval, and discovery of resource and knowledge. More-

over, multiple views can be defined by different users or user communities, cross-

resource linkages can be constructed at different layers, and resource search can be

initiated flexibly.

3. Performance enhancement: The layered architecture confines most searches to local or

less remote sites on relatively small and structured databases, which will reduce the

network bandwidth consumption, substantially enhance the search efficiency, and lead

to relatively precise locating of resources and quick response of user’s requests.

4. A global view of database contents: By preprocessing and generalizing primitive data,

a VWV may transform semantically heterogeneous, primitive level information into

more homogeneous, high-level data at a high layer. It may provide a global view of

the current contents in a database with summary statistics, which will assist users to

browse database contents, pose progressively refined queries, and perform knowledge

discovery in databases. Users could even be satisfied with the general or abstract data

at a high layer and not bother to spend time and network bandwidth for more details.

5. Intelligent query answering and database browsing: A user may not always know the

exact need when searching in the global information base. With a VWV, a query is

54 CHAPTER 2. BUILDING A VIRTUAL WEB VIEW

treated like an information probe, being mapped to a relatively high concept layer and

answered in a hierarchical manner. This will provide users with a high-level view of

the database, statistical information relevant to the answer set, and other associative

and summary information at different layers. See Chapter 3 for details about WebML

the query language we propose for the MLDB structure.

6. Information resource management: Incremental updating can be performed on different

layers using efficient algorithms, as discussed in Section 3. With the MLDB archi-

tecture, it is relatively easy to manage the global MLDB and make it consistent and

up-to-date. For example, it is easy to locate weakly-consistent replicas [66] based on

their property similarity at higher layers (rather than searching through the whole

global information base!). Based on accessing statistics, one can also decide whether

a duplicate should be removed or be preserved for resource redirection.

2.7 Conclusions

Different from the existing global information system services, a new approach, called virtual

web views (VWV) using multiple layered database (MLDB) structure, has been proposed

and investigated for resource and knowledge discovery in global information systems. The

approach is to construct progressively a global multiple layered database by generalization

and transformation of lower layered data, store and manage multiple layered information by

database technology, and perform resource and knowledge discovery by query transforma-

tion, query processing and data mining techniques. The Virtual Web View plays the role of

a data warehouse for web content.

The major strength of the VWV approach is its promotion of a tight integration of

database and data mining technologies with resource and knowledge discovery in global

information systems. With the dynamically growing, highly unstructured, globally dis-

tributed and huge information base, the application of the mature database technology and

promising data mining techniques could be an important direction to enhance the power

and performance of global information systems.

Our study shows that the web data warehousing can be performed and updated incre-

mentally by integration of information retrieval, data analysis and data mining techniques,

information at all of the non-primitive layers can be managed by database technology, and

2.7. CONCLUSIONS 55

resource and knowledge discovery can be performed efficiently and effectively in such a

multiple layered database.

Enforcing a consistent standard for metadata on the Internet will simplify data exchange

and the effective information extraction from on-line documents. XML and the Dublin Core

initiative are new standards endorsed by many organizations. With these standards web

data warehousing can start with a niche of documents and progressively add new artifacts

when these standards are more widely used.

Chapter 3

Querying the Web for Resources

and Knowledge

Discovery consists of seeing what everybody has seen and thinking what nobody has thought.

Albert von Szent-Gyorgyi

More grows in the garden than the gardener has sown.

Unknown

More than half a century ago, in a paper in which he describes the “Memex”, a system for

storing and organizing multimedia information, Vannevar Bush invited researchers to join

the effort in building an information system for holding the human knowledge, and making

it easily accessible[44]. He writes: “A record, if it is to be useful... must be continuously

extended, it must be stored, and above all it must be consulted.” A massive aggregation of

documents is now stored on the Internet. Some consider it the biggest database ever built.

The World-Wide Web is holding a colossal collection of resources, from structured records,

images and programs to semi-structured files and free text documents. The availability of

information is not questionable. We are actually overwhelmed by this excess of information.

Accessibility as described by Vannevar Bush however is still unsolved. For many decades,

information retrieval from document repositories has drawn much attention in the research

community [218, 142]. Information retrieval has been a fertile research field. Many tech-

niques have been proposed and implemented in successful and less prevailing applications.

With the advent of the World-Wide Web, the appearance of a panoply of services and ac-

cumulation of a colossal aggregate of resources, information retrieval techniques have been

adapted to the Internet, bringing forth indexing models and search engines. Today several

search engines are used daily by millions of users. However, the effectiveness of these tools

is not satisfactory and is even irritating (See Appendix A). The annoying results of current

search engine technologies have invited researchers to tackle new challenges. Better indexing

56

57

approaches, specialized information gathering agents, filtering and clustering methods, etc.

have since been proposed.

A new research trend in the field of information retrieval from the World-Wide Web is

web querying [276, 161, 183, 149, 19] and the design of query languages for semi-structured

data [205, 1, 20]. The approach for querying structured and semi-structured documents

involves the construction of tailored wrappers that map document features into instances

in internal data models (i.e. graphs or tables). The introduction of new types of documents

usually necessitates the construction of new custom-made wrappers to handle them. Due to

the semi-structured nature of web pages written in HTML, the migration of semi-structured

data query languages like UnQL[41] and Lorel[1] to the World-Wide Web domain is evident.

W3QL[149], WebLog[161], WebSQL[183] and WebOQL[19] are all intended for information

gathering from the World-Wide Web. While WebLog and WebOQL aim at restructuring

web documents using Datalog-like rules or graph tree representations, WebSQL and W3QL

are languages for finding relevant documents retrieved by several search engines in parallel.

However, none of these approaches takes advantage of the structure of the global information

network as a whole. Moreover, none of these languages performs data mining from the

Web. A language like WebSQL is built on top of already existing search engines which lack

precision and recall. Indeed WebSQL has the same strategy as Metacrawler which submits

a request simultaneously to several search indexes[224]. W3QS, the system using W3QL,

also uses existing search engines. A web document structuring language like WebOQL

or WebLog is capable of retrieving information from on-line news sites like CNN, tourist

guides, or conference lists, but is limited to a subset of the web defined in the queries.

Their powerful expressions, however, can extract interesting and useful information from

within a given set of web pages. We intend to use this power to build our system’s data

model. We propose a web query language, WebML that permits resource discovery as well

as knowledge discovery from a subset of the Internet or the Internet as a whole. WebML

is an SQL-like declarative language for web mining. We have introduced new primitives

that we believe make the language simple enough for casual users. These primitives allow

powerful interactive querying with an OLAP (OnLine Analytical Processing)-like interaction

(i.e. drill-down, roll-up, slice, dice, etc.). The language takes advantage of a Multi-Layered

DataBase (MLDB) model[128, 276], presented in Chapter 2, in which each layer is obtained

by successive transformations and generalizations performed on lower layers, the first layer

being the primitive data from the Internet. The higher strata are stored in relational tables

58 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

and take advantage of the relational database technology. Their construction is based on

a propagation algorithm and assumes the presence or availability of descriptive metadata,

either provided by document authors through tags and XML-based descriptions, or extracted

by tools like WebLog, WebOQL, and some Web agents.

In the remainder of the Chapter, we review some relevant query languages before intro-

ducing WebML. Since WebML is an SQL-like declarative language and its syntax in derived

from it, we start briefly reviewing SQL and QBE as examples of relational database query

languages. We also examine some examples of World-Wide Web query and restructuring

languages and present a data mining language DMQL that we proposed for data mining

from relational databases. DMQL is relevant in this context since WebML heavily borrows

semantic and syntactic constructs from DMQL for its data mining capabilities. WebML is

later introduced with examples for resources discovery as well as knowledge discovery from

the Internet. Finally, an implementation experiment is described.

3.1 Relevant Query Languages for Data and Information Re-

trieval

Query languages are means to access data, generally stored in databases, or repositories of

some sort. They can be for strict retrieval of data, or manipulation of the data stored and

to be stored. Database query languages have been investigated for many years and there

are numerous languages specializing in different domains and structures based on the data

they access or manipulate, or based on the database model used.

A query is a statement defining some constraints on the data to be retrieved or manip-

ulated. Languages expressing queries can either be visual (like QBE), or in the form of a

programming language. In the following section, we review some specific query languages

in the relational database domain, in the World-Wide Web field, and in data mining.

3.1.1 Relational Database Languages

There are many relational database query languages, some more influential than others.

All are based on strong mathematical foundations. SQL [16] is, without a doubt, the

relational query language standard today. However, there are other commercial languages,

like QBE, QUEL, Datalog, etc. [228]. While SQL uses a combination of relational algebra

3.1. RELEVANT QUERY LANGUAGES FOR DATA AND INFORMATION RETRIEVAL59

and relational-calculus constructs, QBE is based on domain relational calculus, QUEL is

based on the tuple relational calculus, and Datalog is based on the logic-programming

language Prolog [228]. In this sub-section, more emphasis will be given to SQL and QBE

as examples of relational query languages.

Structured Query Language (SQL)

SQL is an acronym of Structured Query Language and was originally called SEQUEL-2

(SQL is still pronounced “sequel”), derived from SEQUEL which was introduced as the

query language for the relational database management system System/R in the 1970s.

The language deals exclusively with relations, also called tables, and its underlying data

model is the relational model presented by Codd in 1970 [58].

SQL is divided into two distinctive parts: the DDL (Data Definition Language) for

defining the data structure, and the DML (Data Manipulation Language) for retrieving and

updating the data. However, we will emphasize more the DML part, since it is more related

to WebML, the language we define later, and we refer to SQL as the data manipulation

language of SQL.

The basic structure of SQL consists of the SELECT-FROM-WHERE clauses. The

SELECT clause determines the attributes and aggregates to display. It corresponds to the

project operation of the relational algebra (Π). The FROM clause describes the data sets

from which to retrieve the data. This data set can be a relation or a set of relations. This

clause corresponds to the cartesian-product operation of the relational algebra (×). The

WHERE clause, which corresponds to the selection predicate of the relational algebra (σ),

specifies the constraints upon the data to retrieve.

The following SQL example retrieves titles and on-line addresses of all documents pub-

lished after 1995 and where “zaiane” appears in the author:

SELECT d.title,d.url

FROM Document d

WHERE d.author LIKE “%zaiane%” AND

d.date.year > 1995

Used in an interactive SQL environment, this query would return a result displayed in

a tabular form. Indeed, the result of this query is a relation with two columns: one for the

60 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

title, and one for the URL. The number of rows depends upon the records in “document”

that satisfy the conditions stated in the WHERE clause.

SQL supports aggregate functions such as avg, min, max, sum, and count for the

calculation of the average, minimum, maximum, the total sum, and the count of attributes,

and has additional clauses such as GROUP BY, HAVING, and ORDER BY for, re-

spectively, grouping rows by attribute values, filtering groups under some conditions, and

ordering the output. One powerful peculiarity of SQL is the possibility to “nest” queries

together. A nested-query is a query that contains another query (or nested-query) in its

WHERE clause.

The following SQL example retrieves titles and on-line addresses of all documents pub-

lished after 1995 and authored by someone from SFU who also authored a publication by

ACM, grouped by the year of publication.

SELECT d.title,d.url

FROM Document d

WHERE d.date.year > 1995 AND

d.author IN (SELECT d2.author

FROM document d2, Person p

WHERE d2.author = p.name AND

p.institution = “SFU” AND

d2.publisher = “ACM”)

GROUP BY d.date.year

It is important to note that SQL can be used in an interactive way, but can also be

embedded into programs. It has been designed for use within general-purpose programming

languages, such as C/C++, Pascal, Fortran, Cobol, Perl, etc. It is, arguably, considered a

programming language for data manipulation in database systems.

There are many extensions and “flavours” of SQL. Some extensions were added to handle

complex data types like set-valued attributes, multimedia (images, maps, sounds, videos,

etc.), and even multi-dimensional data cubes.

Query By Example (QBE)

QBE is the database query language of the QBE database system developed at IBM T.J.

Watson Research Center in the 1970s. The peculiarity of QBE is that unlike SQL and

3.1. RELEVANT QUERY LANGUAGES FOR DATA AND INFORMATION RETRIEVAL61

other languages, which require that the user knows the database schema, QBE provides the

user with the schema in an empty skeleton table form. The query consists of filling in the

columns of the skeleton tables with the desired conditions and commands.

For example, retrieving titles and on-line addresses of all documents published after 1995

and where “zaiane” appears in the author, requires filling out the form as follows:

Document title author Date URL

P. Title zaiane > 1995 P. URL

QBE has the same expressive power as SQL. However, its two-dimensional syntax makes

it particularly user friendly. Many Web-based database query interfaces have adopted this

approach using Web-based forms, even though the underlying database system uses SQL.

3.1.2 Querying the World-Wide Web

The emergence of the World-Wide Web and its increasing popularity for dissemination of

information has made it a new target for query language design. Given the chaotic structure

of the Web and its documents, designing a query language for it is challenging. Neverthe-

less, many attempts have been made: some query languages have been proposed, borrowing

from relational query languages and semi-structured data query languages. These languages

aim at retrieving data (or resources) from the Web given constraints on content and struc-

ture, and at modeling and restructuring the Web by constructing new resources that bring

together otherwise scattered information. Examples of these languages are: W3QL [149],

WebLog [161], UnQL [41], WebSQL [183], Lorel [1], WebOQL [19], STRUDEL [95], etc. In

the following, we will present four of them: WebSQL, W3QL, WebLog and WebOQL.

WebSQL

WebSQL [183] was developed at the University of Toronto. It is an SQL-like language.

However, it does not use relations, but rather virtual relations, and counts on existing

search engines to reach out for documents. It is considered a first generation Web query

language [100] since it combines the content-based queries of search engines (text patterns

appearing within documents) with structure-based queries (graph patterns describing link

62 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

structure). For WebSQL, the Web consists of two virtual relations: Document(url, title,

text, type, length, modif) where url is the address of the document, title its title, text the

document itself, type is the MIME type of the document, length is the size of the documents,

and modif is the last modification date, and Anchor(base, href, label) where base is the URL

of a document containing the link in question, href is the address pointed by the link, and

label the link description. This relational abstraction of the Web allows using a relational

query language to submit queries. The syntax of WebSQL is much like the SELECT-FROM-

WHERE clauses of SQL with some additional keywords and primitives. The concise syntax

is as follows:

<WebSQL> ::=

SELECT <attribute list>

FROM <domain> SUCH THAT <domain conditions> {, <domain> SUCH THAT <domain conditions>}
WHERE <conditions>

One interesting characteristic of WebSQL is the use of primitives to express hypertext

links in the WHERE clause and the domain conditions. For instance, internal links, links

inside a document, are denoted 7→. Local links, links to other documents in the same web

server, are denoted→. Finally, global links are denoted⇒. These symbols can be alternated

and repeated in regular expression with | and ∗.
As an example, to find the documents mentioning “Data Mining” and linking through

paths of length two or less to documents containing a Java applet, the query is as follows:

SELECT x.url, x.title, y.url, y.title

FROM document x SUCH THAT x MENTIONS “Data Mining”,

document y SUCH THAT x = |→|→→|⇒|⇒⇒ y,

anchor z SUCH THAT z.base = y

WHERE z.label CONTAINS “applet”;

This query is translated into search requests sent to a list of search engines. The output

of these engines is merged and further parsed before displaying the final result.

W3QL

W3QL, the query language of W3QS system [149], is also a first generation web query lan-

guage treating documents as atomic objects containing text patterns and pointers to other

3.1. RELEVANT QUERY LANGUAGES FOR DATA AND INFORMATION RETRIEVAL63

atomic objects (i.e. documents). It also uses search engines to access already built indexes.

The links to these search engines and their respective query forms are stored in external

files and can be updated on the fly. The major difference between W3QL and WebSQL is

the possibility to use external programs and unix commands directly within W3QL queries.

External programs (written by users) can be used to specify content conditions that cannot

be expressed with the query language in order, for example, to parse web pages. These

written programs are dynamic extensions of the language. They can be run in the SELECT

or the WHERE clause. W3QL also allows the definition of views that can be updated and

maintained automatically at regular intervals. The concise grammar of W3QL is as follows:

<W3QL> ::=

SELECT [CONTINUOUSLY] < select clause>

FROM <path>

WHERE <node> IN <file>| FILL <node> AS IN <file>| RUN <unix prog> IF <node> UNKNOWN

[USING <algorithm>]

[EVALUATED EVERY <time unit>]

As an example, to find the HTML documents containing the string “Market Basket”

and titled “Association Rules”, the following query is submitted:

SELECT cp n2/∗ result;

FROM n1, l1, n2;

WHERE n1 IN Indexes.url FILL n1.form AS IN Indexes.fil WITH keyword=“Market Basket”;

SQLCOND (n2.format=HTML) AND (n2.title=“Association Rules”);

Indexes.url and Indexes.fil are two files containing, respectively, the list of search engines

to try the query against (search with keyword=“Market Basket”) and the forms and syntax

of these search engines. SQLCOND is a program that determines the format of a file (using

the unix file command) and attributes some recognized patterns to fields. In this example,

n2.title is identified from the HTML tags <TITLE> ... </TITLE>. The query is submitted

to different search engines and the results are analyzed (with SQLCOND) and copied with

the unix cp command to a file named result.

64 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

WebLog

Developed at the University of Concordia in Montréal, WebLog[161] is considered a second

generation web query language for its ability to manipulate components of documents, and

even generate new compositions as result of a query. It uses deductive rules instead of

SQL-like syntax like the previous languages. WebLog queries are regarded as programs.

The language is inspired from SchemaLog [160] and takes advantage of the expressive power

of Datalog and Prolog. With WebLog, a web document is treated as “groups of related

information” separated by delimiters. These delimiters are user specified, and are usually

HTML tags defining the granularity of the groups, such as paragraphs <P> or lines in lists

, etc. Each of the groups of information is dealt with as an object with attributes

such as content (referred to as occurs), links (referred to as hlink), etc. The language uses

built-in predicates to manipulate links and strings, and user defined predicates. It also uses

predicates to define string similarity such as synonymy, etc. to help in keyword searching.

To illustrate the sophisticated capabilities of WebLog, we give two examples of queries,

one for information retrieval and one for restructuring.

The following Weblog program finds all documents in the SFU site that have information

related to “Data Mining” and are linked from Zäıane’s web page:

sfu pages(http://www.cs.sfu.ca/~zaiane) ←−
sfu pages(U) ←− sfu pages(V), V[hlink7→L], href(L,U), substring(U,http://www.cs.sfu.ca/).

interesting urls(U) ←− sfu pages(U), U[occurs 7→ T], synonym(T, ‘Data Mining’).

Note that the predicate sfu pages starts with the URL http://www.cs.sfu.ca/~zaiane.

This assumes that the user has partial knowledge about where the information he or she

is looking for is located. WebLog does not use already built indexes like soliciting existing

search engines. It crawls the Web recursively with programmed predicates such as sfu pages

above.

Knowing that Zäıane’s sports page contains references to competitions in swimming and

triathlon around the world, the following WebLog program compiles in a new page called

result.html, a list of triathlon competitions in British Columbia:

traverse(L) ←− http://www.cs.sfu.ca/~zaiane/sports.html[occurs7→‘Meets’, hlink7→L].

traverse(L) ←− traverse(M), href(M,U), U[hlink7→L], U[occurs7→‘British Columbia’].

3.1. RELEVANT QUERY LANGUAGES FOR DATA AND INFORMATION RETRIEVAL65

result.html[L:title→‘Competitions in BC’, hlink7→L, occurs7→‘Competition date:’.D.‘General Infor-

mation:’.I]←− traverse(L), href(L,I), I[occurs7→‘triathlon’], I[occurs7→S], substring(S,D), isa(D,date).

This program assumes that the sports page contains a link to meets which are or-

dered geographically. traverse traverses all hyperlinks in grouped information containing

the keyword “meets”, and stops at pages where the keyword “British Columbia” appears.

The result in result.html collects information with dates from pages containing the string

“triathlon”. We assume these dates as competition dates.

WebLog is powerful and very flexible. However, programming with WebLog assumes

preliminary knowledge about the potential location of the information (i.e. initial URL)

and the rough structure of the documents. It could be very useful, when the structure and

semantic of a web site is known, to extract and summarize some interesting data from the

site for the construction, for example, of the first layer of the MLDB Web “warehouse” (see

Chapter 2).

WebOQL

WebOQL[19] was developed at the University of Toronto. It is a language to query and

restructure hypertexts, structured documents (i.e semi-structured data), or record-based

data. Its data model, hypertrees and webs, is capable of abstracting instances from any

of these types of data collections. WebOQL manipulates hypertrees and webs, and as a

result of a query, generates hypertrees and webs. In the WebOQL model, webs are related

hypertrees collected together, while hypertrees are ordered arc-labeled trees with internal

and external arcs. Internal arcs are used to stand for structured objects and external arcs are

used to represent references to objects (usually hyperlinks). Both types of arcs are labeled

with records (see Figure 3.1 for an example). In [19], hypertrees and webs are compared to

an internal representation of a compiler. All data collections are translated into this model

before processing of queries can proceed.

WebOQL is a functional language, but its syntax has been fitted to the SELECT-FROM-

WHERE SQL form and resembles the object-oriented query language OQL. Some operators

have been introduced to manipulate trees and arcs. Since WebOQL acts on sub-trees (parts

of documents, web sites, or even databases records) and can generate sub-trees, it is consid-

ered a second generation web query language. To illustrate the capabilities of the language,

66 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

csPapers

[Title: Attribute-Oriented Induction
 in Relational Databases,
Authors: Y. Cai and N. Cercone and J. Han
Publication: IJCAI-89 KDD workshop]

Group: Database

Group: Vision

Group: Artificial Intelligence

[Title:Resource and Knowledge
Discovery in Global Information
Systems: A Preliminary Design and Experiment
Authors:O. R. Zaïane and J. Han
Publication: KDD 1995]

[Label:Full version,
Url:www.sfu.ca/…paper1.ps]

[Label:abstract,
Url:www…/abs34.html]

[Label:abstract,
Url:www…/abs1.html] [Label:abstract,

Url:www…/abs2.html]
[Label:Full version,
Url:www…/paper2.ps]

[Title:Color constant color indexing,
Author: B.V. Funt and G.D. Finlayson,
Publication: IEEE Trans. PAMI]

[Title:Illumination-invariant color object
recognition via compressed chromaticity
histograms of color-channel-normalized images,
Author: M.S. Drew and J. Wei and Z.N. Li,
Publication: ICCV 1998]

[Label:abstract,
Url:www…/abs33.html]

[Label:Full version,
Url:www…/paper33.html]

[Label:Full version,
Url:www…/paper34.html]

Figure 3.1: Hypothetical example of a WebOQL hypertree.

we present two queries for examining and restructuring the web.

Given the hypertree presented in Figure 3.11, the following query retrieves the title and

URL address of full version papers authored by “Jiawei Han”:

SELECT [y.T itle, y′.Url]

FROM x IN csPapers, y IN x′
WHERE y.authors ~ “Jiawei Han”

The prime operator returns the first sub-tree of its argument. Since x iterates over the

groups (top level of the hypertree), the primed variable x′ iterates over the title (sub-trees

of the groups). Priming y reaches the external arcs for the URL addresses. Obviously, the

structure of the hypertree has to be known in order to write the query.

By using the AS in the SELECT clause, one can map the hypertree into another to

generate a new Web document. The following query performs restructuring.

SELECT [y.T itle, y.Author] AS x.Group

FROM x IN csPapers, y IN x′

The examples we gave are straightforward examples from the hypertree in Figure 3.1.

WebOQL queries can be arbitrarily complex with nested subqueries.

1hypothetical hypertree similar to the one given in [19]

3.1. RELEVANT QUERY LANGUAGES FOR DATA AND INFORMATION RETRIEVAL67

3.1.3 Data Mining Query Language

Believing that the success of the relational databases is partially credited to the standard-

ization of the relational query language (SQL), we have been working on the design of a

data mining query language [126] in the hope that it might perhaps become a motivation

for others to examine and work on an approved language. The design of a data mining

language is a challenging assignment given that data mining covers a wide spectrum of task,

from data summarization to mining association rules, data classification, or finding some

specific patterns. In the development of a general data mining system, our requirement was

a versatile data mining language that covers different data mining methods and activities.

We have tentatively designed the Data Mining Query Language, DMQL, which by no means

can be claimed complete, but may serve as an interesting example for further discussion.

The language has been partially implemented and is used in DBMiner data mining system

[125, 120] for the discovery of several kinds of knowledge in relational databases.

Figures 3.2, 3.3, 3.4 and 3.5 show some snapshots of the web interface we implemented

for DBMiner system. While the PC implementation is a stand-alone application, the web

version uses a client-server architecture. Users select and submit DMQL queries, such as in

Figure 3.3, and have the possibility to interactively manipulate the output, graphics, tables,

or rules, by drilling down, rolling up, slicing, dicing, or changing the different thresholds.

The system can be tried at http://db.cs.sfu.ca/DBMiner.

The design of DMQL adheres to the following principles:

1. The set of data relevant to a data mining task should be specified in a data mining

request;

2. The kind of knowledge to be discovered should be specified in a data mining request;

3. Background knowledge (such as conceptual hierarchy information, etc.) could be

generally available for data mining process;

4. Data mining results should be able to be expressed in terms of generalized or multiple-

level concepts;

5. Various kinds of thresholds should be able to be specified (interactively if possible) to

filter out less interesting knowledge.

68 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

Figure 3.2: Snapshots from DBMiner Web Interface (left: main menu - right: rule selection).

Figure 3.3: DBMiner Web Interface (left: query selection - right: comparator).

3.1. RELEVANT QUERY LANGUAGES FOR DATA AND INFORMATION RETRIEVAL69

Figure 3.4: DBMiner Web Interface (barcharts and cross tables for summarization).

Figure 3.5: DBMiner Web Interface (left: association rules - right: classification tree).

70 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

DMQL consists of the specifications of four major primitives in data mining: (1) the set

of data in relevance to a data mining process, (2) the kind of knowledge to be discovered,

(3) the background knowledge, and (4) the justification of how the discovered knowledge

could be interesting (i.e., thresholds).

The first primitive, the set of relevant data, is specified in a way similar to that of a

relational query, which is to be used to retrieve the set of relevant data from the database.

The second primitive, the kind of knowledge to be discovered, includes generalized rela-

tions, characteristic rules, discriminant rules, classification rules, association rules, etc.

The third primitive, the background knowledge, is a set of concept hierarchies or general-

ization operators which provide corresponding higher level concepts and assist generalization

processes.

The fourth primitive, the significance of the knowledge to be discovered, can be specified

as a set of different mining thresholds depending on the kinds of rules to be mined.

DMQL adopts an SQL-like syntax to facilitate high level data mining and natural inte-
gration with relational query language, SQL. The DMQL language is concisely defined in
an extended Backus-Naur Form (BNF) grammar [140], where “[]” represents 0 or one oc-
currence, “{ }” represents 0 or more occurrences, and uppercase words represent keywords,
as shown below:

<DMQL> ::=

USE DATABASE <database name>

{USE HIERARCHY <hierarchy name> FOR <attribute>}
<rule spec>

RELATED TO <attr or agg list>

FROM <relation(s)>

[WHERE <condition>]

[ORDER BY <order list>]

{WITH [<kinds of>] THRESHOLD = <threshold value> [FOR <attribute(s)>]}

Appendix C presents a more elaborated syntax of the DMQL language. Moreover,

DMQL allows the specification and manipulation of concept hierarchies. We will present

these capabilities later.

In <DMQL>, “USE DATABASE <database name>” directs the mining task to a specific

database “<database name>”, and the optional statement, “USE HIERARCHY <hierarchy>

FOR <attribute>”, assigns <hierarchy> to a particular attribute <attribute> (otherwise,

3.1. RELEVANT QUERY LANGUAGES FOR DATA AND INFORMATION RETRIEVAL71

a default hierarchy is used). The statement, <rule spec>, is the specification of the kind of

rules to be discovered. The following kinds of rules are considered in DMQL:

1. Mining characteristic rules.

<rule spec> ::= SUMMARIZE <attributes> WITH RESPECT TO <attributes> [AS <rule name>]

2. Mining discriminant rules.

<rule spec> ::= COMPARE <class 1> WHERE <condition 1>

IN CONTRAST TO <class 2> WHERE <condition 2>}
{IN CONTRAST TO <class i > WHERE <condition i >}
[AS <rule name>]

3. Mining classification rules.

<rule spec> ::= MINE CLASSIFICATION [AS <rule name>] WITH RESPECT TO <attributes>

4. Mining association rules.

<rule spec> ::= MINE ASSOCIATION [AS <rule name>] WITH RESPECT TO <attributes>

5. Mining prediction rules.

<rule spec> ::= MINE PREDICTION [AS <rule name>] WITH RESPECT TO <attributes>

The WITH RESPECT TO statement selects a list of relevant attributes and/or aggre-

gations for generalization “<att or agg list>”. The FROM and WHERE clauses, form an

SQL query to collect the set of relevant data. The ORDER BY clause simply specifies

the order of rows to be printed. The “WITH-THRESHOLD” statement specifies various

kinds of thresholds, noise, support, confidence, etc. depending upon the type of rules to be

discovered.

While it is possible to use DMQL for interactive mining, the language was not designed

for this purpose, even though a user interface allowing this interaction has been implemented

for the Web and the PC versions, but without a robust parser. The major goal in the design

of DMQL is to provide a user with primitives for data mining programming. In the same

way SQL is embedded into programming languages, DMQL is also meant to be embedded in

languages such as C/C++. A function library translates DMQL into SQL before acting on

72 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

the database. It is the same goal that we are aiming for WebML, the language for resource

and knowledge discovery from the Web that we will present in the next section.

The following DMQL example query finds multi-level strong association rules in a

database containing information about documents and their authors. Patterns related to

documents sizes, access frequency and the institution of the authors are found for documents

in computer science published after 1990.

USE DATABASE WebDocuments

MINE ASSOCIATION

WITH RESPECT TO D.size, D.access frequency, A.institution

FROM document D, author A

WHERE D.date > 1990 AND

D.Topic = “Computer Science” AND

A.author = D.author

The portion of the query for finding the relevant set of data is first transformed into

a standard SQL query which retrieves all the data items in the “computer science” topic

and dated after 1990. WITH RESPECT TO becomes a SELECT in this case. The topic is

taken at a high concept level; “computer science” covers “database”, “artificial intelligence”,

“software engineering”, etc. The three attributes size, access frequency and institution are

generalized in the relations document and author along the concept hierarchies for the re-

spective interested attributes. Then the multi-level association rule algorithm is applied on

this data set, giving the possibility to the user to drill-down and roll-up interactively along

any dimension.

The background knowledge that DMQL exploits is in the form of concept hierarchies (or

lattices). As presented in the concise grammar earlier, USE HIERARCHY allows to specify

hierarchies to use. DMQL also offers the possibility to create and manipulate hierarchies.

DEFINE HIERARCHY is used to either generate hierarchies at the schema level based on the

database attribute relationships, or generate hierarchies by grouping sets. For example, the

following commands generate a sub-hierarchy defining the locations subsumed by Western

Canada and by Canada:

DEFINE HIERARCHY FOR Location

{British Columbia, Alberta, Manitoba, Saskatchewan} < {Western-Canada}

3.2. MULTI-LAYERED DATABASE MODEL - THE SHORT STORY 73

DEFINE HIERARCHY FOR Location

{Western-Canada, Central-Canada, Maritimes} < {Canada}

DELETE and INSERT commands allow maintenance of hierarchies. For example, the

following command adds the node “Territories” to the set subsumed by Canada:

INSERT {Territories} UNDER Canada

TO HIERARCHY FOR Location

The DMQL version currently implemented in DBMiner differs slightly from the syntax

and keywords presented in this section. After the publication of [126], DMQL has been

refined by other members of the DBMiner implementation team.

We present a more elaborate syntax in Backus-Naur Form (BNF) in Appendix C.

3.2 Multi-Layered Database Model - The Short Story

The goal for the construction of the MLDB is to transform and/or generalize the unstruc-

tured data of the primitive layer at each site into relatively structured data, manageable

and retrievable by the database technology. Our motivation is not web page restructuring,

as with WebLog and WebOQL, but rather web page content and web page inter-relations

abstraction. However, answers to WebML queries can be used to generate new Web docu-

ments, and thus, can be considered Web restructuring.

Specialized tools, similar to Essence[129] are executed locally on information provider

sites to extract pertinent data from documents. WebLog and WebOQL-like query languages,

or networked information retrieval tools like Ahoy![226], or tools that take advantage of

metadata if present, can also be exploited to gather the needed information from within

documents. This information is stored in the first layer and is generalized in higher levels.

The layer-1 is distributed and could reside locally on each information provider site. It is

only the higher levels that are gathered in a centralized location and mirrored for better

performance.

Extracting information from structured bibtex files or postscript papers is fairly smooth.

However, most web pages don’t easily convey the needed information. The extensible

markup language (XML) developed by the World-Wide Web Consortium, and the Dublin

74 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

Core initiative, will help in this direction. Many web publishing tools are adopting XML

and will help promote widespread improved structured web documents. The Dublin Core

Metadata workshop has stressed the importance of metadata (i.e. document descriptors) in

networked documents to facilitate resource discovery [259, 258] and the 15 metadata element

set seems to gain popularity. Already, extensions to the HTML specifications include some

tags allowing the description of keywords and content summary inside the HTML document

(see Appendix D). Because of their use by search engines in their ranking of documents,

more web document authors are now willing to manually add these descriptions in their web

pages.

3.3 Web Mining Language

Similar to other extended-relational database systems, a Virtual Web View (VWV) system

treats the requests for information browsing and resource discovery like relational queries.

However, since concepts in a VWV are generalized at different layers, search conditions

in a query may not match exactly the concept level of the currently inquired or available

layer of the database. For example, to find documents related to a particular topic, such

as “attribute-oriented induction”, a query may put this term as a search key. However,

the current layer may only contain terms corresponding to a higher concept level, such as

“induction techniques”, or “data mining methods”. In this case, it is unlikely to find in

the current layer an exact match with the provided search key, but is likely to find a more

general concept that subsumes the search key. On the other hand, a search key in a query

may be at a more general concept level than those at the current layer. For example, a

search key “sports”, though conceptually covers the term “baseball”, does not match it in

the database. Therefore, a key-oriented search in a VWV leads us to introduce four addi-

tional relational operations to extend the semantics of traditional selection and join. These

operators, coverage, subsumption, synonymy, and approximation, have their correspondent

built-in language primitive in WebML defined respectively as COVERS, COVERED BY, LIKE

and CLOSE TO. Other primitives could be defined by users and written as external programs

accessing the concept hierarchy (See Appendix B for syntax).

Definition 3.3.1 In the global MLDB system, four additional intrinsic relationships: cov-

erage, covered by, synonym, and approximation, are defined as follows.

3.3. WEB MINING LANGUAGE 75

1. coverage (⊃): A concept A covers another concept B, denoted as A ⊃ B, if A or A’s

synonym is an ancestor of B or B’s synonym in the same concept hierarchy.

2. covered by (⊂): A concept A is covered by another concept B, denoted as A ⊂ B, if

A or A’s synonym is a descendant of B or B’s synonym in the same concept hierarchy.

3. synonym ('): A concept A is a synonym of another concept B, denoted as A ' B, if

A and B are in the same alias list in the same concept hierarchy.

4. approximation (∼): A concept A is an approximate of another concept B, denoted as

A ∼ B, if A or A’s synonym is a sibling of B or B’s synonym in the same concept

hierarchy. 2

Based on these relationships, additional selection and join operations can be defined as

follows.

Definition 3.3.2 Let σ be a selection performed on the i-th attribute (column) of relation

R using the selection constant c. Four addition selection operations are defined as follows,

1. coverage-selection: if the selection predicate is c ⊃ $i, i.e., the selection operation is

σc⊃$iR,

2. covered by-selection: if the selection predicate is c ⊂ $i, i.e., the selection operation is

σc⊂$iR,

3. synonym-selection: if the selection predicate is c ' $i, i.e., the selection operation is

σc'$iR, and

4. approximation-selection: if the selection predicate is c ∼ $i, i.e., the selection operation

is σc∼$iR. 2

Similarly, one can define four corresponding join operations in the global MLDB systems

by replacing the query constant c in the selection predicate of the definition with the j-th

column of a relation S.

3.3.1 A query language for information discovery in the global MLDB

With the construction of the global MLDB, a query language, WebML, can be defined for

resource and knowledge discovery using a syntax similar to the relational language SQL

76 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

[79, 152]. Four newly introduced operators have their correspondent language primitives in

WebML, as shown in Table 3.1.

WebML primitive operation Name of the operation
COVERS ⊃ coverage

COVERED BY ⊂ covered by
LIKE ' synonym

CLOSE TO ∼ approximation

Table 3.1: New WebML primitives for additional relational operations.

<WebML> ::= <MINE HEADER> FROM relation list
[RELATED TO name list] [IN location list]
WHERE where clause
[ORDER BY attribute name list]
[RANK BY] {inward | outward | access}

<MINE HEADER>::=
{{ SELECT | LIST } { attributes name list | ∗ }
| <DESCRIBE HEADER> | <CLASSIFY HEADER>}

<DESCRIBE HEADER>::= MINE DESCRIPTION
IN RELEVANCE TO { attributes name list | ∗ }

<CLASSIFY HEADER>::= MINE CLASSIFICATION
ACCORDING TO attributes name list
IN RELEVANCE TO { attributes name list | ∗ }

Table 3.2: The top level syntax of WebML.

WebML borrows heavily from a data mining query language DMQL [126] which we de-

fine in Section 3.1.3. The top-level WebML query syntax is presented in Table 3.2. A more

formal grammar of WebML in BNF is presented in Appendix B. At the position for the

keyword select in SQL, an alternative keyword list can be used when the search is to browse

the summaries at a high layer, mine description can be used when the search is to discover

and describe the general characteristics of the data, mine classification is used to find classifi-

cations of web objects according to some attributes, whereas select remains to be a keyword

indicating to find more detailed information. Two optional phrases, “related-to name list”

and “in location list”, are introduced in WebML for quickly locating the related subject fields

3.3. WEB MINING LANGUAGE 77

and/or geographical regions (e.g., Canada, Europe, etc.). They are semantically equivalent

to some phrases in the where-clause, such as “keyword covered-by field names” and/or “loca-

tion covered-by geo areas”, etc. But their inclusion not only makes the query more readable,

but also helps the system locate the corresponding high layer relation if there exists one.

The phrase “according-to attributes name list in-relevance-to attributes name list” is only

used for classification with mine classification. It indicates the attributes upon which to

classify web objects. The where-clause is similar to that in SQL except that new operators

may be used.

While this query language is simple, users do not have to learn it and write queries.

A Java-based or HTML-based user interface can easily be developed on top of WebML to

avoid heavy instruction queries, and to provide a means for interaction based on field-filling

and button-clicking. This is one of our future projects.

3.3.2 WebML Operational Semantics

WebML queries are applied and pertain only to a given VWV which uses an MLDB struc-

ture. According to Definition 2.2.1 in Chapter 2, a VWV has three major components:

〈S, H, D〉. S contains the schema of the virtual view, H contains a set of concept hierar-

chies which are a set of partial orders of the form (P, a,≤) where a is an attribute defined

in the schema, P is a set of values in the domain dom(a) and ≤ is a reflexive, transitive

and anti-symmetric binary relation representing subsumption of values in P , and D is a set

of relations containing descriptors and abstractions of artifacts on the Web. Relations in D
are organized in levels where relations in each level abstract the relations in the lower levels.

The relationships among the relations at different levels of D are outlined in a route map

in S. Besides the route map and the conventional schema definitions of the relations in D,

S contains a set of generalization paths each of which shows how a higher layered relation is

generalized from one or a set of lower layered relations; formally, r = ΠA(r1 1 r2 1 ... 1 rn)

where Π and 1 are respectively the projection and join operators in the relational algebra, r

is the relation at level L, r1...rn are relations at level l such that l< L and A is the attribute

set of r. A = {a1...ak} where ai is an attribute from one of r1...rn and the value of ai is

either its value at level l or an upper bound in its partial order (P, ai,≤). A value x of

attribute ai is an upper bound of y in P =dom(ai) if y ≤ x.

WebML queries pertain to the relations in D and utilize the partial orders in H as well as

the generalization paths in S. Note that the result of a WebML query is always a relation.

78 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

The result relation can be at any level of the MLDB structure, and can be ”intercepted” by

a data mining process for further computation. Processing WebML queries is made straight-

forward by translating them into corresponding SQL queries and mapping values in query

conditions into upper or lower bounds in the pertinent partial orders. Since WebML takes

advantage of concept hierarchies using the four additional intrinsic relationships: coverage,

subsumption, synonymy, and approximation presented in Definition 3.3.1, these primitives

are converted into disjunctions of concepts as follows:

1. COVERS (⊃ x): The coverage is replaced by a disjunction of ancestors of x, Q ⊃ x

such that ∀ q ∈ Q, x ≤ q in partial order (P, a,≤) where a is the attribute of concept

x. Q is the set of least upper bounds of x, noted a {x}.

2. COVERED BY (⊂ x): The subsumption is replaced by a disjunction of descendants

of x, Q ⊂ x such that ∀ q ∈ Q, q ≤ x in partial order (P, a,≤) where a is the attribute

of concept x. Q is the set of all lower bounds of x, noted |= {x}.

3. LIKE (' x): The synonymy is replaced by a disjunction of synonym concepts Q from

the alias list of concept x in the partial order (P, a,≤) where a is the attribute of

concept x such that ∀ q ∈ Q, x ≤ q ∧ q ≤ x. Q is the set of all synonyms of concept x,

noted ' {x}.

4. CLOSE TO (∼ x): The approximation is replaced by a disjunction of sibling concepts

of x, Q ∼ x such that ∀ q ∈ Q, q ≤ u ∧ x ≤ u and u is least upper bound of x and q

in partial order (P, a,≤) where a is the attribute of concept x, u = t{x, q}. Q is the

set of all direct siblings of x, noted u t {x}.

Processing WebML Queries

WebML queries are translated into SELECT-FROM-WHERE SQL queries with identical

structure, except for additional conditions in the WHERE clause from the RELATED TO

and IN WebML clauses. RELATED TO F , adds conditions on the subject field and can

be substituted by “∧ acoveredbyF” in the WHERE clause, where a is the attribute of F .

IN L, adds conditions on the geographical location (i.e. Internet domain) and can also be

substituted in the WHERE clause by “∧ lcoveredbyL” where l is the attribute location or

web address. LIST, like SELECT, is translated into an SQL SELECT statement with the

exception that LIST aims at the highest MLDB layer possible while SELECT directs its

3.4. WEBML EXAMPLES 79

results to the lowest layer. MINE DESCRIPTION and MINE CLASSIFICATION queries are

also translated into SELECT statements with the attribute list from the IN RELEVANCE TO

clause. In both cases, the information is retrieved at the lowest layer (Layer-1) and either

collected in a data cube for OLAP purposed in the case of MINE DESCRIPTION, or a decision

tree is constructed for the retrieved data, based on class labels from the ACCORDING TO

clause in the case of MINE CLASSIFICATION.

The major challenge of processing WebML queries in a VWV is to find the appropriate

relations in the appropriate layer of the MLDB structure to execute the equivalent SQL

queries. While the FROM clause indicates the lowest level relation containing descriptors of

a given artifact on the Internet (i.e. document, person, image, game, etc.), the RELATED

TO and IN clauses add conditions to help pinpoint the appropriate MLDB layer to execute

the query. If the field or location specified in the RELATED TO or IN clause is known in

the route map in S, the relevant generalized relation is selected as source for the query.

Moreover, the highest level in the partial orders of the different concepts used in the query

is used to indicate the MLDB layer to use. For a query W , C is the set of all concepts

and terms used in the query W and H the set of all partial orders of concepts in C, c is

the highest concept used in hierarchy P if c ∈ C ∧ ∀ q ∈ C, q ≤ c with (P, a,≤) where a is

attribute of c. ∀ P ∈ H, P has only one highest concept level in C. The set of all highest

concept levels in C and the route map in S identify the MLDB layer to use as source of the

query W .

3.4 WebML Examples

As mentioned earlier, the MLDB structure provides ground for resource discovery on the

Internet (i.e. pinpointing relevant documents) as well as knowledge discovery (i.e. implicit

knowledge extraction). Following are examples of queries for resource discovery and for data

mining from the Web which illustrate the semantics of WebML.

Example 3.4.1 (Query for Resource Discovery) The query, list the documents published in

Europe and related to “data mining”, is presented as follows.

LIST ∗
FROM document IN Europe

RELATED TO computing science

80 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

WHERE ONE OF keywords COVERED BY “data mining”

Notice that the keyword LIST indicates that the query is to briefly browse the informa-

tion, and therefore, it searches the relations using the where-clause as a constraint. Using

SELECT instead of LIST would locate a set of URL addresses of the required documents,

together with the important attributes of the documents. The keyword LIST, however, al-

lows to display document attributes at a high conceptual level and provides and OLAP-like

interaction. “FROM document” does not indicate to find the document relation at layer-0

or layer-1, but indicates to find the top-most layer of the document relation which fits the

query. Therefore, “document” is a clue to the system to find the appropriate relation at a

high layer. We adopt this convention since it is the system’s responsibility to find the best

match, and it is unreasonable to ask users to remember all the relation names at different

layers. Moreover, the RELATED TO clause can help the system locate the appropriate top

layer relation in case the relations are split by topic. To execute this query, the VWV

system uses the phrase “FROM document” and “related-to computing science” to locate the

top layer relation, cs document for example. The phrase, “ONE OF keywords COVERED

BY ‘data mining’” means that there exists an entry in the set keywords which is subsumed

under ‘data mining’. Moreover, the phrase “IN Europe” confines the search to be within

Europe which will be mapped into concrete countries using a concept hierarchy for Internet

domains. In this case, a relatively large set of answers will be returned. An interactive

process to deepen the search will usually be initiated by users after browsing the answer

set. 2

Example 3.4.2 (Query for Resource Discovery) To locate the documents related to data

mining topics and linked from Osmar’s webpage, and then rank them by importance, a

simple WebML query is presented as follows.

SELECT ∗
FROM document

WHERE EXACT “http://www.cs.sfu.ca/~zaiane” IN links in

AND ONE OF keywords COVERED BY “data mining”

AND “Ted Thomas” IN authors

RANK BY INWARD, ACCESS

3.4. WEBML EXAMPLES 81

Notice that “SELECT ∗” means to print all the important attributes in a relation at a high

layer, and moreover, “‘Ted Thomas’ IN authors” means that ‘Ted Thomas’ is in the set

of authors, whereas “ONE OF keywords COVERED BY ‘data mining’” means that there

exists an entry in the set keywords which is subsumed under ‘data mining’. “RELATED TO

computing science” is not necessary in this particular query since ‘data mining’ is subsumed

under ‘computing science’, however, this clause can alleviate ambiguity in case the search

term is subsumed under more than one ancestor. Moreover, the RELATED TO clause can

help the system locate the appropriate top layer relation in case the relations are split

by topic. The EXACT keyword specifies that the URL should be used as given in the

comparisons, and not as prefix of potential URLs as we shall see in the next example. To

execute this query, the VWV system uses the phrase “FROM document” and “RELATED

TO computing science” to locate the top layer relation cs document for example, and then

uses the two search keys in the where-clause as well as the links-in set to locate a set of

URL addresses of the required documents, together with the brief descriptions: authors,

title, publication, publication date, keywords, etc. The documents would be ranked by the

number of hyperlinks linking to them from other resources and how often these documents

are accessed. This translates the subjective term importance stated in the request. Users

have the choice to either find more detailed layer-1 descriptions (i.e. drill-down), or directly

access the documents by clicking at different buttons (drill-through). 2

Example 3.4.3 (Query for Resource Discovery) To locate the documents about “Intelligent

Agents” published at Simon Fraser University (SFU) and that link to Osmar’s web pages

in at least two depth link paths, the following query could be written:

SELECT ∗
FROM document IN “www.sfu.ca”

RELATED TO “computer science”

WHERE “http://www.cs.sfu.ca/~zaiane” IN links out (− > OR − > − >)

AND ONE OF keywords LIKE “Intelligent Agents”

In this query the EXACT keyword was not used. This means that the URL given in the

query could be used as a prefix to any address in the links out set. Moreover, → and →→
are used to check recursively the links out sets at a depth 2 for other links that verify the

condition. Only local links are used since the URL and the SFU domain match; global links

82 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

are not necessary. The ‘IN “www.sfu.ca” ’ phrase is used to limit the retrieval to the SFU

domain, extracted from the Internet domain hierarchy. The LIKE keyword is used to match

“Intelligent Agents” to other synonyms defined in the concept hierarchy.

This query returns a list of URL addresses together with important attributes of the

documents that match. 2

Example 3.4.4 (Query for Knowledge Discovery) To inquire about European universities

productive in publishing on-line popular documents related to database systems since 1990,

a WebML query is presented as follows:

SELECT affiliation

FROM document IN “Europe”

WHERE affiliation COVERED BY “university”

AND ONE OF keywords COVERED BY “database systems”

AND publication-year > 1990

AND count = “high”

AND h(links-in) = “high”

In this query, “productive” is measured as those that published a high number of papers. The

term “high” is a generalization of the numeric value of access-frequency along its concept

hierarchy. While constructing the layers of the MLDB structure, concept hierarchies for

numerical attributes are automatically built and labeled later by users. The label “high”

would, for example, correspond to a count greater than 20, in other words affiliation with

more than 20 published papers. “Popular” is measured by the high number of hyperlinks

coming from other resources towards these papers. links-in in this case is not just counted

(cardinality of links-in set), but is surveyed by a heuristic function h, provided by the user,

which calculates the popularity based on the importance of the links. For example, a local

link would get the weight 0.5, a link from a resource related to the condition in the where-

clause would get 2, while other global links get 1.

What is interesting to note is that the execution of this query does not return a list of

document references, but rather a list of universities (publishing popular documents about

databases), which is implicit information (or knowledge) extracted from a conglomerate of

documents. 2

3.4. WEBML EXAMPLES 83

Example 3.4.5 (Query for Knowledge Discovery) Suppose the query is to “describe the

general characteristics in relevance to authors’ affiliations, publications, etc. for those docu-

ments which are popular on the Internet and are on “data mining”. A knowledge discovery

query to answer this request, characterized by the keyword “MINE DESCRIPTION” is shown

below:

MINE DESCRIPTION

IN RELEVANCE TO authors.affiliation, publication, pub date

FROM document RELATED TO Computing Science

WHERE ONE OF keywords LIKE “data mining”

AND access frequency = “high”

The discovery query will be first executed as a retrieval to collect from cs document the

data which are relevant to “authors.affiliation, publication, pub date” and satisfy the where-

clause. Then the attribute-oriented induction is performed on the collected data, which

generalizes “publication” into groups, such as major AI journals, major database conferences,

and so on, and generalizes publication date to year, etc. The generalized results are collected

in a data cube and can be interactively manipulated by the user using OLAP operations.

2

Example 3.4.6 (Query for Knowledge Discovery) To classify according to update time

and popularity the documents published on-line in sites in the Canadian and commercial

Internet domain after 1993 and about information retrieval from the Internet, a WebML

query can be presented as follows:

MINE CLASSIFICATION

ACCORDING TO timestamp, access frequency

IN RELEVANCE TO ∗
FROM document IN Canada, Commercial

WHERE ONE OF keywords COVERED BY “information retrieval”

AND ONE OF keywords LIKE “Internet”

AND publication year > 1993

The phrase MINE CLASSIFICATION requests a classification tree from the system. The

query first collects the relevant set of data from the VWV relations, executes a data classi-

fication algorithm to classify documents according to their access frequency and their last

84 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

modification date, then presents each class and its associated characteristics in a tree. The

user can navigate the tree representation and drill through to the documents if needed. 2

3.5 Preliminary Experiment

We have conducted an experiment as a proof of concept for the Virtual Web View using

a subset of artifacts found on the Internet. The intent of this experiment was not to

implement WebML, but to show the capabilities and flexibility of the language, given an

MLDB structure.

In our experiment [276] we wanted to demonstrate the strength of our model for informa-

tion discovery. We assumed that the layer-1 construction softwares exist and built layer-1

manually. Our experiment is based on Marc Vanheyningen’s Unified Computer Science

Technical Reports Index (UCSTRI)[250] and is confined to computer science documents

only. In other words, our experimental VWV is specialized in computer science technical

reports published on-line. It is the best represented subset of the Internet since computer

scientists are those who put most papers and technical reports on-line today. UCSTRI mas-

ter index was created by merging indexes of different FTP sites. These indexes, though not

fully satisfactory to our usage, contain rich semantic information like keywords, abstracts,

etc. We used the master index as primitive data to create our MLDB structure by select-

ing 1224 entries from four arbitrarily chosen FTP sites (University of California Berkeley,

Indiana University, INRIA France and Simon Fraser University). Since an important num-

ber of documents did not have keywords attached to them, we manually deduced them or

used the title and, if available, the first several sentences of the abstract to do so. Using

a subset of the Internet simplifies the concept hierarchies to be built. The results can be

easily extrapolated to the whole Internet to prove the feasibility of our model. The aim of

using Vanheyningen’s master index as primitive data for our experiment is to be able to

compare the query results with what the conventional UCSTRI search engine available on

the Internet can provide. The first layer of our VWV was built based on the information

provided by the four FTP sites we chose. The layer-1 of our simplified MLDB structure

contains just one relation:

document(file addr, authors, affiliation, title, publication, publication date, abstract, key-

words, URL links, num pages, form, size doc, timestamp, local ID, note).

3.5. PRELIMINARY EXPERIMENT 85

The 1224 tuples relation constitutes our mini database on top of which we constructed a

concept hierarchy for keywords. Part of the concept hierarchy is illustrated in Fig. 2.9. Note

that our concept hierarchy was built manually for this experiment, but we could have used

an already built taxonomy. To build the hierarchy, we collected all unique keywords and

grouped them by synonyms. All synonym representatives were classified in a tree hierarchy.

This hierarchy was used to deduce general topics for generalization of layer-1 tuples. Once

generalized to layer-2, our relation looks as follows:

doc summary(affiliation, field, publication year, count, first authors list, file addr list).

The field field contains a high level concept which embraces all lower concepts under

it. The field count is a counter for the documents that correspond to affiliation, field and

pub year.

Table 3.3 shows a portion of the tuples in doc summary.

affiliation field pub year count first author list file addr list · · ·
Simon Fraser Univ. Natural Language 1993 6 Popowich, Dahl, · · · · · · · · ·
Simon Fraser Univ. Parallel Programming 1993 5 Liestman, Shermer, · · · · · · · · ·
Indiana University Machine Learning 1994 5 Leake, Fox, · · · · · · · · ·
· ·

Table 3.3: A portion of doc summary.

Notice that backward pointers can be stored in certain entries, such as first author list

and file addr list, in the doc summary table, and a click on a first author or a file address

will lead to the presentation of the detailed corresponding entries stored in layer-1.

WebMiner, the experimental prototype, allows a progressive search leading to a subop-

timal hit ratio. The same simple query submitted to the search engine UCSTRI and to our

VWV returns two different answers revealing a better hit ratio with our model. A query

like:

select ∗
from document

related-to Parallel Computing

where one of keywords closeto “Gossiping”

86 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

gives, using UCSTRI, 50 references in the 4 targeted FTP sites. Only 13 of which are indeed

related to parallel computing. The same query submitted to our model, return 21 references

all related to parallel computing but with reference to gossiping or broadcasting (i.e., siblings

in the concept hierarchy). WebMiner not only reduces the noise by giving just documents

related to the appropriate field, but also improves the hit ratio by checking synonyms and

siblings in the concept hierarchies.

A WebML parser was not implemented for this experiment. The queries were translated

(manually) to SQL and C program routines. For UCSTRI, we simply entered the search

keys in the appropriate fields of the search engine. Since both UCSTRI and WebMiner were

essentially using the same index (the VWV is built on top of the index), it was possible to

compare the results.

While the master index of UCSTRI is used solely for resource discovery, WebMiner allows

queries like:

describe affiliation, publication date.year

from document

where one of keywords like “Computational Geometry”

This query returns the brief description of all universities or organizations that published

documents about Computational Geometry with the date of publication as shown in Table

3.4. This query clearly does not target the documents themselves but the information about

them. Note that this information is not explicitly published anywhere on the Internet but

the generalization in layers of the VWV makes it fully revealed. The question mark in the

last entry is due to the fact that the publication date is not indicated on the documents

served at INRIA’s FTP site.

affiliation pub year count count %
Simon Fraser University 1990 1 8.3%
Simon Fraser University 1991 2 16.6%
Univ. of California Berkeley 1988 1 8.3%
Univ. of California Berkeley 1990 3 25.0%
Univ. of California Berkeley 1991 1 8.3%
INRIA France ? 4 33.33%

Table 3.4: Affiliations that published about Computational geometry.

For a query like:

3.6. CONCLUSION AND FUTURE WORK 87

describe affiliation

from doc summary

where affiliation belong to “university” and field = “Machine Learning”

and publication year > 1990 and count > 2

a simple search in the table doc summary produces the list of the universities which serve at

least 2 documents about machine learning published after 1990 shown in Table 3.5. Such a

query is not processible with the conventional search engines on the World-Wide Web.

affiliation count count %
Indiana University 13 68.4%
Univ. of California Berkeley 6 31.6%

Table 3.5: Affiliations that published more than 2 documents about Machine Learning after
1990.

It is clear that the generalization of the VWV allows WebMiner to mine the Internet

by simply querying the metadata summarized in the different layers without accessing the

artifacts themselves, once the VWV is constructed.

While our preliminary experiment was confined to computer science documents only by

using Marc Vanheyningen’s Unified computer science master index [250] as primitive data

to create our VWV, it illustrates the feasibility of our model. Using a subset of the Internet

also simplifies the concept hierarchies to be built. For a first step, before the automated

tools are constructed, we believe that this subset is rich enough to give us interesting results.

The layer-1 was built into a unique Sybase relation and the upper layers were constructed

using a semi-automatically generated concept hierarchies.

3.6 Conclusion and Future Work

Search engines currently available on the Internet are keyword-driven, and the answers pre-

sented are lists of presumably relevant documents. The VWV and WebML allow us to

apprehend and solve the resource discovery issues by presenting lists of relevant documents

to users, but also allowing the users to progressively and interactively browse detailed in-

formation leading to a targeted set of pertinent documents. The resource discovery led by

progressively detailed information browsing suits the users who do not have a clear mind

on what are the exact resources they need. WebML queries are treated like information

88 CHAPTER 3. QUERYING THE WEB FOR RESOURCES AND KNOWLEDGE

probes, being mapped to a relatively high concept layer and answered in a hierarchical

manner. Moreover, the knowledge discovery power of WebML is unique. It helps find in-

teresting high level information about the global information base. It provides users with a

high-level view of the database, statistical information relevant to the answer set, and other

associative and summary information at different layers. In addition, the VWV model can

take advantage of other web page restructuring query languages, such as WebLog and We-

bOQL, and available networked agents, such as Ahoy!, to retrieve pertinent descriptors from

web documents and build the first layer of the MLDB structure.

We see WebML as a programming language for Web mining, to be embedded in other

traditional programming languages, more than an interactive query language, much like

SQL is today. An interpreter for WebML would translate queries to SQL to take advantage

of the powerful and sophisticated SQL optimizers available.

Experiments run locally on a collection of on-line documents were very promising. We

plan to extend these experiments and include full operational web sites. The design and

implementation of a point-and-click user interface is also projected. The interface would

alleviate the need for writing queries directly in WebML, and it will also allow interactive

OLAP on a “hyperspace” data cube.

We have studied data mining from web access logs[282, 141] and we plan to design a

query language for web log analysis and data mining. Like DMQL [126], the language will

be specialized for data mining and will integrate web content mining, web structure mining

and web usage mining by merging the capabilities of both WebML and DMQL.

Part II

Multimedia Mining

89

Chapter 4

Content-Based Visual Media

Retrieval

The future belongs to those who believe in the beauty of their dreams.

Eleanor Roosevelt

Nothing is more difficult, and therefore more precious, than to be able to decide.

Napoleon Bonaparte

The Virtual Web View (VWV) is a stratified structure that attempts to make part of

the Internet artifacts appear structured enough for resource and knowledge discovery by ab-

stracting their features along different layers (see Chapter 2). The first layer generated (i.e.

layer-1) is organized into dozens of database relations, such as document, person, organi-

zation, images, sounds, software, map, library catalogue, commercial data, geographic data,

scientific data, games, etc., where each of these relations contains descriptors of artifacts

from a particular class. These artifacts from the Internet can either be physical, like text

documents and images, or virtual like people and networks. One of the relations that is

of a particular interest in this chapter is the relation image, which contains descriptors of

still images and videos found in the World-Wide Web. Like in the Example 2.2.1 given in

Chapter 2, here is an example of a database schema for the relation image:

Example 4.0.1 Let the database schema of layer-1 contain the relation, image as follows

(with the attribute type specification omitted).

1. image(image addr, author, title, publication, publication date, category description, keywords, size,

width, height, duration, format, parent pages, colour histogram, texture histogram, colour layout, tex-

ture layout, chromaticity vector, movement vector, locale vector, timestamp, access frequency, . . .).

Each tuple in the relation is an abstraction of one image or video from the information

base (layer-0). The whole relation is a detailed abstraction (or descriptor) of the informa-

tion from images gathered from a site. The first attribute, file addr, registers its file name

90

91

and its “URL” network address. There are several attributes which register the informa-

tion directly associated with the file, such as size (size of the image file), timestamp (the

last updating time), etc. There are also attributes related to the formatting information.

For example, the attribute format indicates the format of a file: .gif, .jpeg, .bmp, .avi,

.mov, .png, etc., height and width indicate the height and width of the image or the video

frame, while duration indicates the duration of the video in time. One special attribute, ac-

cess frequency, registers how frequently the entry is being accessed. Similar to URL links in

in the relation documents, which indicates the popularity of a document, parent pages for

the relation image contains the list of web pages that contain the image or video in ques-

tion. The number of URLs in this list would indicate the popularity of the image on the

Web. Other attributes register the major semantic information related to the image or

video, such as authors, title, publication, publication date, category description, keywords,

etc., while attributes like colour histogram, texture histogram, colour layout, texture layout,

chromaticity vector, movement vector, locale vector indicate features related to the content

of the image. 2

While the relation image in layer-1 is treated and generalized in the same manner as

other relations from layer-1 to higher layers in the MLDB as described in Chapter 2, in ad-

dition to the resource and knowledge discovery that the VWV allows with the images, the

relation image can convey interesting retrieval properties thanks to the attributes that hold

features related to the content of the images. In this Chapter we perceive how image de-

scriptors are automatically extracted and study the potential offered by the attributes such

as colour histogram, colour layout, texture layout, movement vector and others, to perform

content-based retrieval from multimedia repositories. Content-based image retrieval is a

retrieval founded on image content features like colours and textures, rather than just iden-

tifiers or “external” descriptors like keywords . We will show that it is possible to use

image content features like colours and textures to solve object similarity searches in im-

age and video collections, find images relevant to content-based queries, and even perform

resource discovery on the basis of images contained in the resources (i.e. web documents).

Content-based search and similarity search are often considered a sort of data mining, or at

least processes and advances leading to data mining from multimedia databases. Such data

mining is explored in the next chapters.

92 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

4.1 Related Work in Multimedia Resource Discovery

Image and video indexing and retrieval has always been an interesting research field that

drew the attention of many researchers[199, 99, 21, 102, 12, 231]. The advent of the World-

Wide Web brought a new challenge to the computer vision and artificial intelligence com-

munity. Research in computer vision, artificial intelligence, databases, etc. is taken to a

larger scale to address the problem of information retrieval from large repositories of images.

Traditional pattern recognition and image analysis algorithms in the vision and Artificial

Intelligence fields dealt with small sets of still images and did not scale well. The large

collections of images and video frames on the Internet require scalability as well as speed

and efficiency. Some interesting image and video retrieval systems are beginning to appear

on the World-Wide Web scene[231, 187, 102, 21, 169].

There are two main families of image and video indexing and retrieval systems: those

based on the content of the images (content-based) like colour, texture, shape, objects, etc.,

and those based on the description of the images (description-based) like keywords, size,

caption, etc. Description-based image retrieval systems suffer poor precision usually due

to the term extraction process. Automatically assigning keywords to images is a tricky

task. Content-based image retrieval systems [99, 21, 102, 231, 187] use visual features to

index images. These systems differ mainly in the way they extract the visual features and

index images, and the way they are queried. Some systems are queried by providing an

image sample. These systems search for similar images in the database by comparing the

feature vector (or signature) extracted from the sample with the available feature vectors.

The image retrieval system Image Surfer1 provided by Yahoo, for example, is based on this

type of search. Other systems are queried by specifying or sketching image features like

colour, shape or texture, which are translated into a feature vector to be matched with the

known feature vectors in the database. QBIC [99] (Query By Image Content)2 and WebSeek

[231], for example, provide both sample-based queries and the image feature specification

queries. WebSeer [101] on the other hand, combines image descriptions, like keywords, and

image content, like specifying the number of faces in an image, and uses image content to

distinguish between photographs and figures. However, the visual features extracted are very

limited. C-BIRD [265, 169, 167] (Content-Based Image Retrieval from Digital Libraries), the

1Image Surfer available at http://ipix.yahoo.com/
2QBIC available at: http://wwwqbic.almaden.ibm.com

4.1. RELATED WORK IN MULTIMEDIA RESOURCE DISCOVERY 93

system that we developed, also exploits both content-based and description-based retrieval

techniques, and combines conjunctions and disjunctions of image features and descriptions

in the queries. It is also the only known image retrieval system that retrieves images from

a large image repository based on objects (or models) they contain.

Another major difference between image retrieval systems is in the domain they index.

While QBIC and Virage[21] solely index image databases (i.e. images from an internal

database presented via a World-Wide Web front-end), using COIR (Content-Oriented Image

Retrieval) [132], C-BIRD and AMORE (Advanced Multimedia Oriented Retrieval Engine)

[187] index images from the World-Wide Web. Indexes of images on the Internet can also

be used to pinpoint web pages containing particular images. C-BIRD for instance, using

a graph of web pages and images they contain, can easily discover resources (web pages)

given an image descriptor.

Image content-based systems give a relatively satisfactory result with regard to the visual

clues, however, their precision and recall are still not optimized. It is important to note that

image retrieval is usually based on similarity search rather than “exact” search.

Effective strategies for image retrieval will benefit from exploiting both content-based

and description-based retrieval techniques, and will combine conjunctions and disjunctions

of image features and descriptions in the queries, as well as providing users with adequate

and efficient user interfaces for both querying and browsing.

We have been developing the C-BIRD (Content-Based Image Retrieval from Digital-

libraries) system which combines automatically generated keywords and visual descriptors

like colour, texture, shape, and feature localization, to index images and videos in the

World-Wide Web.

Swain and Ballard’s work on colour object recognition by means of a fast matching of

colour histograms [241] began an interest in the use of simple colour–based features for image

and video database retrieval. In this method, a database of coarse histograms indexed by

three colour values is built up. A very simple and fast histogram matching strategy can

often identify the correct match for a new image, or a near–match, by using an L1 metric3

of histogram differences [241]. It was soon realized that, along with confounding factors

such as object pose, noise, occlusion, shadows, clutter, specularities, and pixel saturation,

a major problem arose because of the effect of changing illumination on images of colour

3L1 normalization normalizes Xi into Xi∑n

k=1
Xk

while L2 normalization normalizes Xi into Xi√∑n

k=1
X2

k

94 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

objects [110].

Several colour object recognition schemes exist that purport to take illumination change

into account in an invariant fashion.

In [72], the problem of illumination change is addressed by extending the original Swain

and Ballard method to include illumination invariance in a natural and simpler way than

heretofore. First, it is argued that a normalization on each colour channel of the images

is really all that is required to deal properly with illumination invariance. Second, with

an aim of reducing the dimensionality of the feature space involved, a full–colour (3D)

representation is replaced by 2D chromaticity histograms. It is shown that the essential

illumination–invariant colour information is maintained across this data reduction. The

normalization step has the effect of undoing a changing–illumination induced shift in pixel

colour–space position and in chromaticity space.

Histograms in chromaticity space are indexed by two values, and are treated as though

they were images. In order to greatly improve the efficiency in searching large image and

video databases, the chromaticity histogram-images are compressed and then indexed into

a database with a small feature vector based on the compressed histogram. In the current

implementation, the chromaticity histogram-image is first reduced by using a wavelet scaling

function. Then, the Discrete Cosine Transform (DCT) is applied, followed by a zonal coding

[246] of the DCT image. This results in an effective low–pass filtering of the chromaticity

histogram. The resulting indexing scheme is very efficient in that it uses a DCT-chromaticity

vector of only 36 values. We have also applied this technique to video segmentation [256].

Since it is much more frequent that illumination changes due to camera motions and object

motions in video, the colour-channel-normalization method is shown to clearly outperform

other cut-detection methods[133, 256, 12] (in video segmentation) that only rely on colour

histograms.

Most existing techniques for content-based image retrieval rely on global image features

such as colour and texture. These global methods are based on simple statistics extracted

from the entire images. They are easy to obtain and to store in a database, and their

matching takes little time. Inevitably, the global methods lack the power of locating specific

objects and identifying their details (size, position, orientation, etc.). Some extensions to

the global method include search by colour layout [99], by sketch [12, 187], and by colour

regions according to their spatial arrangements [231].

In the remainder of this chapter, we describe the content-based image retrieval features

4.2. A CONTENT-BASED VISUAL MEDIA RETRIEVAL SYSTEM 95

in C-BIRD, and give an account of our implementation effort to retrieve images from the

World-Wide Web4. Some retrieval results are also given. At the end, we summarize our

conclusions and future possible enhancements.

4.2 A Content-Based Visual Media Retrieval System

Conceptually, C-BIRD is constructed on top of the MLDB structure (see Chapter 2) and

uses one of the artifacts descriptor relations in the first bed of the structure. In reality, it has

been designed independently from the Virtual Web Views described in Chapter 2. Note that

C-BIRD does not exclude the VWV, and vice-versa. The multimedia repository considered

is indeed the World-Wide Web. Images and videos are retrieved from the Internet, then

processed to extract their visual content and descriptive features which are stored in a

set of relations. This set of relations represent the relation image in layer-1 as previously

mentioned. Given this data extracted from the images and video frames, C-BIRD is capable

of different types of searches for resource discovery in visual media repositories such as

the World-Wide Web. Search by conjunctions and disjunctions of keywords, as well as a

combination of all the following searches are also possible.

• Similarity Search: a sample image is given and the system looks for similar images

based on the colours present in the sample image. There are two possible similarity

searches:

1. search by colour histogram: similarity with colour histogram in a sample image;

2. search by illumination invariance: similarity with colour chromaticity in a nor-

malized sample image.

• Template-Based Search: some visual clues are given about the desired images to be

retrieved, such as colour and texture patterns. The system matches these visual

patterns with the visual descriptors collected from the multimedia repository. There

are four types of these searches - two for colours (presence and layout), and two for

texture density and orientation (presence and layout):

4The development of C-BIRD system is a team effort led by Dr. Ze-Nian Li. In particular, Bing Yan,
Zinovi Tauber, Dr. Mark Drew and Dr. Jie Wei have also made significant contributions with original
concepts, algorithms and implementations.

96 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

1. search by colour percentage: specification of up to 5 colours and percentages;

2. search by colour layout: specification of the layout of colours in a 1 × 1. 2× 2,

4× 4 or 8× 8 grid;

3. search by edge density and orientation;

4. search by edge layout: specification of edge density and orientation in a 1 × 1.

2× 2, 4× 4 or 8× 8 grid.

• Model-Based Search: an object model is given as a guide and the system looks for

images with the specified object regardless of its position, its orientation (in 2 dimen-

sions), and its size in the image.

Videos are treated as images after key frames are extracted from the video streams. A

cut-detection algorithm [256] is used to detect drastic changes in the scene and determines

where the scene changes occurs. Independent video segments are then identified. From each

video segment a set of video frames are selected to represent the segment. We chose to select

only one frame (the first frame of the video segment) to represent the segment. In other

words, each video stream ends up being represented by a set of frames, one for each distinct

segment. Most cut-detection methods used are colour-based. The algorithm simply detects

drastic changes in the colour histogram from one frame to the other. This could mean for

example that the camera has moved, a new scene is shown, or an object has appeared in

the picture, etc. This is a very easy and efficient approach, however it may detect cuts

where they shouldn’t be, for example when there is an illumination change (i.e. flash, cloud

covering the sun, etc.). The technique we opted to use acts on chromaticity rather than

colour histogram comparisons [256, 257]. The results shown in [256, 167] demonstrate the

efficiency of this method.

4.2.1 Similarity Search for Images and Video Frames

Given an initial image, called sample image, looking for similar images is a common need

in many applications. Similarity, however, is very relative. Two similar images could be

images of the same scene, for example two pictures of actions on the beach, or two images

containing a boat, even if one is sailing and the other is in the harbour. Similar images could

also be defined as containing objects semantically related, for example a picture of a school

and a picture of a pupil, or two pictures of different animals. These definitions of similarity

4.2. A CONTENT-BASED VISUAL MEDIA RETRIEVAL SYSTEM 97

are however complex to “comprehend” by current computer applications5. In the context

of the C-BIRD system, we opted for a more simple definition of similarity. Two images are

considered similar if their colours are similar; they are similar if their colour histograms (or

chromaticity vectors) are close enough given a threshold.

For simplicity, we have used the RGB colour space where colours are represented by

triplets (r, g, b), r being a value of red, g a value of green, and b an value of blue, all ranging

from 0 to 255 giving more than 16 million colours (the use of HSV or LUV colour space is also

possible). We have discretized the colour space to reduce the number of distinct colours

given the fact that human beings using a system like C-BIRD can not easily distinguish

between a large number of colours. We have chosen to quantize the colours to 512, then

256, and finally to 64 distinct colours (i.e. four values for each dimension r, g, and b).

Search by Colour Histogram

The colour histogram of an image is obtained by counting the number of times each discrete

colour of the discretized colour space occurs in the image array. Similar colours in the

continuous RGB space which were quantized together in the discretized space count for the

same discrete colour. In our case, we have 64 colours in the histogram (512 and 256 in

our previous implementations of C-BIRD). Each bin in the histogram counts the number

of pixels in a particular discrete colour. Since the sum of the numbers of all bins in the

histogram is equal to the number of pixels in the picture, histograms can only be compared

when images have the same sizes. In order to be able to compare images of different sizes,

we normalized the histograms by converting the number of pixels in bins to percentages.

In other words, the bins of a normalized histogram indicate the percentage of the pixels of

an image in a particular discrete colour, and the histogram becomes a probability density

making, effectively, each image have the same number of pixels.

Swain and Ballard developed in [241] a very useful histogram metric used for histogram

comparisons. Given two histograms: HM of the model image, and HI of the image the

model is compared to, the intersection µ between HM and HI is defined as in 2.1 with n

being the number of discrete colours.

µ ≡
n∑
k=1

min{HM(k), HI(k)} (2.1)

5There is no known functional image interpretation algorithm yet.

98 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

The intersection value µ is the number of pixels in the picture model that have corre-

sponding pixels of the same colour in the image compared to the model. Swain and Ballard

normalize intersection (or match) values by the number of pixels in the model histogram

(HM), and thus matches are between 0 and 1.

Υ ≡
∑n

k=1 min{HM(k), HI(k)}∑n
k=1 HM(k)

(2.2)

We have adopted Swain and Ballard’s definition of histogram intersection, but since our

histograms are already normalized (i.e. the volume under each histogram is equal to unity),

the calculation of Υ in Equation 2.2 is not necessary. Indeed all images are normalized to

the same size by using probabilities in the histograms. In C-BIRD we compare two images

by calculating µ and contrasting it to a threshold θ. The match is successful if µ exceeds

θ, and the image I is declared similar to the image model M. When looking for the best

matches in an image repository, the system proceeds by intersecting the colour histograms.

The highest value of µ, or in other words the smallest distance value (1− µ) indicates the

image that matches best.

The time for calculating histogram intersection is proportional to the number of distinct

discrete colours n, and so is very fast.

Search by Illumination Invariance

Similar pictures taken over varying light conditions may not be considered similar to the

colour histogram intersection method presented above, since with different illuminations,

colours are not constant. Drew, Wei and Li introduced in [72] an indexing method that

is efficient and invariant under illumination change by correcting the chromaticity of the

illuminant in an image.

The chromaticity (r, g) for each pixel is defined by [264] as:

r = R/(R + G + B) , g = G/(R + G + B) (2.3)

It is shown in [72] that normalizing a chromaticity histogram and reducing its size by a

wavelet transformation, and then further reducing it by going to the frequency domain

and discarding higher–frequency DCT coefficients, can yield a simple yet efficient colour

indexing method that is invariant under illuminant change. We have used the colour-

channel-normalization method proposed by Drew, Wei and Li in [72] to derive and implement

a similarity search by Illumination Invariance.

4.2. A CONTENT-BASED VISUAL MEDIA RETRIEVAL SYSTEM 99

Given an image of size m × n, each of the RGB channels is treated as a long vector

of length m · n. It is shown in [72] that by employing an L2 normalization on each of the

three RGB vectors, the effect of any illumination change is approximately compensated.

The L2 normalization of a colour Ci is defined as Ci√∑n·m
k=1

C2
k

. The usage of chromaticity

provides two additional advantages: (a) the colour space is reduced from 3D to 2D, hence

less computations, (b) the chromaticity value is guaranteed to be in the range of [0, 1].

The chromaticity histogram obtained this way is compressed with a symmetrical wavelet

low–pass filter [174]. Applying this scaling function to the chromaticity histogram h results

in a new histogramH . The Discrete Cosine Transform (DCT) of H is denoted Ĥ. Because

the DCT is linear, it is possible to index the image on Ĥ. Since the lower frequencies in

the DCT capture most of the energy of an image, after applying the DCT we can retain

just the lower frequency coefficients to index the image with fairly good accuracy. For our

prototype implementation we chose to retain 36 coefficients6.

Populating the database, then, consists of calculating off-line the 36 values Hd, viewed

as indexes for each image. For the image query, first the 36 values for the query image

are computed, thus obtaining H ′d; then for every image in the database, the L2 distance

[
∑

(H ′d −Hd)2]1/2 is calculated. An image minimizing the distance is taken to be a match

for the query image. Note that in this method only reduced, DCT transformed, quantized

histogram–images are used — no inverse transforms are necessary and the indexing process

is entirely carried out in the compressed domain. See [167] for more details.

4.2.2 Template-Based Search

Colour and texture play an important role in content-based image retrieval. Dominant

colours and textures usually leave an impression on the user, who often uses these content

characteristics to later retrieve the image if needed again. Querying an image repository

basically consists of submitting the visual characteristics needed, like colours and textures.

The submission of these characteristics can be done by means of templates, which are simply

containers where desired colours and textures can be specified. We have distinguished four

different templates for search by colour percentage, search by colour layout, search by edge

density and orientation, and search by texture layout. Note that a combined search is

6By experiment, it is found [72, 257] that using only 36 coefficients worked well, these being those in the
first 36 numbers in the upper left corner of the DCT coefficient matrix.

100 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

possible by combining the templates.

Search by Colour Percentage

This template is used to define the colours to be present in the image to retrieve. A certain

number of colours to be present can be specified with their approximate percentage in the

image to retrieve. The specified colours and their percentages are matched to the colour

histograms in the database. The matching is not to the exact percentage, but given a

threshold Θ, percentages are converted to ranges (percentage ±Θ).

Search by Colour Layout

This template is used to define localized colours in a 1× 1, 2× 2, 4× 4 or 8× 8 grid. The

presence of the colour and its approximate location in the image is indicated by defining

the desired colour in the appropriate cell of the grid. The 1×1 grid, for example, is used to

specify a dominant colour in the images to retrieve. Note that not all cells of the grid have

to be filled. In that case, for an empty cell, all possible colours are a match.

Search by Edge Density and Orientation

Two of the known texture measures are coarseness and directionality [242]. Recent studies

[207, 172] also suggest that they are among the few most effective perceptual dimensions in

discriminating texture patterns. The directionality is especially useful in handling rotations.

The texture features considered are edge density (i.e. coarseness), which gives an estimation

whether the image (or an area in the image) is highly textured, and edge orientation (i.e.

directionality). The edge orientations supported are: horizontal, vertical, oblique right, and

oblique left, in other words: 0◦, 90◦, 45◦, and 135◦. These were chosen just as a proof of

concept. Any angle could be chosen too. These orientations are like quantized colours in

a 360 colour space. Indeed the search by edge density and orientation template is used

to define the edge orientation to be present in the image and its density, exactly like the

presence of a colour and its percentage. Again, the matching is not to the exact orientation

and density. The four orientations we chose (0◦, 90◦, 45◦, and 135◦) divide the 360◦ circle,

and density has been defined by three values: high, medium and low.

4.2. A CONTENT-BASED VISUAL MEDIA RETRIEVAL SYSTEM 101

Search by Texture Layout

This template is used to define localized edge orientations and their density in a 1×1, 2×2,

4 × 4 or 8 × 8 grid. The presence of the edge orientation and its approximate location in

the image is indicated by defining the desired orientation in the appropriate cell of the grid.

The desired edge density accompanies the edge orientation. Like the colour layout grids,

not all cells of the grid have to be filled.

4.2.3 Model-Based Search

In all the content-based image retrieval systems we have studied, there is no known system

capable of retrieving images containing a given object model. Model-based search consists

of retrieving images containing a given object model regardless of the size, position, or

orientation (in 2 D) of the object in the image. We have proposed two approaches to search

by object model, one using windowing matching [169], in which the object is matched in a

sliding window at different resolution levels, and the other using feature localization [167], in

which images are fragmented into rough segments called locales and a three step algorithm

matches the features in the object with the locales.

The idea behind windowing matching for object search is a recursive search of the object

in windows at different resolution levels, starting with a window equal to the complete image.

If the object is not identified in the first round (i.e. the window is the whole image) the

window is divided into nine overlapping windows, each being 25% of the window (see Figure

4.1). The recursive process at different scales takes care of the different possible sizes the

object might have, while the windows deal with the different possible positions the object

might have in the image. The different possible orientations are considered within individual

windows by first testing the presence of object’s MFCs and verifying the vectors connecting

the MFC centroids. More details about windowing matching procedure for search by object

model using a multi-resolution level recognition kernel can be found in [169].

Object Search with Feature Localization

Image segmentation is a process to segment an entire image into disjoint regions. A region

consists of a set of pixels that share certain properties, e.g., similar colour (or gray-level

intensity), similar texture, etc. As in [23], if R is a region,

102 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

Figure 4.1: Nine overlapping search windows.

1. R is connected, if and only if all pixels in R are connected 7,

2. Ri ∩Rj = φ, i 6= j,

3. ∪mk=1Rk = I , the entire image.

Although regions do not have to be connected, most available region-based and/or edge-

based segmentation methods would yield connected regions, and it is error-prone to merge

some of them into non-connected regions. In short, the traditional segmentation algo-

rithms assume (1) regions are mostly connected, (2) regions are disjoint, (3) segmentation

is complete in that any pixel will be assigned to some region, and the union of all regions is

the entire image.

Such a segmentation algorithm would yield more than a dozen purple regions, one for

each character, for the title of the first book shown in Figure 4.9. It would also yield

(unexpectedly) many white regions, since all the white blobs inside the letters ‘A’, ‘P’, ‘R’

‘O’ will unfortunately be identified as regions unless some really effective algorithm can

identify them as belonging to a non-connected region together with the two white boxes.

The above example, albeit simple and not at all unusual, indicates that the traditional image

segmentation does not yield useful grouping and representation for object recognition.

7Either 4-connected or 8-connected. See [23] for more details.

4.2. A CONTENT-BASED VISUAL MEDIA RETRIEVAL SYSTEM 103

A more useful and attainable process is feature localization that will identify features

by their locality and proximity. A new concept locale is hence defined in [167] by Li, Zäıane

and Tauber.

����
����
����

����
����
����

����
����
����

����
����
����

L1
red

L1
blue

L2
red

Figure 4.2: An image of 8× 8 tiles, and locales for colours red and blue.

Definition 4.2.1 A locale Lx is a local enclosure (or locality) of feature x.

Lx has the following descriptors:

• envelope Lx — a set of tiles to represent the locality of Lx.

• geometric parameters — mass M(Lx), centroid C(Lx), variance σ2(Lx), and shape

parameters for the locale, etc. 2

A tile is a square area in an image. Its size is arbitrarily chosen as 16× 16, but could

be bigger or smaller. The tile is the building-unit for envelopes. A tile is ‘red’ if a sufficient

number of pixels within the tile are red. It follows that a tile can be both ‘red’ and ‘blue’ if

some of its pixels are red and some are blue. While a pixel is the unit for image segmentation,

a tile is the unit for feature localization. Thus, feature localization is a kind of rough

segmentation where overlap is possible and completeness is not necessary.

Tiles are grouped into an envelope, if they are geometrically close. The closeness will be

measured by variance to be defined below.

104 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

Figure 4.2 shows a square model image that has 8×8 tiles, two locales for the colour red,

and one locale for the colour blue. The envelope L1
red in Figure 4.2, for example, consists of

5 tiles.

Since Area(Lx) equals to the maximum number of pixels in Lx that have the feature x,

Area(Lx) can also be viewed as the ‘magnitude’ of Lx.
M(Lx) is the number of pixels in Lx that actually have feature x, e.g., the number of

pixels that are red. M(Lx) is usually less than the Area of Lx, although it could be equal

to it. C(Lx) is simply the centroid of the mass. σ2(Lx) is the variance of the Cartesian

distance from pixels in Lx to the centroid, it measures the eccentricity of Lx. Note, M , C,

σ2, etc. are measured in unit of pixels, not in tiles. This guarantees the granularity. Hence

the feature localization is not merely a low-resolution variation of image segmentation.

The procedure for generating the locales basically uses merge. First, simple statistics

(M , C, σ2) are gathered within each tile. Afterwards, a method similar to “pyramid-

linking” [134] is used to merge the tiles into locales. In terms of the parent-child relation,

the overlapped pyramid is used.

Working bottom-up, all tiles having feature x are linked to their parent and merged

into Lx, if the merged envelope will have σ2(Lx) < τ , where τ is a threshold normalized

against the size of Lx. Otherwise, they will be linked to two different parents belonging to

different envelopes Lix and Ljx. During the merge, M(Lx), C(Lx), and σ2(Lx) are updated

accordingly.

From the above definition, it is important to note that the following can often be true:

1. (∃x)Lx is not connected,

2. (∃x)(∃y)Lx ∩ Ly 6= φ, x 6= y,

3. ∪xLx 6= I , the entire image.

Namely, (1) pixels inside a locale for some features are not necessarily connected, (2)

locales are not always disjoint, their envelopes can be overlapped, (3) not all pixels in an

image must be assigned to some locale in the feature localization process.

Locale is not simply a variant of non-connected region; the main difference between locale

and non-connected region is illustrated by the above property (2). In the proposed feature

localization, it is the approximate location that is identified, not the precise membership as

which pixel belongs to which region. The difference is not a philosophical one. If indeed only

4.2. A CONTENT-BASED VISUAL MEDIA RETRIEVAL SYSTEM 105

some simple process is to be applied, e.g., template matching, then the precise membership

of the region is important. In the domain of content-based image retrieval, where a very

large amount of image and video data are processed, such simple and precise matches are

not feasible. Instead, a more heuristic (evidential) process is going to be adopted which

usually involves multiple features and their spatial relationships. For this purpose, it should

be evident that the ‘blobby’ locales are easier to extract, and more appropriate than regions

formed by (connected) pixels.

As illustrated in Figure 4.9, perceptually what is important are the two purple words

“Active Perception” on a white background which in turn appears at the upper portion of a

pink cover. The colour, shape, location, spatial relationship, etc. provide a rich set of cues

for the recognition of this book cover.

Property (3) indicates that, unlike the image segmentation, the feature localization is

incomplete. Colour localization, for example, concentrates on dominant colours and does

not take notice of small noise spots (rare colours or isolated few pixels). When only the

locales of the few prominent colours are identified, the union of them is not the whole image.

We present a three-step matching algorithm for searching by object models in image

and video databases, i.e., (1) colour hypothesis, (2) texture support, (3) shape verification.

It is generally accepted that colour is fairly invariant to scaling and rotation, and it can

be well-preserved in relatively low resolution images to save computing time. After colour

localization, a hypothesis of the existence of an object at a certain location, size and ori-

entation can be made. If there is a sufficient similarity in their texture between the object

model and the image at the vicinity of the hypothesized enclosure, then a shape verification

procedure based on the Generalized Hough Transform will be invoked.

The Generalized Hough Transform (GHT) [22] is adopted to represent the shape of the

object. Briefly, each edge point in the object model is represented by a vector ri connecting

the edge point to a chosen reference point for the object. All ris are stored in an R-table

which serves as an object model. The R-table is indexed by the edge orientation φi of the

edge point.

The major advantage of the GHT (and its variants) over other shape representations

[194] is its insensitivity to noise and occlusion [171, 118]. It can also be applied hierarchically

to describe the object (or a portion of the object) at multiple resolutions. It is known that

the discriminative power of the GHT diminishes when the aim is to recognize the object

at all possible scales, orientations, and locations. However, in our algorithm, GHT is only

106 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

applied after a certain hypothesis of a possible object size, orientation, and location is made.

For both colour and shape, there is an issue of similarity. It is dealt with effectively

using the MFC and MFO vectors and the geometric parameters of the locales. First, if the

model object appears in the image with exactly the same size and orientation, then the

mass M , variance σ2 of each locale, the length ρi and orientation αi of each MFC or MFO

vectors, and the angles φj between the pairs of the MFC or MFO vectors are all identical,

whether they are extracted from the model or from the object in the image. Second, if

the object in the image has a different size and/or orientation, then M and ρi should be

scaled according to the size ratio, αi should be incremented by a rotational angle, whereas

φj would remain the same. Certain tolerance for error (using thresholds) is implemented

to support the similarity. In summary, the matching algorithm is condensed in Algorithm

4.2.1 as described in [167]:

Algorithm 4.2.1 Find the images that contain a given object model.

Input: (i) Object model; (ii) Locale descriptors of all images in database.

Output: Set of images that match the object model.

Method. After analyzing the object model, progressively eliminate images that can not be

potential candidates: Step 1: extract descriptors for model; step 2: keep only images

that match the model colours; step 3: keep only images that match texture of the

model. step 4: keep only the images that match shape. The algorithm is outlined as

follows:

begin

/∗ ANALYSE MODEL ∗/
/* Image ‘tiling’ */

(1) Within each 8× 8 tile of the image model (with a reduced-resolution)

(2) Gather M , C, σ2 for each MFC associated with the object model;

/* Colour localization */

(3) Use overlapped pyramid linking to group tiles into locale L’s for each MFC;

/∗ MATCHING IMAGES ∗/

4.3. IMPLEMENTATION 107

(4) For all images do {
/* Colour hypothesis */

(5) Starting at each C(Lfirst−MFC),

(6) if (number-of-MFC-vectors ≥ 1) and they are ‘similar’ to

the MFC-vectors in the model

(7) Make hypothesis of matched object size, orientation, and enclosure;

Proceed to check texture do {
/* Texture support */

(8) At the vicinity of the hypothesized enclosure

if (number-of-MFO-vectors ≥ 1) and they are consistent with

the hypothesized object size, orientation

(9) Proceed to check shape using the GHT do {
/* Shape verification*/

(10) Within the enclosure of the hypothesized object

(11) All edge pixels use R-table of the (rotated/scaled)

object model to vote;

(12) if number-of-votes near the reference point > τ0

(13) Confirm the detection of the object;

(14) }
(15) }
(16) }
end

2

This algorithm is basically a progressive refinement that goes over all images but avoids

evaluating all visual features for all the images when not necessary. The complexity of this

algorithm may vary greatly depending upon the availability of indexes for the visual features

tested.

4.3 Implementation

Our image retrieval system C-BIRD has been implemented on both Unix and PC platforms.

On both platforms, we used the same search engine and pre-processor written in C++.

108 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

One version of the user interface is implemented in Perl and HTML as a Web application,

another version is implemented as a java applet. Another user interface was also developed

in C++ for the PC platform [265]. Figure 4.3 shows the general architecture for C-BIRD

implementation. The system is accessible from http://jupiter.cs.sfu.ca/cbird/cbird.cgi, and

http://jupiter.cs.sfu.ca/cbird/java/ (IE 4.0 or Netscape 4.0).

Image

Excavator

C-BIRD

Pre-processor

C-BIRD

Search Engine

C-BIRD

User

Interface

Image Repository (ex: WWW)

C-BIRD Database

Figure 4.3: C-BIRD general architecture.

C-BIRD system rests on four major components:

• Extraction of images (Image Excavator);

• Processing of images to extract image features and storing precomputed data in a

database (Pre-Processor);

• Querying (User Interface);

• Matching query with image features in the database (Search Engine).

The Image Excavator extracts images and video frames from a multimedia repository.

This repository can be the WWW space, in such case, the process crawls the Web search-

ing for still images and video streams, or a set of images and videos on disk or CD-ROM.

Once images are extracted from the repository, they are given as input to the image analyzer

4.3. IMPLEMENTATION 109

(C-BIRD pre-processor) that extracts visual content features like colour and edge character-

istics. These visual features, along with the context feature like image URL, parent URL8,

keywords, etc., extracted with the Image Excavator, are stored in a database9. The collec-

tion of images and the extraction of image features are processed off-line before queries are

submitted. When a query is submitted, accessing the original data in the image repository

is not necessary. Only the precomputed data stored in the database is used for image feature

matching. This makes C-BIRD more scalable and allows fast query responses for a large

number of users and a huge set of images. When queries are submitted, only two processes

are in action: the user interface interacting with users, and the search engine accessing and

matching precomputed data. The user interface communicates with the search engine with

a set of primitives. This allows having different user interface implementations. The search

engine accesses the database of the image visual and contextual features. If necessary, both

the user interface and the search engine can access the images using their URL. We have

implemented eight types of searches in C-BIRD as described in Section 4.2:

1. search by conjunctions and disjunctions of keywords;

2. search by colour histogram: similarity with colour histogram in a sample image;

3. search by illumination invariance: similarity with colour chromaticity in a normalized

sample image;

4. search by colour percentage: specification of up to 5 colours and percentages;

5. search by colour layout: specification of the layout of colours in a 1× 1, 2× 2, 4× 4

or 8× 8 grid;

6. search by edge density and orientation;

7. search by edge layout: specification of edge density and orientation in a 1 × 1, 2 × 2,

4× 4 or 8× 8 grid;

8. search by object model: specification of an object to look for in images.

A combination of these searches is also possible. The left of Figure 4.3 shows the user

interface using Netscape to browse the image repository or the image set resulting from a

8Parent URL is the URL of the web page containing the image
9This database is equivalent to the relation image in the first layer of the MLDB presented in Chapter 2.

110 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

query. While browsing, users can submit a query by image similarity. The right of Figure

4.3 shows a user interface to specify colour layout for a given query.

Figure 4.4: C-BIRD Web user interface.

4.3.1 Retrieving the images from the World-Wide Web

The advantage of using the images available on the WWW is two-fold. First, the WWW

provides us with a huge image repository which is a superb opportunity to test the efficiency

and scalability of our implementation. Second, by using the images available on the WWW

we can build an index for the WWW and contribute in the construction of the MLDB

structure of the VWV. This not only allows finding and retrieving images but also finding

resources containing or referring to given images. Moreover, indexing images by sites can

give interesting site content summaries by displaying thumbnail-sized images from a given

Web site. Images from web pages are surprisingly representative of the associated textual

content. Thus, browsing thumbnail-sized images from a site can give a broad idea about

the content of the site.

To retrieve images from the WWW, we built a web spider (Excavator) that crawls

the Web and downloads HTML pages and images. While images are analyzed by the pre-

processor to extract content features, HTML pages are parsed to extract links to images and

other HTML pages as well as descriptive information about images. When parsing a Web

page, the Excavator extracts HTML IMG and EMBED tags and identifies image and video

URLs. Subsequently, these images are downloaded and passed to the pre-processor. Images

4.3. IMPLEMENTATION 111

are disregarded if they are dynamic (i.e. generated by a CGI), too small, or contain less

than a certain number of colours (example: 3). Thumbnails are generated for the remaining

images.

Web pages on the WWW contain not only images, but also contextual information

“describing” the images that can be extracted from text neighbouring the images. The

descriptive text can be used to educe keywords related to images. Being semi-structured,

sections and components of an HTML pages can disclose valuable information about an

image contained in the page. HTML structure components provide hints for keywords

extractions like: image file name and path if it contains a word or recognizable words, ALT

field in the IMG tag, HTML page title, HTML page headers, parent HTML page title,

hyperlink to the image from parent HTML page, and neighbouring text before and after the

image. The new META tag placed in the HEAD element of the HTML page, if available,

can provide valuable keywords extracted from the description and keywords sections. The

set of all words collected this way, is reduced by eliminating “empty” words like articles (i.e.

the, a, this, etc.) or common verbs (i.e. is, do, have, was, etc.), or aggregating words from

the same canonical form (e.g.: clearing, cleared, clears, clear) as presented in [273]. There

are 400 frequently found words in English, defined in [261], that can be considered of low

semantic information content and thus, can be eliminated (stopwords). The automatically

generated keyword list can later be manually enriched.

Image

C-BIRD

Pre-processor

Excavator

Pages to visit

Pages not to visit

Visited pages

New links

title + headers

image neighbourhood

hypertext

Images

URL

Colour histogram

Colour Chromaticity

Edge distribution

Description

Thumbnails

Content

Current

Web page

Ln

Lr

Lv

Figure 4.5: Excavator: The Web crawling process for image extraction.

Figure 4.5 illustrates the process of extracting images from the WWW. From an initial

set of pages, the Excavator recursively fetches pages, parses them, and adds their hyperlinks

to the list of pages to visit. Links are extracted from hyperlink references, frames tags, image

112 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

maps, and client pull references in HTML pages. The Excavator uses 3 lists: a list of pages

to visit (Ln), a list of pages not to visit or restrictions (Lr), and a list of visited pages

(Lv). The 2 first lists, Ln and Lr, allow the restriction of image extraction from a given

site, a given path or directory, or even a given page. In return, this can give interesting

site content summaries by displaying thumbnail-sized images from a given Web site. Images

from web pages are surprisingly representative of the associated textual content. Thus,

browsing thumbnail-sized images from a site can give a broad idea about the content of the

site.

Lr limits the exploration by the Excavator. The Excavator adheres to the Standard for

Robot Exclusion10 initiated by Martijn Koster, which allows webmasters, by means of a

robot.txt file, to specify areas and directories of the Web site that should not be visited by

spiders. Since the goal of the Excavator is not to index Web pages but to retrieve and index

images, the Excavator follows the restrictions specified in the robot.txt file when adding a

new URL to Ln. These restrictions, added to Lr, are not considered when downloading an

image. Robot META tags present in some HTML pages are also not considered for the

same reasons.

When parsing a Web page, the Excavator extracts HTML IMG and EMBED tags and

identifies image and video URLs. Subsequently, these images are downloaded and passed

to the pre-processor. Images are disregarded if they are dynamic (i.e. generated by a CGI),

too small or contain less than a certain number of colours (example: 3). Thumbnails are

generated for the remaining images. The Excavator retrieves textual information from the

parsed Web pages to automatically generate keywords associated with images contained in

the pages, and to be used in queries in conjunction with content-based features. When

an image URL is identified, the path leading to the image is used to retrieve other images

possibly stored in the same directory. On a web site, images are usually stored in the same

sub-directory (ex: gifs, images,...).

Because the URL of the page containing an image is stored with the image meta-data,

given an image, it is very easy to find the Web pages in which it is located. This allowed

us to build an image-based index on top of the course material web site for a multimedia

course at Simon Fraser University. Students remembering passages of the course notes by

the images contained in them and not their textual content, can search for the images with

10The standard for robot exclusion is available at: http://info.webcrawler.com/mak/projects/robots/exclusion.html

4.3. IMPLEMENTATION 113

C-BIRD then link to the pages using the parent URL. Figure 4.6 shows an example of an

output from the Image Excavator after parsing a web page. The output shows images and

their automatically generated keywords.

Figure 4.6: Output from the Image Excavator

4.3.2 C-BIRD database

The database used by C-BIRD is an addition to the image repository and contains mainly

meta-data extracted by the pre-processor and the Image Excavator. As explained above,

only features collected in this database at pre-processing time are used by the search engine

for image or image feature matching. During run time, minimal processing is done. For each

image collected, the database contains some description information, a feature descriptor,

and a layout descriptor, as well as a set of multi-resolution sub-images (i.e. search windows)

feature descriptors. Neither the original image nor the sub-images are directly stored in the

database; only their feature descriptors are stored.

The description information encompasses fields like: image file name, image URL, image

114 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

type (i.e. gif, jpeg, bmp,...), list of all known web pages referring to the image (i.e. parent

URLs), a list of keywords, and a thumbnail used by C-BIRD user interface for image and

video browsing.

The feature descriptor is a set of vectors for each visual characteristic. The main vec-

tors are: a chromaticity vector containing 36 values, a colour vector containing the colour

histogram quantized to 64 colours (4 × 4 × 4 for R × G × B), locale vector, MFC vector,

and MFO vector. The MFC and MFO contain 5 colour centroids and 4 edge orientation

centroids for the 5 most frequent colours and 4 most frequent orientations. These centroids

are used to derive the MFC and MFO vectors in the recognition kernel.

The layout descriptor contains, a colour layout vector, and an edge layout vector. These

vectors allow matching with user defined layouts. Regardless of their original size, all images

are assigned an 8× 8 grid. The most frequent colours for each of the 64 cells are stored in

the colour layout vector and the number of edges for each orientation in each of the cells

is stored in the edge layout vector. The latter is used for both search by edge density and

search by edge orientation layout.

All these attributes and vectors constitute a subset of the relation image of the VWV

shown in Example 4.0.1.

Since the recognition kernel searches for objects in each search window at a given resolu-

tion level, each sub-division (i.e. search window) is represented with a feature descriptor like

the full image at the highest resolution level. These feature descriptors for the sub-images

are stored with the image meta-data.

We use our illuminance invariant method to detect cuts in videos, and segment a video

clip into frame sequences. The starting time and duration of the image sequence are stored

with the meta-data. While the thumbnail is generated from the first frame, colour and

texture features are extracted from all frames.

The database was originally implemented with miniSQL database and structured files

on the Unix platform. The version running on Windows NT is using an SQL server.

4.3.3 Content-based retrieval results

C-BIRD on both platforms, has a simple and friendly user interface that allows querying

by simple mouse clicks, browsing, and composing conjunctions of complicated queries. The

current test database has over 1,300 images. The meta-data is stored in a SQL server

running on a Pentium-II 333 MHz with 128 MB RAM. Search times are in the order of 0.1

4.3. IMPLEMENTATION 115

to 2 seconds, depending upon the type of search, except for the search by object, which may

take up to 10 seconds to make comparisons in all sub-windows in the different resolutions and

do all the necessary rotations. Notice that the search by object model begins by selecting

only images that may potentially contain the object by shortlisting the images that contain

the colours present in the object.

(a) (b) (c)

Figure 4.7: Conjunction of searches.

Figure 4.7 demonstrates the use of conjunction of different searches, content-based and

description-based. Figure 4.7 (a) is the top-20 matches of a query based on the colour

layout where the top cells were blue (i.e. for “blue sky”). Figure 4.7 (b) is the result for

a combination of content-based and description-based query, with the same colour layout

specified as for Figure 4.7 (a) and an additional keyword “airplane”. Figure 4.7 (c) is the

result of the query “blue sky and green grassland” specified with a colour layout grid with

the top cells blue, the bottom cells green and a medium edge density.

Search by object model

Figure 4.8 shows detailed results of a search with multilevel resolution window matching.

The model book image and the centroids of the 5 MFCs are shown at the bottom of the

figure. Among the 5 MFCs the colour orange-red is the first MFC. As can be seen from the

original image at the left, the sought book is at the upper-left quarter. The correct match

occurs in the first of the nine search windows. The graphical display of the search window,

the located book and locations of the colour centroids are shown at the right of the figure.

The book orientation (44◦) and scale-ratio (1.09) are calculated using the weighted-average

116 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

Figure 4.8: Search by Object Model with MultiLevel Resolution Window Matching.

of the orientations and the lengths of the MFC vectors (vectors connecting the centroid of

orange-red and the centroids of the other MFCs), respectively. Accordingly, the position

(centre of the book) is determined to be at (64, 79) which corresponds to the resolution

of the bottom level of the recognition kernel. The search continues at the third level of

the recognition kernel where the edge orientations and the MFO vectors are checked and

confirmed.

(a) (b)

Figure 4.9: (a) Object Models. (b) All solutions for pink book.

The search by object model using feature localization proceeds differently and uses the

Locales introduced in Section 4.2.3.

We first identify the pixels with dominant colours and the colours that the transitional

pixels would merge into. Transitional pixels are changed to the closest dominant colour in

4.3. IMPLEMENTATION 117

their neighbourhood.

Figure 4.10: The tiles generated for the sample image

We generate the image tiles array using the dominant colours we identified, and then

generate all the Locales for the image. An example of different Locales generated from an

image are shown in Figure 4.10. The original image, is the image in the bottom-left corner

of Figure 4.10. Most features are correctly enveloped. In particular, the white colours of the

book and the “Tide” box are split into 2 locales, yet other locales with similar mass are not

split. The orange rainbow colour on the “Tide” box is split into 2 locales because it is not

compact enough, but has a large mass. The dark brown background is merged with all the

black colours in the lower book because the black pixels are just as close to the background

as they are to each other and the compactness of the merged Locale is good enough.

118 CHAPTER 4. CONTENT-BASED VISUAL MEDIA RETRIEVAL

(a) (b)

(c)

Figure 4.11: Three-step matching: (a) Retrieved Images after the colour hypothesis; (b)
Images that also have texture support; (c) Images that finally pass the shape verification
step.

Figure 4.9 illustrates an example of search by object model using feature localization.

Figure 4.9(a) shows the eight book models of which the first book is selected. The object

model in this case is a book. All five occurrences in our test database of this book with

various sizes, positions and orientations are shown in Figure 4.9(b). In the current imple-

mentation only a few book models as shown in Figure 4.9(a) are tested. In the future, users

will be able to crop out any object/pattern in any image and use it as a model. Figures

4.11(a), 4.11(b) and 4.11(c), respectively show the results of each of the three steps in our

matching algorithm. Figure 4.11(a) shows the preliminary result after the colour hypothesis

(step 1). All the images retrieved contain the MFCs of the object model. We can see that

in Figure 4.11(b), after the texture support has been verified, the tree pictures with flowers

have been eliminated. Figure 4.11(c) is the final result after the shape verification step. Four

occurrences of the object model (pink book) with various sizes, positions and orientations

are correctly retrieved. The result has a perfect precision (100%), but the recall is only

80%. Indeed, there are five occurrences of the object in the database (Figure 4.9(b)) but

the final result shows four, despite the fact that all five occurrences of the book appear in

4.4. CONCLUSION AND DISCUSSION 119

the preliminary results in Figures 4.9(a) and 4.9(b). The missing occurrence is due to the

fact that the pink book was placed on a white sheet overlapping from the top. The white

area next to the top of the pink book was merged with the white locale of the book, hence

the rejection by the third step even though the pink book was hypothesized at the first two

steps. The algorithm mistakenly interpreted the two objects (white paper and pink book)

as one with a different shape.

4.4 Conclusion and Discussion

Content-based image retrieval is an important issue in the research and development of

digital libraries which usually employ large multimedia databases. This Chapter presented

our prototype system C-BIRD for content-based image retrieval from large image and video

databases. Issues in both database design and image content based retrieval are addressed.

A multi-level recognition kernel is developed to support search by model. Unlike most

existing systems which use only global image features (colour, texture, etc.), the modeling

and matching methods described are capable of handling a range of different sizes, 2-D

rotation, and multiple occurrences of the objects in the images. Feature localization and a

three-step matching algorithm are presented to support Search by Object Model. It is shown

that instead of image segmentation, feature localization should be used as a preprocessing

step before matching.

Several content-based image and video retrieval systems use region-based search meth-

ods. For example, QBIC [99] uses rectangular shaped coloured regions; Video-Q [225] keeps

the description and spatial relationship of regions, so that user can sketch the trajectory of

moving colour regions for the retrieval of certain moving objects. These systems rely heavily

on a good segmentation preprocess and they do not have a systematic means of retrieving

objects. To the best of our knowledge, C-BIRD is the first system that successfully performs

object model search from image and video databases.

This work also shows how pertinent information can be extracted from images and

videos from a global network information system in order to build the first layer of the

Multiple-Layered Database (MLDB) structure defined in Chapter 2. Concept hierarchies

could be defined on colours, textures and other visual and non-visual features to aid in

the generalization process towards higher layers. Such an approach is adopted in the next

Chapter for OLAP and data mining from visual media repositories.

Chapter 5

OLAP and Data Mining from

Visual Media

The desire of knowledge, like the thirst of riches, increases ever with the acquisition of it.

Laurence Sterne, Tristram Shandy

Everything is simpler than you think

and at the same time more complex than you imagine.

Johann Wolfgang von Goethe

Data Mining is a young but flourishing field. Many algorithms and applications exist to

mine different types of data and extract different types of knowledge. Mining multimedia

data is, however, at an experimental stage.

We have implemented a prototype for mining high-level multimedia information and

knowledge from large multimedia databases. MultiMediaMiner has been designed based

on our experience in the research and development of a relational data mining system,

DBMiner[120, 119, 121], and a Content-Based Image Retrieval system from Digital Libraries,

C-BIRD, described in the previous Chapter.

MultiMediaMiner includes the construction of multimedia data cubes which facilitate

multiple dimensional analysis of multimedia data, and the mining of multiple kinds of knowl-

edge, including summarization, classification, and association, in image and video databases.

The images and video clips used in our experiments are collected by crawling the WWW.

Many challenges have yet to be overcome, such as the large number of dimensions, and the

existence of multi-valued dimensions.

Substantial progress in the field of data mining and data warehousing research has been

witnessed in the last few years. Numerous research and commercial systems for data mining

and data warehousing have been developed for mining knowledge in relational databases and

data warehouses [92]. Despite the fact that Multimedia has been the major focus for many

researchers around the world, data mining from multimedia databases is still in its infancy.

120

121

While one of the first dominant and referenced papers in the field of knowledge discovery

by Fayyad et al.[90, 91] describes discovering patterns from satellite pictures, multimedia

mining still seems shy on results. Many techniques for representing, storing, indexing, and

retrieving multimedia data have been proposed. However, rare are the researchers who

ventured into the multimedia data mining field. Most of the studies done are confined

to the data filtering step of the KDD process as defined by Fayyad et al. in [202]. In

[63], Czyzewski shows how KDD methods can be used to analyze audio data and remove

noise from old recordings. Chien et al. in [54] use knowledge-based AI techniques to assist

image processing in a large image database generated from the Galileo mission. Others use

multimedia to complement data mining systems. Bhandari et al. [30], for instance, marries

a data mining application with multimedia resources. His application does not claim to

mine a multimedia database, but uses video clips to support the knowledge discovered from

a numerical database. More recently, Tucakov and Ng in [248] used a method for outlier

detection to identify suspicious behaviour from videos taken by surveillance cameras.

Multimedia data mining is a subfield of data mining that deals with the extraction of

implicit knowledge, multimedia data relationships, or other patterns not explicitly stored in

multimedia databases. A multitude of applications can benefit from multimedia data mining

such as interesting pattern discovery in medical imaging, global weather understanding

from satellite and radar imagery, patterns detection in surveillance cameras, solar storms

understanding, etc. Multimedia data mining is not limited to images, video or sound, but

encompasses text mining as well. There has been interesting research in text mining from

text documents[93, 94] and Web or semi-structured data querying and mining[276, 149, 81,

182]. The availability of affordable imaging technology is leading to an explosion of data

in the forms of image and video. Many relational databases are now including multimedia

information, such as photos of customers, videos about real estate, etc. The proliferation of

huge amounts of multimedia data is becoming prominent. Global information networks like

the Internet, as well as specialized databases, are filled with a variety of multimedia, medical

images, satellite pictures, etc., necessitating means to retrieve, classify and understand this

data. Moreover, with the popularity of multimedia objects in extended and object-relational

databases, it is becoming important to mine knowledge related to both multimedia and

relational data in large databases, and maybe, to deal with them in the same manner.

Most of the recent work on multimedia systems has concentrated on transmission, syn-

chronization and management of continuous data streams of audio, video and text. Other

122 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

fields, no less important, are authoring, coding, indexing and retrieving of media data. The

last focused area has drawn the attention of many. Researchers, for instance, try to “sum-

marize” video clips in one image. Salient stills were introduced in [247], in an attempt to

represent an abstract of a video clip in one still image. The salient stills reflect aggregates of

temporal changes that occur in a moving image sequence. Stills are created automatically or

with user intervention by combining affine transformation and multiple frames of the image

sequence. Taniguchi et al.[243] use “mosaicing” to glue overlapping video frames to create

a panoramic still image representing the video sequence. Despite the fact that representing

a video clip in one still image summarizes in a way video clips, it is hard to claim that this

is data mining from video.

With huge amounts of multimedia data collected by video cameras and audio recorders,

satellite telemetry systems, remote sensing systems, surveillance cameras, and other data

collection tools, it is crucial to develop tools for discovery of interesting knowledge from

large multimedia databases.

In addition, many relational databases start including multimedia information as well,

such as the photos of a customer, etc. Therefore, it is important to mine knowledge related

to both multimedia and relational data in large databases. Unfortunately, there have not

been many multimedia data mining systems reported in previous studies.

Recent advances in the research on multimedia databases [144, 48, 195, 99] enable cre-

ation of large multimedia databases which can be queried in an effective way. These ad-

vances, in combination with the research into multimedia database and advances in data

mining in relational databases [92], created a possibility for the creation of multimedia data

mining systems.

We have DBMiner system [119, 122, 120] and the C-BIRD system [169, 167] to manip-

ulate and interpret multimedia data for knowledge discovery purposes.

The current MultiMediaMiner system, which was demonstrated at the SIGMOD98 con-

ference, includes a module for characterization of knowledge in image and video databases,

a module for classification of multimedia data, and a module for detection of association

between multimedia features.

A more detailed description of the MultiMediaMiner system is presented in Section 5.1.

The challenges and obstacles that we encountered with mining multimedia data, and the

turn-arounds for our prototype implementation are presented in Section 5.2. Section 5.3

summarizes our on-going research. Finally, a section is dedicated to multimedia association

5.1. A DATABASE MINING SYSTEM PROTOTYPE 123

rules which attempt to go beyond the rules discovered by the MM-associator of the current

MultiMediaMiner system, by integrating more content-based descriptors.

5.1 A database mining system prototype

The MultiMediaMiner system is based on our experiences in the development of an on-line

analytical data mining system, DBMiner, and C-BIRD, a system for Content-Based Image

Retrieval from Digital libraries.

The DBMiner system1, demonstrated in SIGMOD’96, KDD’96/97, CASCON’96/97, and

other conferences, currently contains the following five data mining functional modules:

characterizer, comparator, associator, predictor, and classifier. A general description of

these functional modules is in [120]. Several additional functional modules, especially with

time-related data, clustering, and visual data mining, are at the research and development

stage. DBMiner applies multi-dimensional database structures [120], attribute-oriented in-

duction [119], multi-level association analysis [121], statistical data analysis, and machine

learning approaches for mining these different kinds of rules in relational databases and

data warehouses. C-BIRD system, presented in Chapter 4, was demonstrated in CAS-

CON97 (some of the function modules can be played on the Internet interactively via

http://jupiter.cs.sfu.ca/cbird/). It contains four major components: (i) Image Excava-

tor (a web agent) for the extraction of images and videos from multimedia repositories,

(ii) a pre-processor for the extraction of image features and storing precomputed data in a

database, (iii) a user interface, and (iv) a search kernel for matching queries with image and

video features in the database. C-BIRD allows searches by conjunctions and disjunctions of

keywords, colour histograms, colours with illuminance invariance, colour percentage, colour

layout, edge density, edge orientation and texture coarseness. In particular, C-BIRD is char-

acterized by its ability to cope with significant changes in image chrominance and to search

by object model. The database used by C-BIRD is an addition to the image repository

and contains mainly meta-data extracted by the pre-processor and the Image Excavator,

like colour, texture, and shape characteristics and automatically generated keywords. Mul-

tiMediaMiner, the general architecture of which is shown in Figure 5.1, inherits the CBIRD

database.

1Some of the function modules can be played on the Internet interactively via
http://db.cs.sfu.ca/DBMiner with a web-based user interface we developed, see Figures 3.2 to 3.5.

124 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

Image

Excavator

C-BIRD

Pre-processor

C-BIRD

Search Engine

C-BIRD DatabaseMultimedia
Data Cube

User

Interface

M-MMiner

Discovery

Modules

M-MMiner

Image and Video

Repository

Figure 5.1: General Architecture of MultiMediaMiner.

The Image Excavator and the pre-processor have been enhanced to collect and pre-

process more information necessary for the MultiMediaMiner. Video clips are segmented

after cuts have been detected. Each video segment is represented by one or more video

frames which are later treated and processed by the system like images. For each image

collected, the database contains some descriptive information, a feature descriptor, and

a layout descriptor. The original image is not directly stored in the database; only its

feature descriptors are stored. The descriptive information encompasses fields like: image

file name, image URL, image and video type (i.e. gif, jpeg, bmp, avi, mpeg, . . .), a list of

all known web pages referring to the image (i.e. parent URLs), a list of keywords, and a

thumbnail used by the user interface for image and video browsing. The feature descriptor

is a set of vectors for each visual characteristic. The main vectors are: a colour vector

containing the colour histogram quantized to 64 colours (all colours are represented in the

RGB space by 4 values in red, 4 values in green and 4 values in blue), MFC (Most Frequent

Colour) vector, and MFO (Most Frequent Orientation) vector. The MFC and MFO contain

5 colour centroids and 4 edge orientation centroids for the 5 most frequent colours and 4

most frequent orientations (the edge orientations used are: 0◦, 45◦, 90◦, 135◦). The layout

descriptor contains a colour layout vector and an edge layout vector. These vectors allow

matching with user-defined layouts as in the user interface shown at the right of Figure

4.4(a). Regardless of their original size, all images are assigned an 8 × 8 grid. The most

5.1. A DATABASE MINING SYSTEM PROTOTYPE 125

Figure 5.2: Selecting (and browsing) data sets of images using keyword hierarchy.

frequent colours for each of the 64 cells are stored in the colour layout vector and the number

of edges for each orientation in each of the cells is stored in the edge layout vector. Other

sizes of grids, like 4 × 4, 2 × 2 and 1 × 1, can be derived easily. These colour layout grids

can be used for spatial relationships between colours at different levels of resolution.

The Image Excavator uses image contextual information, like HTML tags in web pages,

file name and path, neighbouring text, etc., to derive keywords (see Chapter 4).

The hierarchy of keywords with its hypernymy and hyponymy relationships allows one

to browse the image and video collection by topic. In Figure 5.2, for example, thumbnails

of commercial airplanes pertaining to the aircraft manufacturer Boeing are displayed. This

user interface also allows the selection of a multimedia data set to be mined. The hierarchy

of keywords on the left of Figure 5.2 is a section of the concept hierarchy automatically

generated by visiting some web sites containing aircraft images.

126 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

Figure 5.3: Snapshot of MultiMediaMiner Characterizer

The mining modules of the MultiMediaMiner system include three major functional mod-

ules, characterizer, classifier, and associator. Many data mining techniques are used in the

development of these modules, including data cube construction and search [47], attribute-

oriented induction [120], mining multi-level association rules [121], etc.

The functionalities of these modules are described as follows:

• MM-Characterizer: This module discovers a set of characteristic features at multiple

abstraction levels from a relevant set of data in a multimedia database. It provides

users with a multiple-level view of the data in the database with roll-up and drill-down

capabilities. Figure 5.3 describes in a histogram graph the general characteristics

for two dimensions: the size of the media in bytes and the Internet domain from

which the media were extracted. For this example, only three Internet domains were

considered, while the sizes were “rolled-up” to a higher concept of media size (i.e.

5.1. A DATABASE MINING SYSTEM PROTOTYPE 127

Figure 5.4: Visualization of association rules.

small, medium, large and very large). With this user interface, it is possible to visualize

any two dimensions at a time, and drill-down or roll-up along a given dimension to

find characteristics on more concrete values or specialized concepts.

For example, the module may describe the general characteristics of image sequences

based on the topic of the video, the topic being a high level keyword defined in the

concept hierarchy. The user can drill-down along the topic dimension to find charac-

teristics of the image sequences based on more concrete topics.

• MM-Associator: This module finds a set of association rules from the relevant set(s)

of data in an image and video database. An association rule shows the frequently

occurring patterns (or relationships) of a set of data items in a database. A typi-

cal association rule is in the form of “X → Y [s%, c%]” where X and Y are sets of

predicates, s% is the support of the rule (the probability that X and Y hold together

among all the possible cases), and c% is the confidence of the rule (the conditional

probability that Y is true under the condition of X). For example, the module mines

association rules like: “what are relationships among still images, the frequent colours

used in them, their size and the keyword ‘sky’?” One possible association rule among

many to be found is “if image is big and is related to sky, it is blue with a possibility

of 68%” or “if image is small and is related to sky, it is dark blue with a possibility

128 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

Figure 5.5: Excerpt from a classification tree generated by MultiMediaMiner

of 55%”. Figure 5.4 shows a visualization of some association rules. The existence of

a column on the grid represents an association between the left-hand side parameters

and the right-hand side parameters. The height of the column depicts the support of

the rule it represents, while the colour of the column describes the confidence of the

rule.

• MM-Classifier: This module classifies multimedia data based on some provided class

labels. The result is an elegant classification of a large set of multimedia data and a

characteristic description of each class. This classification represented as a decision

tree can also be used for prediction. Figure 5.5 shows an output of this module

where a classification of images and frames based on their topic, with reference to the

distribution of image format, is made for a given Web site. By clicking on a class, it

is possible to drill through to the raw data. A window displays the images pertaining

to the class (ex. book, animal, flower in Figure 5.6).

The user interface of all these modules allow drilling and rolling-up along the different

concept hierarchies defined on the dimensions, and thus, allow interactive mining. It is also

possible to drill through right to the raw data. In our case the raw data are images and

videos stored on the Web. MultiMediaMiner calls a Web browser and displays the original

image in its original size or even the web pages that contain the image. This gives an

5.2. OBSTACLES AND CHALLENGES WITH MULTIMEDIA MINING 129

Figure 5.6: MultiMediaMiner Classifier user interface with drill-through to the class images.

opportunity for information retrieval from the Web, based on the data mining results.

The MM-Characterizer, MM-Associator, and MM-Classifier are useful modules for visual

asset management and indirect visual media retrieval. The additional OLAP capabilities

attach strength to the interactive management and retrieval for multimedia repositories.

5.2 Obstacles and Challenges with Multimedia Mining

The first problem with mining multimedia databases is gaining access to significantly large

multimedia data sets. This may seem trivial, but getting access to CT scans from hospitals,

for instance, is not easy due to privacy issues. CT scans would have been an interesting

application for the discovery of association rules based on colours in these scans. We chose

the World-Wide Web as our image and video source because it is free, available and has a

reasonably large collection. Another advantage of using the Web as our source for images

130 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

and video is that we can use the context of the images to automatically extract additional

information like the keywords from the pages containing the image, the popularity of the

image (i.e. how many pages use the same image), the Internet domain of the image, etc. All

this information was added to the already dimension-rich database. Moreover, by saving

the URL of images, we avoid the need for large storage space for the images and videos. The

World-Wide Web is used as the repository. This, however, requires regular validation due to

the dynamic nature of the World-Wide Web. Indeed, some images may disappear and some

new ones appear in the web pages already visited by our crawler. If images disappear from

the Web, they are discarded from our database. If the images change, they are processed

again and the descriptors in our database replaced while the changes are propagated to

the data cube structure. In addition, by saving the URLs of the images and the URLs of

the pages that contain the images, it is possible to do information retrieval and resource

discovery from the Web by drilling through the results of the data mining process.

5.2.1 Keyword hierarchies

Keywords describing images are very important and useful when dealing with large col-

lections of images. However, automatically associating keywords to images is not easy,

while manual keywording is definitely not scalable. As mentioned in Section 5.1, we take

advantage of the semi-structure of the web pages and the syntax of the URLs to extract

candidate keywords that, after normalization and filtering, are associated to the images.

The normalization process uses morphological analysis to draw forth the canonical forms of

words, while the filtering process uses a list of stopwords and WordNet lexical database to

eliminate illicit or unwanted words. While the candidate keyword selection and the keyword

filtering eliminate most of the unwanted words, the list of keywords per image still remains

large. This can be reduced by adding new stopwords and/or use natural language heuristics

to eliminate outliers.

For On-Line Analytical Processing (OLAP), concept hierarchies are needed to drill-down

and roll-up along the dimensions defined on the data. These hierarchies are also important

for multi-level mining in order to specialize or generalize the knowledge discovered. Thus,

organizing the keywords in a concept hierarchy is pertinent for multimedia mining. However,

building a concept hierarchy of natural language words is difficult because of the controver-

sies it may generate. We had to build an explicit representation of the set of keywords in

the form of concept hierarchy that most people (users) would agree upon. The solution was

5.2. OBSTACLES AND CHALLENGES WITH MULTIMEDIA MINING 131

Museums and

Galleries

ScienceArtsCultureEntertainmentRecreation

CS Biology

AstronomyArchitecture
Literature

Photography

Exhibit

Environment

People

Religion

Humor

Music

Movies

Classic

Rock

REM

Studio

Contest

ActorsTheater

Alain Delon

Travel

Asia

Europe

Germany

Italy

France

Rome

Baseball

Swimming
National Museum

Daniel Meadows

of Photography

Earth

Jupiter

Planets

Comet Hale Bopp NASA

Mars

Sun

Hubble

Mel Gibson

Brigite Bardot

Madona

Rush

Sports

Munich

Oktober
Fest

Figure 5.7: Portion of the keyword hierarchy generated by traversing the Yahoo directories.

to use existing word hierarchies that are widely and extensively used and accepted. Our

first attempt was to automatically build a concept hierarchy by traversing a manually-built

and widely-used on-line directory structure. By traversing the on-line Yahoo directory, for

instance, one can build a general hierarchy with all nodes of the directories. Figure 5.7

shows a portion of the keyword hierarchy generated by traversing the Yahoo directories and

mapping the directories to keywords. Unfortunately, this hierarchy tends to be too gen-

eral and is not flexible enough to accommodate new terms. In other words, the hierarchy

generated is shallow, narrow and not flexible.

Ultimately, we opted to use the on-line dictionary, thesaurus, and semantic network

WordNet developed at the University of Princeton [263, 25] and used by many researchers in

linguistics and cognitive science. WordNet version 1.6 contains approximately 95,600 differ-

ent word forms organized into 71,100 word meanings interconnected with links representing

subsumptions. Unfortunately, WordNet’s word list does not contain specific words like “Boe-

ing 747” or “fighter F15” that were extracted from the Web sites our crawler visited. After

consulting the list of words rejected by the filtering process, some words were selected and

added to enrich WordNet’s semantic network with these new domain related terms.

Finally, the subsumption connections in the enhanced WordNet semantic network were

132 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

used to build a concept hierarchy with all (and only) the keywords extracted and accepted

from the web pages. This hierarchy is used to classify images by topic and browse the image

and video collection. Figure 5.2 shows a portion of such hierarchy starting from the node

“entity” of the enhanced WordNet network. The method for creating the concept hierarchy

is presented in Algorithm 2.4.1 in Chapter 2. Figure 5.8 illustrates the use of WordNet for

keyword filtering and word hierarchy building.

Meta
Data

WordNet

Web pages

Feature
vectors

Images

Page and image URLs

Image and
video
processing

videos

cleaning
Data

Raw keywords

Hierarchy
building

keywords
Normalized

Concept Hierarchy

Figure 5.8: Keyword Normalization and Concept Hierarchy building using WordNet.

5.2.2 The curse of dimensionality

A data cube is a particular structure for storing multi-dimensional data and handling queries

that aggregate over some of these dimensions at different levels of abstraction. This structure

can be stored either in main memory or on disk.

The multimedia data cube we use has many dimensions. The following are some exam-

ples: (1) The size of the image or video in bytes with automatically generated numerical

hierarchy. (2) The width and height of the frames (or picture) constitute 2 dimensions with

automatically generated numerical hierarchy. (3) The date on which the image or video

was created (or last modified) is another dimension on which a time hierarchy is built. (4)

The format type of the image or video with two-level hierarchy containing all video and still

image formats. (5) The frame sequence duration in seconds (0 seconds for still images)with

numerical hierarchy. (6) The image or video Internet domain with a pre-defined domain

hierarchy; each image or video collected has a unique URL (Unified Resource Locator) that

5.2. OBSTACLES AND CHALLENGES WITH MULTIMEDIA MINING 133

indicates the location (Internet domain) where the image or video is stored. (7) The In-

ternet domain of pages referencing the image or video (parent URL) with a pre-defined

domain hierarchy; when an image or video is located in a web page, a reference to that

page (parent URL) is stored with the image meta-data in our database. (8) The keywords

with a term hierarchy defined as described above; (9) A colour dimension with a pre-defined

colour hierarchy; colours are quantized and indexed in a range between 0 and 255. A colour

hierarchy is defined from specific colours to more general colours. An image or a video is

considered containing a given colour if the percentage of pixels in that colour exceeds a

given threshold. (10) An edge-orientation dimension with a pre-defined hierarchy, etc. An

image is considered containing a certain edge orientation if the percentage of edges in the

orientation in the image exceeds a given threshold. (11) The popularity of an image or video

with a numerical hierarchy. The popularity of an object is the known number of pages that

reference that object. (12) The richness of a web page with a numerical hierarchy. The

richness of a web page is the number of multimedia objects referenced in the page.

Figure 5.9: Browsing 3 dimensions of the multimedia data cube.

134 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

Using these different dimensions and their respective concept hierarchies, it is possi-

ble to build a multi-dimensional data cube that aggregates the values for all attributes in

each dimension domain. Figure 5.9 shows a visualization tool used to browse such multi-

dimensional data cubes, 3 dimensions at a time. The concept hierarchy defined on each

dimension allows drilling-down and rolling-up along any given dimension. This type of data

cube browsing gives a big picture of the content of the database and even allows one to see

rough clustering of data values. Selecting a sub-cube from the view drills through it up to

the raw data, and one can see the set of multimedia items in the selected sub-cube and even

the web pages that contain them.

Unfortunately, it is very difficult, if not impossible, to have more than a given number of

dimensions in a physical data cube. This is not due to the visualization or conceptualization

as it may seem, but it is due to the fact that the size of the data cube grows exponentially

with the number of dimensions. Each time a dimension is added, the size of the data cube

is multiplied by the number of distinct values in the new dimension. This is the curse of

dimensionality. In [214] Ross illustrates how the number of dimensions in a data cube is

physically limited due to the physical size of the memory.

The colour attribute of an image has 256 dimensions, for instance. Each of the di-

mensions counts the frequency of a given colour in images. This already goes beyond the

limit of most data cube-based systems. Even after quantizing the colours to 64 values, the

number of dimensions is still too large for MultiMediaMiner to handle. In order to reduce

the number of dimensions, we decided to collapse and pivot the 64 colour dimensions into

one. One previous colour dimension represented a colour and the values were frequencies of

that colour in an image. With the collapsed dimension, the values represented are colours

(presence of colours), and the colour frequencies are discarded. This loss of information is a

compromise to reduce to dimensionality. The same principal was applied for the dimensions

of the attribute texture. This brings up yet another challenge: the problem of multi-valued

attributes. The collapsed colour dimension represents all the colours, however, an image or

a video frame has more than one colour. If all the colours of an image are represented in

the same dimension, the aggregate values in the aggregated layers of the data cube become

wrong and meaningless. To solve this problem, a colour dimension for each colour present

in an image is needed. However, this contradicts the goal of reducing the dimensionality.

In our implementation, we have chosen to represent only the three most frequent colours

of an image with 3 colour dimensions. This reduces the colour representation from 256

5.2. OBSTACLES AND CHALLENGES WITH MULTIMEDIA MINING 135

Figure 5.10: MultiMediaMiner data warehouse with cubes and dimensions.

dimensions to 3.

As might be expected, colour is not the only multi-valued dimension. An image has

many textures, is described by many keywords, and can be present in many web pages. In

other words, the dimension texture, the dimension keyword, and the dimensions related to

the web page (page richness and parent page Internet domain) are all multi-valued. For

our prototype implementation, we had to compromise by choosing to represent only the

most frequent texture in an image, only the first parent web page of an image found by

our crawler, and we chose not to represent the keywords in our data cube. Not only it is

not significant to select only one keyword by image or video since the keywords can not

136 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

be ranked effectively, but the keyword dimension has also a very large number of potential

values formed from words and phrases. This would cause the size of the cube to rapidly

exceed the physical available limit.

Despite the fact that keywords are not represented in our cube, we use the keywords

as a data set selection attribute to select a set of images on which to build our data cube.

Thus, the aggregate values in the data cube pertain to the multimedia objects that are

associated with the keyword used for the selection. By doing so, the selected keyword can

be appended as a predicate to any rule discovered by our data mining modules based on the

constructed data cube. Figure 5.2 shows the selection process using the keyword concept

hierarchy. This selection is used for browsing images and for data set selection for data cube

construction. When a keyword is selected, all keywords subsumed by it are also selected.

This allows generalization and specialization along the word hierarchy. Note that selecting

the image sub-set by constraining the keywords (left of Figure 5.2) can be replaced by a

content-based constraint such as the content-based retrieval provided by C-BIRD. In other

words, the user interface in Figure 5.2 could be linked to C-BIRD in order to select images

to mine.

Although we reduced the number of dimensions, the number is still large. For the im-

plementation of the MultiMediaMiner prototype, we have chosen to create not one cube,

but a set of different data cubes with different (overlapping) dimensions. Figure 5.10 shows

the user interface of the MultiMediaMiner data warehouse with 4 data cubes and the di-

mensions and measurements defined in one of them. Separating the data cube into smaller

ones is a limitation. This restriction brought up new challenges. It is not trivial to choose

which dimension should be represented in which cube when we have our data materialized in

separate cubes. It is important to mention that the OLAP interaction and the data mining

algorithms operate on one given cube at a time. Thus, it is not possible to discover corre-

lations, for example, between two dimensions in different data cubes. Moreover, merging

rules discovered from two cubes that do not overlap, is not possible.

In [130] selective materialization of data cubes is proposed to select the appropriate

cuboids for materialization rather than materializing all the views. This approach, using a

lattice that expresses dependencies among views and contains cube materialization costs, is

intended to optimize the data cube construction based on the needs dictated by the user

queries. In our implementation, as mentioned above, we chose to materialize 4 cuboids and

pre-compute them after the user selects a data set using the keyword hierarchy. The cubes

5.3. ON-GOING WORK AND CONCLUSIONS 137

are built on-the-fly, once the images are selected, and can easily be built in parallel. There

are some heuristics regarding the selection of the dimensions in the different cuboids, some

based on the access frequency and some based on the size of the dimensions themselves. We

opted for a more semantic approach. The set of dimensions was divided into 3 sub-sets: a

content-based dimension set (colour and texture), a size-based dimension set (size, width,

height, etc.), and a resource-based dimension set (Internet domain, popularity, etc.). Each

set was materialized in a different cuboid. In addition, a fourth cuboid was materialized with

dimensions from the 3 dimension sets. In order to create an overlap between the cuboids,

the Internet domain and the size dimensions were repeated in all 4 cuboids.

Each cell of a data cube can contain aggregate values (i.e. measurements) like a count, a

sum, etc. Because measurements are not expensive in memory size, we decided to materialize

numeric attributes (like size, richness, popularity, etc.) as measurements, rather than as

cube dimensions, whenever the attribute is not selected as dimension effectively present in

the cuboid. This allows the consideration of values of that attribute, however, without the

possibility to drill-down or roll-up along the dimension it represents.

5.3 On-going work and Conclusions

In this chapter, we have discussed online analytical processing (OLAP) and descriptor-based

data mining from a multimedia repository. We have designed and developed an interesting

multimedia data mining system prototype, MultiMediaMiner, with the following features:

(i) a multi-dimensional multimedia data cube, (ii) multiple data mining modules, including

characterization (or summarization), association, and classification, and (iii) an interactive

mining interface and display with Web information retrieval capabilities. Our preliminary

experiments demonstrate that multimedia data mining may lead to interesting and fruitful

knowledge discoveries in multimedia databases.

There are some major tasks calling for further research into the design and development

of the MultiMediaMiner system.

A new model for data cube materialization is under study. In this model, called MDDB

for Multi-Dimensional DataBase, we conceptualize the entire data cube in a database with

a special-purpose structure. The structure contains all dimensions and the aggregation of

interesting values in preparation for cube materialization. The structure is not a data cube

per se, but the “definition” of the hypercube which helps speed up the materialization of

138 CHAPTER 5. OLAP AND DATA MINING FROM VISUAL MEDIA

C1

C1.2

C2 C3

C(1.2).3

Hypercube Definition Data
Raw

Figure 5.11: Multi-Dimensional Database model with materialization of cuboids.

cuboids. Cuboids are then materialized on-the-fly depending on the dimensions needed

by the query. Moreover, borrowing from the multi-layered database technology presented

in [276], a cuboid can generalize a set of cuboids along the hierarchies of its dimensions.

A cuboid would join the dimensions of other cuboids at a higher conceptual level. This

model allows the creation and manipulation of data cubes with an unrestricted number

of dimensions, and allows multi-dimensional selection on raw data. Figure 5.11 shows the

cuboid materialization path from a hypercube definition.

Multi-dimensional data cubes are created in order to reduce the response time when

querying large databases for decision support or data mining. Typically, all the dimensions

are aggregated in the cube. However, it is not always necessary to represent all the dimen-

sions in the cube. Depending upon the application and the user needs, we can choose not

to materialize some dimensions, and keep them as raw data in the database. For example,

if colour is considered unnecessary for some applications, we can avoid materializing the

colour dimensions and keep the colour information in the database. This obviously reduces

the size of the data cube. However, if colour is required for some queries, we need to build

on-the-fly a new data cube with colour dimensions directly from the raw data. This can

be very costly. Another approach would be to adapt the data mining algorithms to use

simultaneously the aggregations in the data cube and the raw data in the database without

materializing the portion of the data that is still in the database. This is acceptable if the

queries accessing the non materialized portions are scarce.

5.3. ON-GOING WORK AND CONCLUSIONS 139

The design and construction of multimedia data cube can be improved by integrating

the MDDB model or by using a virtual composite data cube that has some of its dimensions

not materialized but in the database. The current design of the multimedia data cube, al-

though it works, produces a huge multimedia data cube, due to the big size of two numeric

dimensions: colour and texture. Most relational data cubes contain only categorical dimen-

sions each having a relatively small number of distinct values. However, since we would

like to support search from colour and edge-orientation, it is necessary for the data mining

algorithms to have access to the data either materialized in a cube or directly from the

database. Our current implementation supports only a limited number of intervals on these

two dimensions in the data cube. The search along these dimensions with finer granulari-

ties than those currently supported has to access the C-BIRD database, which degrades the

performance but can be improved by using the hypercube structure of the MDDB model.

There are plans to add new data mining functionalities into the system, like a clustering

module which would group images into different clusters based on their multiple dimen-

sional features, including both multimedia features, such as colour and edge-orientation,

and relational features, such as keywords, URL information, and duration.

We have used the keyword hierarchy for browsing our image collection and selecting

a data set for mining. In other words, the selection of images to mine is done based on

keywords. We plan to use the content-based image retrieval features of C-BIRD to also

select the images for mining.

Chapter 6

Content-Based Multimedia Data

Mining

No matter how much we seek, we never find anything but ourselves.

Anatole France

In rivers, the water you touch is the last of what has passed and the first that which comes:

so with time present.

Leonardo da Vinci

Discovering knowledge from large data has been the focus of many research studies and

applications in the last few years. Many effective algorithms and successful applications

have been suggested. However, most of these studies emphasised corporate data typically

in alphanumeric databases. Very little research has been conducted on mining multimedia

data. [236] describes the CONQUEST system that combines satellite data with geophisical

data to discover patterns in global climat change. The SKICAT system described in [91]

integrates techniques for image processing and data classification in order to identify “sky

objects” (i.e. patterns) captured in a very large satellite picture set. Visual data are also

the focal point of our research, and we integrate image processing with database mining

techniques in order to discover frequent item-sets to ascertain content-based multimedia

association rules. Current database mining technologies are still not capable of extracting

knowledge from images and videos, although some researchers are starting to investigate

how to determine interesting patterns in multimedia. Recently, Tucakov and Ng in [248]

used a method for outlier detection to identify suspicious behaviour from videos taken by

surveillance cameras.

What was presented heretofore in this thesis, was essentially online analytical processing

(OLAP) and mining (OLAM) from a database containing visual data descriptors. While

extracting and processing the descriptors for OLAP and OLAM is a challenging task, it

can arguably be depicted as limited multimedia mining. Indeed, most of the descriptors are

140

141

not content-based, as size, popularity, keywords, etc. The content-based descriptors, such

as colour and texture, were taken at a high level. For example, the presence of a colour

(most frequent colours) was taken into account, but not its position in the picture, its size

within the picture, its movement in time, etc. Clearly, there are other content-based features

that can be exploited in multimedia data mining such as in association rule discovery or

classification.

In this Chapter, we undertake the task to enhance our data mining algorithms to take

advantage of content-based features pre-processed and stored in the C-BIRD database,

such as the MFC and MFO centroids, the layouts, the locales, etc. We extend the concept

of content-based multimedia association rules using feature localization and introduce the

concept of progressive refinement in the discovery of patterns in images from coarse to fine

resolution. Our contribution in this Chapter is a progressive resolution refinement approach

for the discovery of multimedia association rules with recurrent objects, and for the discovery

of spatial relationships between visual descriptors in large image collections.

Feature localization is a new concept of rough segmentation that we introduced in Chap-

ter 4. Image segmentation is a process to segment an entire image into disjoint regions.

A region consists of a set of pixels that share certain properties, e.g., similar colour (or

gray-level intensity), similar texture, etc. In short, the traditional segmentation algorithms

assume (1) regions are mostly connected; (2) regions are disjoint (Ri ∩ Rj = ∅, for i 6= j);

and (3) segmentation is complete in that any pixel will be assigned to some region, and the

union of all regions is the entire image (∪mk=1Rk = I). Although regions do not have to

be connected, most available region-based and/or edge-based segmentation methods would

yield connected regions, and it is error-prone to merge some of them into non-connected

regions. Such a segmentation algorithm will yield more than a dozen purple regions, one

for each character, for the title of the book shown in Figure 6.1. It will also yield (unex-

pectedly) many white regions, since all the white blobs inside the letters ‘A’, ‘P’, ‘R’ ‘O’

will unfortunately be identified as regions. The above example, albeit simple and not at all

unusual, indicates that the traditional image segmentation does not yield useful grouping

and representation for object recognition. A more useful and attainable process is feature

localization that will identify features by their locality and proximity. As we defined in [167],

a locale Lx is a local enclosure (or locality) of feature x. Lx has an envelope Lx which is

a set of tiles to represent the locality of Lx, and some geometric parameters: mass M(Lx),
centroid C(Lx), variance σ2(Lx), and shape parameters for the locale, etc. A tile is a square

142 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

area in an image. Its size is arbitrarily chosen as 16×16, but could be bigger or smaller. The

tile is the building-unit for envelopes. A tile is ‘red’ if a sufficient number of pixels within

the tile are red. It follows that a tile can be both ‘red’ and ‘blue’ if some of its pixels are red

and some are blue. While a pixel is the unit for image segmentation, a tile is the unit for

feature localization. Thus, feature localization is a kind of rough segmentation where over-

lap is possible and completeness is not necessary. The right columns of Figure 6.1 show an

example of feature localization; each image illustrates a different locale. Perhaps the closest

to this description a locale is the “blob” in the “blobworld” system from the University of

California Berkley, presented in [116]. However, blobs have always an elliptic shape and

there are only up to 10 representatives in an image. Blobs give just an approximate and

vague representation of an image. We believe that locales depict better the content of an

image in terms of dominant colours and textures.

Tiles are grouped into an envelope, if they are geometrically close. The closeness will be

measured by variance to be defined below. M(Lx) is the number of pixels in Lx that actually

have feature x. M(Lx) is usually less than the Area of Lx, although it could be equal to it.

C(Lx) is simply the centroid of the mass. σ2(Lx) is the variance of the Cartesian distance

from pixels in Lx to the centroid, and it measures the eccentricity of Lx. Note, M , C, σ2,

etc. are measured in unit of pixels, not in tiles. This guarantees the granularity. Hence

the feature localization is not merely a low-resolution variation of image segmentation. We

also define a minimum bounding circle around a locale to approximate the locale when

evaluating topological relationships at different resolution levels.

The centroids of locales can help in discovering interesting spatial relationships within

an image or between frames of a video clip. We are defining spatial primitives like next to,

ontop of and under to describe relationships between colours or colour segments in an image.

These primitives and colour layout grids extracted by the preprocessor can help discover

association rules about colours within an image or a video clip. In the previous chapter

we defined the notion of localization or locales [167] which are rough colour and texture

segments in an image. We will study the option to use these locales, rather than all the

colour and texture of an image, to describe the colour features of the image or objects within

the image, since they are perceptually more accurate.

In Figure 6.2, we enumerate some of the locale characteristics and relationships that

we would like to capture in association rules discovered in a multimedia database. Colour,

texture, size and shape do not need explanation. The centroid of a locale determines its

143

Figure 6.1: Example of feature localization based on colour for a multi-level resolution
image.

H-next-to(X,Y)

Include(X,Y)

Overlap(X,Y)

V-next-to(X,Y)

Colour(X, colour)
Size(X, size)
Texture(X, texture)
Shape(X, shape)

Motion(X, motion)
Speed(X, speed)

Vertical(X, v)
Horizontal(X, h)

Location

Topology Visual

Movement

Figure 6.2: Feature Relationships for Locales.

144 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

position in a picture. Vertical(X, v) and Horizontal(X,h) can give this location. Note

that this location can also be given by the layout grid that we use for colour layout and

texture layout searches. This location would be relative to the granularity level of the grid:

8× 8, 4× 4, 2× 2, or 1× 1. Given the location (x, y) of a locale and its size, a topology, or

spatial relationship with other locales can be determined, such as closeness with H-next-to

and V-next-to, overlap with Overlap, and inclusion with Include. H-nest-to and V-next-to are

generalizations of primitives such as ontop-of, under, left-next-to, right-next-to, etc. Again,

the closeness of colours and textures can also be determined with the layout grids at different

resolution levels. The vertical next-to and the horizontal next-to could be determined with

the coordinates i, j of cells in the grid and their content (orientation and colour). To a

certain extent, overlap and inclusion can also be determined with the layout grids, since

each cell holds more than one colour at a time. We chose locales to illustrate the concept of

topological closeness, overlap and inclusion in multimedia association rules without claiming

that using locales is better than using the grid layout. We believe that the choice should be

determined by the application domain.

In a video sequence, locales can be identified in different frames and their motion vector

can be determined. In that case, a motion direction can be associated to the locale with

Motion(X, m), as well as a relative speed (for example pixels by frame) with Speed(X, s).

In the subsequent sections, we will re-introduce the association rules and underline the

limitations of the current algorithms for association rule discovery vis-à-vis multimedia data.

We will present a coarse-to-fine strategy for mining multimedia and discuss two algorithms

for the discovery of multimedia association rules with recurrent items and recurrent spatial

relationships.

In our discussion, we will assume locales as being objects. This is an approximation that

will simplify the discussion. Note that locales that always have a similar movement vector

in an image can be merged into one object.

The remainder of the Chapter is laid out as following: In Section 1 we discuss the

progressive resolution refinement approach and present our algorithm for mining multimedia

association rules with recurrent items; we put forth a method for mining association rules

with spatial relationships in Section 2; Section 3 describes our performance study; finally,

our conclusions are presented in Section 4.

6.1. MULTIMEDIA ASSOCIATION RULES 145

6.1 Multimedia Association Rules

Association rules have been extensively studied in the literature [6, 176, 8, 146, 121, 105,

150, 198, 184, 7, 94, 51, 52, 108, 53, 186, 24, 39, 14, 164, 206, 190, 196]. The efficient

discovery of such rules has been a major focus in the data mining research community.

Many algorithms and approaches have been proposed to deal with the discovery of different

types of association rules discovered from a variety of databases. However, typically, the

databases relied upon are alphanumerical and often transaction-based. While some of these

algorithms proposed can be applied to visual data, to a certain extent, after transforming

the data into a form that can be processed, new algorithms should be better suited. Indeed,

visual data has some peculiarities proper to images and videos. For example, some visual

features can be repeated in an image, and the repetition of the feature can carry more

information than the existence of the feature itself.

The problem of discovering association rules is to find relationships between the existence

of an object (or characteristic) and the existence of other objects (or characteristics) in a

large repetitive collection. Such a repetitive collection can be a set of transactions for

example, also known as the market basket. Typically, association rules are found from sets of

transactions, each transaction being a different assortment of items, like in a shopping store

({milk, bread, etc}). Association rules would give the probability that some items appear

with others based on the processed transactions, for example milk→bread[50%], meaning

that there is a probability 0.5 that bread is bought when milk is bought. Essentially, the

problem consists of finding items that frequently appear together, known as frequent or

large item-sets.

Formally, as defined in [8], the problem is stated as follows: Let I = {i1, i2, ...im} be

a set of literals, called items. Let D be a set of transactions, where each transaction T is

a set of items such that T ⊆ I. A unique identifier TID is given to each transaction. A

transaction T is said to contain X , a set of items in I, if X ⊆ T . An association rule is an

implication of the form “X ⇒ Y ”, where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. The rule X ⇒ Y

has a support s in the transaction set D is s% of the transactions in D contain X ∪ Y . In

other words, the support of the rule is the probability that X and Y hold together among

all the possible presented cases. It is said that the rule X ⇒ Y holds in the transaction

set D with confidence c if c% of transactions in D that contain X also contain Y . In other

words, the confidence of the rule is the conditional probability that the consequent Y is

146 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

true under the condition of the antecedent X . The problem of discovering all association

rules from a set of transactions D consists of generating the rules that have a support and

confidence greater that given thresholds. These rules are called strong rules.

Looking at this formal definition, we immediately see limitations vis-à-vis mining as-

sociation rules from an image and video collection. An image for instance, can indeed be

represented by a transaction with items being the visual features in the image, however,

items in the antecedent of the rule repeated in the consequent can be an interesting factor

in image analysis applications. For example, in an infra-red satellite picture for weather

forecast, the existence of a blue pocket (cold front) may suggest the existence another blue

pocket. Moreover, the repetition of the same item in an image is not negligible. As men-

tioned previously, the repetition of a same object in an image can be more important than

its occurrence in the image. Besides, recurrent objects in images are very frequent. In

addition, one may be interested in finding associations with a coarse-to-fine search strategy.

In other words, association rules can first be found at a low resolution, then progressively

confirmed at higher resolutions. Indeed some visual features, such as dominant colours in an

image, are well preserved at a low resolution level. Thus, we can rapidly approximate mul-

timedia association rules at a coarse level, then eliminate false positives by verifying them

at a higher resolution. Moreover, the approximation of a locale by a minimum bounding

circle can speed up the discovery of association rules at a high conceptual level for spatial

topological concepts such as closeness, overlap or containment. The precision of the rules

discovered are improved by eliminating the minimum bounding circle and using the locale

envelope with higher image resolutions. The main advantages of this approach is that: (1)

locale features extraction can be conducted at multiple (often reduced) resolutions to save

processing time; (2) locale intrinsic features can be defined at appropriate resolutions to

avoid too much detail/noise or insufficient detail. Dominant colours are well preserved at

a low resolution, but some texture information can be lost when the resolution is too low.

The coarse-to-fine search strategy is important for large image and video databases even

when the features are extracted and analyzed at pre-processing time. The left column of

Figure 6.1 shows an example of image at different resolution levels.

The proposed algorithms for discovering association rules all assume the items are unique

in I, hence the definition of support. With the well-known Apriori algorithm [8], for example,

duplicates are never considered when the k-item candidate sets Ck are formed. It is assumed

that the items are unique. In multimedia mining, we would like to discover rules such as

6.1. MULTIMEDIA ASSOCIATION RULES 147

“2blue circles ⇒ high texture density”. This means that the sole existence of blue does

not necessarily imply the consequent high texture density. Two occurrences have to coexist

in the image for the rule to be “confident”. In addition, the definition of strong rules based

on large support is quite inadequate in some imaging applications. Features appearing very

frequently (i.e. having a large support) in some medical images, for example, can be normal

phenomenon, and uninteresting to users. A low support, on the other hand, could generate

item-sets with extremely rare items. While these rare items could either be just meaningless

noise or sought for rare phenomenon (in medicine applications for example) they fall in the

realm of outlier analysis1 and are out of the scope of this study. We believe that a range

for an acceptable support should be introduced for such applications. Hence the definition

of the sufficiently strong association rule. We would also like to introduce a new definition

of support. Typically, the support is the percentage of transactions that contain an item

or verify a condition; it measures how interesting and frequent an item or predicate is in a

data set. Since images are represented by transactions, but identical objects can be repeated

in an image, our support could be a count of objects rather than a count of transactions.

This, of course, should depend upon the application, and it is up to the user to choose

the appropriate support definition. We call this support Object-based support while the

“traditional” support is called transaction-based support. We also call Association Rules with

Recurrent Items association rules that allow items to be repeated in the rules.

Definition 6.1.1 An Association Rule with Recurrent Items is a rule of the form:

αP1 ∧ βP2 ∧ ... ∧ γPn → δQ1 ∧ λQ2 ∧ ... ∧ µQm(c%)

where c% is the confidence of the rule, predicates Pi, i ∈ [1..n] and Qj, j ∈ [1..m] are

predicates bound to variables, and α, β, γ, δ, λ and µ are integers. αP is true if and only if

P has α occurrences. 2

Definition 6.1.2 A Multimedia Association Rule is an association rule with recurrent

items that associates visual object features in images and video frames, and is of the form:

αP1 ∧ βP2 ∧ ... ∧ γPn → δQ1 ∧ λQ2 ∧ ... ∧ µQm(c%)

1There are studies in data mining about outliers [147]

148 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

where c% is the confidence of the rule, one or more predicates Pi, i ∈ [1..n] and Qj, j ∈ [1..m]

are predicates instantiated to topological, visual, kinematics, or other descriptors of images,

and α, β, γ, δ, λ and µ are integers quantifying the occurrence of the object feature or item.

αP is true if and only if P has α occurrences. 2

The predicates Pi and Qj in the rules are not just topological, visual or kinematics

descriptors such those in Figure 6.2, but can also be other descriptors such as picture size,

video duration, or just related keywords. In a medical imaging system, for example, the

physician’s diagnosis attached to the image can be extremely beneficial in an association

rule.

Definition 6.1.3 The Support of a predicate P in as set of images D denoted by σ(P/D)

is the percentage of objects in all images in D that verify P at a given conceptual level.

The Confidence of a multimedia association rule P → Q is the ratio σ(P ∧ Q/D) versus

σ(P/D), which is the probability that Q is verified by objects in images in D that verify P

at the same conceptual level. Such support is called object-based support in contrast to

transaction-based support, which is the percentage of images having a given feature. 2

As mentioned earlier, depending upon the application, the definition of support can

also be dependent on the number of images. In that case the support of a predicate is

the percentage of images in which the predicates holds (transaction-based support). We

define three thresholds that verify the adequate frequency of a pattern and the adequacy

(or certainty) of a rule. To find sufficiently frequent image objects that verify a predicate

P , in other words a frequent pattern P in D, the support of P should be not greater that a

maximum support Σ′ and not smaller than a minimum support σ′. To find sufficiently strong

multimedia association rules P → Q, the following should be true: σ′ ≤ σ(P ∧Q/D) ≤ Σ′
and the confidence of P → Q should be greater than a minimum confidence ϕ′. The

minimum and maximum support are defined regardless of the type of support transaction-

based or object-based.

Definition 6.1.4 A pattern p is sufficiently frequent in a set D at a level ` if the support

of p is no less than its corresponding minimum support threshold, and no more than its

corresponding maximum support threshold. 2

6.1. MULTIMEDIA ASSOCIATION RULES 149

Definition 6.1.5 A multimedia association rule P → Q in a set of images D is sufficiently

strong in D if P and Q are sufficiently frequent (P and Q ∈ [σ′..Σ′]) and the confidence of

P → Q is greater than ϕ′. 2

Note that the strength of a rule and the values of σ′ and Σ′ depend upon the concept

level in which the predicates are applied. All attributes such as colour, texture, motion

direction, etc., are defined on concept hierarchies. Depending on the concept level selected

by the user, σ′ and Σ′ can be higher or lower.

Given an image I as a transaction and locales Li (or objects) as the items in the

image I , we envision two types of multimedia association rules: association rules based

only on atomic visual features that we call Content-Based Multimedia Association Rules with

Recurrent Visual Descriptors, and association rules with spatial relationships that we call

Multimedia Association Rules with Recurrent Spatial Relationships. What we call atomic fea-

tures are descriptors such as colour, texture, etc. They are attributes of an object defined

along concept hierarchies. Association rules based on atomic visual features are similar to

multi-dimensional, multi-level association rules, emphasizing on the presence of values of

some attributes at given concept levels. They are multi-dimensional because each object

has different attributes, each being a dimension, and they are multi-level, since the val-

ues of each attribute are defined at different conceptual levels, for example the colour blue

could be defined along this hierarchy: All blue(dark blue(NavyBlue , RoyalBlue, DeepSky-

Blue), blue(LightSteelBlue, SlateBlue, SkyBlue, MediumTurquoise), light blue(PaleTurquoise,

LightCyan, Cyan)). One such association rule could be: Dark Red circle∧Light Blue circle→
Green square(56%). Note that we used only two dimensions in this example: colour and

shape. Any other dimension or other descriptors such as image size or keyword could be

used as well.

The second type of multimedia association rules uses the topological relationships be-

tween locales (v-next-to for vertical closeness, h-next-to for horizontal closeness, overlap,

and include). Perhaps the closest to what we intend to work on for multimedia associa-

tion rule enumeration with spatial relationships is the work presented in [150] about spatial

association rules which uses primitives to describe spatial relationships between entities in

maps. However, there is a fundamental difference between our approaches. In [150], it is as-

sumed that a grouping is done based on a data set selection, with a spatial mining language

GMQL. The associations found are on the grouping, making spatial predicates holding only

150 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

one argument. In other words, the spatial association rules are restricted and describe only

one type of objects at a time, example road or water. In our case, we have two-argument

predicates and objects are not typed. Each predicate P describes the relationship between

two objects Oa and Ob, such as Overlap(Oa, Ob), each object being multi-dimensional. Bi-

nary predicates involve a join of more than one relation. Moreover, spatial predicates on

the same object values can be recurrent. One such multimedia association rule with spatial

relationships could be: V-Next-to([red, circle, small], [blue, square, ∗]) ∧ H-Next-to([red,

circle, ∗],[yellow, ∗, large])→ Overlap([red, circle, ∗],[green, ∗, ∗]) (34%). Note that not all

dimensions of the locales are used. The maximum dimensionality would be specified by the

user. In this example, only three dimensions were needed and we made use of the wildcard

∗ to replace absent values.

6.1.1 Progressive Resolution Refinement

For effective and efficient discovery of patterns in multimedia databases, we chose a multi-

resolution strategy by first finding patterns at a low (i.e. rough) resolution and persevering

the search at a higher (i.e. finer) resolution with only the data selected in lower resolutions.

This assumes the preservation of the patterns to be discovered in coarse resolutions. Re-

cently, some researchers started to employ multi-resolution image representations in their

content-based retrieval. We have adopted the same approach when matching object models

in images and videos [169, 167] (see Chapter 4). In his earlier work, Burt [43] proposes a

structure of pattern tree for active sensing. The structure describes objects in different levels

of details in a hierarchy with multi-resolutions. A coarse-to-fine search strategy is adopted

to actively and rapidly locate objects or events in a scene. Smith [232] uses wavelets for

multiscale image representation in the Alexandria Digital Library project. Lately, Koperski

in [151] proposes a progressive refinement approach for spatial data mining using two steps

to filter out large data sets.

The basic idea of progressive refinement is to quickly approximate patterns at a coarse

level, then eliminate false positives by verifying them at a higher resolution. The refine-

ment, however, has to be done carefully without inadvertently eliminating false negatives.

For instance, by knowing how visual features are preserved in coarse resolutions, some visual

features can be tested at low resolution such as colours, others like edge density could be

tested at an intermediate level, while fine texture should only be tested at a high resolution.

Spatial relationships are not completely preserved. The topological characteristics are not

6.1. MULTIMEDIA ASSOCIATION RULES 151

fully retained, making the the topological features change from one resolution level to the

other. In Section 6.2.1 we discuss the preservation and the potential changes of topological

features when the image resolution is altered or improved. The refinement of the image

resolution can be done in many ways. We distinguish three different refinements: (i) a

cleansing at the pixel level (raster refinement). This refinement has many resolution levels;

(ii) an approximation with minimum bounding circles. This refinement has only two res-

olution levels; and (iii) a zooming by changing the size of local tiles (tile shrinking). This

refinement has five or more levels, with tile sizes 32× 32, 16× 16, 8× 8, 4× 4, and 2× 2.

The following is the general algorithm of the progressive resolution refinement for mul-

timedia data mining.

Algorithm 6.1.1 (PRR) Progressive Resolution Refinement for Mining Multimedia Asso-

ciation Rules in Image Collections.

Input: (i) D a set of transactions representing images at different resolution levels, with

items being the visual and non visual descriptors of the images; (ii) a set of concept

hierarchies for each attribute; (iii) the minimum and maximum support thresholds

σ′ and Σ′ for each conceptual level; (iv) the maximum number of resolution level

available.

Output: Sufficiently frequent item-sets with recurrent items at different resolution levels

Ri.

Method. The progressive resolution refinement mining of multimedia association rules pro-

ceeds as follows:

begin

(1) i← 0 /* Lowest resolution level */

(2) D0 ← D
(3) while (i < maximum resolution level) do { /* Coarse to fine discovery */

(4) Ri ← {r | r is a sufficiently frequent item-set at resolution level i (inDi)}
(5) i← i + 1 /* Move to higher resolution level */

(6) Di ← Filter(Di−1, Ri−1)

(7) }
end 2

152 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

The algorithm is a loop with two considerable steps: (a) finding frequent item-sets at

a given resolution level; (b) Reducing the size of the data set by filtering out images and

infrequent objects to prepare the next round at a higher resolution. The move from one level

to another does not have to be one at a time (Line 5). It is sometimes desirable to skip some

resolution levels and jump to a higher one. Note that depending upon the application and

the user’s needs, it is not always necessary to do all the resolution levels and iterate to the

highest resolution (Line 3). Line 4 calls the algorithm for enumerating frequent item-sets

with recurrent items at a given resolution level. This can either be for frequent visual features

or for frequent spatial relationships. We will discuss in the coming subsections the discovery

procedure for these two types of association rules. Filter(Di−1, Ri−1) in line 6 removes

images that do not contain the frequent item-sets discovered at the resolution level i−1 and

filters out the infrequent objects in the remaining images. This reduces the set of images

and visual features to be processed at higher resolution. The filtering, however, does not

consider the re-occurrence of items since the low resolution can affect the numbering of visual

features. Figure 6.3(a), for example, shows one blue locale at a coarse level that becomes

clearly two distinct blue locales at a finer resolution. This shows that only the presence and

absence of a feature should be considered in the filtering process, and not the frequency of

appearance of the features in the image. Figure 6.3(a) also illustrates an example depicting

the relativity of some spatial relationships, like overlap, based on the resolution used for

defining locales. While two locales may appear overlapping because their minimum bounding

circles intersect, considered at the locale envelop level, they do not. Moreover, reducing the

size of the tile’s edge form 16 × 16, as in our experiments, progressively down to pixel by

pixel, another level of coarse-to-fine refinement can be performed.

We will discuss in the following subsection the algorithm for enumerating sufficiently

frequent item-sets with recurrent items.

6.1.2 Generating Synthetic Images

We believe that data mining from images content is effective only when the collection of

images considered for mining is homogeneous; meaning that the content of images in the

collection should have analogous semantic content. If the content of the images is not

comparable, the content mining becomes meaningless. For example, mining the content of

a conglomerate of images randomly collected from the Internet, like flowers, people, boats,

etc., would lead to unavailing and useless results. For these types of images, a mining based

6.1. MULTIMEDIA ASSOCIATION RULES 153

Coarse
Resolution

Resolution

Feature Localization Minimum Bounding
Circles

Finer

Tile Size

Figure 6.3: Relativity of visual feature concepts at different resolution levels.

on external descriptors and minimal content, such as the mining presented in Section 5.1,

is more useful. A repository of infra-red satellite pictures, a collection of brain CT scans, a

set of frames from a fixed surveillance camera, are good examples of homogeneous images

collections where content-based multimedia data mining can be effective.

To illustrate the algorithms and test their performance, we have generated synthetic

images with random locales and random features. All the images are generated the same

way to get a homogeneous collection. We generated the synthetic images as follows: (i) we

generated n images each with a random background colour; (ii) for each image, we generated

a random number k of locales; (iii) for each locale, we randomly generated features (colour,

mass (i.e. number of pixels), texture, shape, position, etc.); For each image, given the

generated locales, we randomly gave movement directions to each locale, by generating a

random number of frames with random new positions.

Algorithm 6.1.2 Generating synthetic images.

Input: n the number of frame sets.

Output: N images where N =
∑n

1 (1 + random(m))

Method. Algorithm for generating synthetic images is as follows:

begin

(1) get n; /∗ number of original images ∗/
(2) for i = 1 to n do {

154 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

I1

I2

In

. . .

. . .

Figure 6.4: Synthetic images.

(3) generate background colour for Ii;
(4) generate k; /∗ number of objects in image i ∗/
(5) for j = 1 to k do {
(6) generate (position, colour, shape, size, texture,...) for L(i,j) in Ii;
(7) }
(8) generate m; /∗ number of frames associated to image i ∗/
(9) for f = 2 to m + 1 do {
(10) copy image Ii(f−1)

into Iif
(11) for j = 1 to k do {
(12) generate(newposition) for L(if ,j) in Iif ;
(13) }
(14) }
(15) }
end 2

The result of Algorithm 6.1.2 is an assortment of n sets of frames, each with a different

number (m) of images. Each image has a certain number (k) of different objects. Images in

different frame sets may have a different number of objects. Figure 6.4 shows a portion of

a synthetic image set with n images (in rows), each with a random number of objects with

random features, and each image replicated in a random number of frames (in columns)

with the objects in different position. The first raw example shows the motion vectors

of moving objects. Algorithm 6.1.2 fills Table 6.1 with the generated objects descriptors

and movement vectors, one row for each image frame. This table is used for discovering

6.1. MULTIMEDIA ASSOCIATION RULES 155

Content-based multimedia association rules with recurrent items. The Näıve algorithm

and MaxOccur algorithm, presented later, mine the information in this table. Given the

size and the positions of the objects, the extended-relation in Table 6.2 is filled with spatial

relationships attributed to each object in individual images. This second table along with the

previous table, is exploited to discover multimedia association rules with recurrent spatial

association rules. The algorithm is presented later in this Chapter.

Image ID Object ID Colour Texture Mass Shape Motion ...
I1 O(1,1) Colour1 Texture1 Size1 Shape1 Direction1 ...
I1 O(1,2)
...
I2 O(2,1)
...
In O(n,α) ...

Table 6.1: Relation with Visual Atomic Features.

Image ID Object ID V-Next-to H-Next-to Overlap Include
I1 O(1,1) {O(1,3), O(1,5)} {O(1,2), O(1,6)} {O(1,7)} {}
I1 O(1,2) {...} {...} {...} {...}

In O(n,α) ...

Table 6.2: Extended-Relation with Spatial Relationships.

6.1.3 Näıve Approach for Finding Frequent Itemsets with Recurrent Items

at a Given Resolution Level

If the Apriori algorithm [8] is to be used to discover frequent item-sets in such data sets as

the image collections, it would miss all item-sets with recurrent items. A näıve way to find

all frequent item-sets with recurrent items would be to first find all frequent 1-item-sets,

check how often they might re-occur in an image (maximum occurrence), and then, for each

k, combine these frequent 1-item-sets in sets of k elements where elements can be repeated

up to their respective maximum occurrence possible. The calculation of the support would

filter out the infrequent ones. The pseudo-code of such algorithm is as follows:

156 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

begin

(1) C1 ← {Candidate 1 item-sets and their support}
(2) F1 ← {Sufficiently frequent 1 item-sets and their support}
(3) M ← {Maximum occurrence in an image of frequent 1 item-sets}
(4) Count # of k-item-sets (total[1..k])

(5) for (i← 2; Fi−1 6= ∅; i← i + 1) do{
(6) Ci ← {c = {x1, x2, ...xi} | ∀α ∈ [1..i]xα ∈ F1 ∧ (M [xα] ≥ CARD of xα in c)}
(7) Ci ← Ci − {c | (i− 1) item-set of c /∈ Fi−1}
(8) Di ← FilterTable(Di−1, Fi−1)

(9) foreach image I in Di do {
(10) foreach c in Ci do {
(11) c.support← c.support + Count(c, I)

(12) }
(13) }
(14) Fi ← {c ∈ Ci | c.support

total i itemset > σ′}
(15) }
(16) Result ← ⋃

i{c ∈ Fi | i > 1 ∧ c.support < Σ′}
end

This näıve algorithm, which guarantees to find all frequent item-sets with recurrent

items, could be improved by replacing F1 as the starting set for enumerating candidates

of all k-item-sets by a set composed of F1 and all item-sets with single items twinned to

their maximum capacity, such as {xα}, {xα, xα}, {xα, xα, xα}, etc., where the number of xα

is smaller or equal to M [xα]. This would improve the processing of Ci in line 6.

In the next sub-section we present our algorithm MaxOccur, a more efficient algorithm

for discovering multimedia association rules with recurrent items. The performance of this

näıve algorithm and our MaxOccur algorithm are compared in Section 6.3.

6.1.4 Max-Occur Algorithm

A method for enumerating sufficiently strong multimedia association rules that are based

on recurrent atomic visual features is presented in this section. We will give an abstract

example and then present the algorithm. To simplify our discussion, we will use a one

dimension, one level problem where images are transactions of objects and the same objects

6.1. MULTIMEDIA ASSOCIATION RULES 157

can be repeated. While objects are multi-dimensional, in this discussion we will treat

them as items with only one dimension and no concept hierarchy. The algorithm can be

extrapolated to the multi-level association rules discovery algorithm presented in [106]. The

multi-dimensional issue can also be solved by using a data cube [286].

Example 6.1.1 Let us consider the images represented in Table 6.3(left) by a set of trans-

actions D1 . Each image is a set of objects that can be repeated. At this point, we ignore the

descriptors of the objects for simplicity. To determine the support of each object, a first scan

of the database is done and each time a distinct object appears, its counter is incremented.

At the same time, a second counter keeps track of the maximum appearances of the same

object in an image (i.e. transaction). Table 6.3(right) shows the result of the counting.

C1 contains all unique objects with their support and M contains the maximum number of

times a given object occurs in an image. To simplify the discussion, since the total number

of images and object occurrences are fixed, the support of the objects is expressed in an

absolute value (number of occurrences) rather than a relative percentage. Let the minimum

support σ′ be 2 and the maximum support Σ′ be 5. To derive the sufficiently frequent 1

item-sets, if C1 is filtered and only the objects that have a support between σ′ and Σ′ are

kept, very frequent objects (σ > Σ′) would be eliminated. While this may seem the natural

thing to do, it is counter-productive at this stage. Indeed, item-sets that are not frequent

enough should be eliminated, since combining infrequent objects with other objects would

be bound to generate infrequent item-sets (apriori property [8]). However, very frequent

item-sets that are greater than the maximum support, when combined with other objects

may generate item-sets that are less frequent than the maximum support but still frequent

enough to be interesting. Thus, too frequent item-sets should not be eliminated until all fre-

quent item-sets are found. Table 6.4(left) shows F1, the list of frequent 1 item-sets. Notice

that O2 and O4 were not eliminated even if they appear too often in the data set (σ(O2/D1)

and σ(O4/D1) > Σ′). However, O1, O5, O6 and O7 were eliminated because they do not

appear frequently enough (σ(O1/D1), σ(O5/D1), σ(O6/D1) and σ(O7/D1) < σ′). Given F1,

we can filter out from D1 all irrelevant objects, and all transactions that do not contain fre-

quent objects present in F1. This would considerably reduce the time for scanning the data

set in search for k-item-sets. Table 6.4(right) shows D2, the image transactions with only

the interesting objects. The generation of the candidate 2 item-sets is done by joining F1

with itself to create all possible pairs with frequent objects. It is similar to the apriori-gen

158 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

in [8] except that the information stored in M , regarding replication of objects in images, is

used to generate new pairs of the same objects that occur in a transaction more than once.

The 2 item-sets {O2, O2} and {O4, O4} in Table 6.5(left) are produced that way. Notice

that when filtering C2 to generate F2 (Table 6.5), {O2, O4} was not eliminated despite the

fact that its support σ({O2, O4}/D2) is higher than the maximum support; this is for the

same reason O2 and O4 were not eliminated when generating F1. The candidate 3 item-

set list C3 is produced by joining F2 elements and eliminating 3 item-sets that contain 2

item-sets not recognized as frequent (i.e. not in F2). The counters in M are also used to

generate item-sets such as {O2, O2, O2} in Table 6.6(left). After filtering the infrequent 3

item-sets, F3 is produced. The candidate 4 item-sets is produced the same way by joining

the frequent 3-item sets and pruning the unnecessary ones. For instance {O2, O2, O3, O4}
and {O2, O3, O4, O4} are eliminated since, respectively, {O2, O2, O3} and {O3, O4, O4} are

not in F3. Finally, since no 5 item-set can be induced, the result is all Fi without their

item-sets that have a support higher than the maximum support Σ′. The following are the

sufficiently frequent item-sets:

{O2, O2, O4, O4}, {O2, O3, O4}, {O2, O2, O4},
{O2, O4, O4}, {O2, O3}, {O3, O4}, {O2, O2}, {O4, O4}

Given these sufficiently frequent item-sets, sufficiently strong association rules could be

found by generating all rules from a k-item-set of the form “(k-p) item-set → p item-set”

with 0 < k < p and such that the confidence of the rule is higher than a given confidence

threshold. With a confidence threshold set to 100%, only these rules are induced:

(1) {O4, O4} → {O2, O2}[100%]

(2) {O2, O4, O4} → {O2}[100%]

(3) {O3, O4} → {O2}[100%]

(4) {O3} → {O2, O4}[100%]

(5) {O2, O2} → {O4}[100%]

(6) {O4, O4} → {O2}[100%]

(7) {O3} → {O2}[100%]

(8) {O3} → {O4}[100%]

A simple scan of these rules can count replicated objects (or similar objects depending upon

the conceptual level and the dimensions used) and produce the following rules:

2 O4 → 2 O2 [100%], O2∧ 2 O4 → O2 [100%], O3 ∧ O4 → O2 [100%], O3 → O2 ∧
O4 [100%], 2 O2 → O4 [100%], 2 O4 → O2 [100%], O3 → O2 [100%], and O3 → O4 [100%].

6.1. MULTIMEDIA ASSOCIATION RULES 159

Notice that the rule “O4 → O2” is not confident enough, while “2 O4 → 2 O2” or “2

O4 → O2” are 100% reliable. This would not have been true had the support been based

on the number of images rather than on the number of objects.

Image ID Objects
I1 {O2, O2, O2, O4, O5}
I2 {O2, O2, O4, O4}
I3 {O2, O3, O4}
I4 {O6, O7}
I5 {O1, O2, O2, O3, O4, O4}

Object Support Max. Occurrence
{O1} 1 1
{O2} 8 3
{O3} 2 1
{O4} 6 2
{O5} 1 1
{O6} 1 1
{O7} 1 1

Table 6.3: Left: Image transaction table D1. Right: C1 and M tables.

Object Support Max. Occurrence
{O2} 8 3
{O3} 2 1
{O4} 6 2

Image ID Sufficiently Frequent Objects
I1 {O2, O2, O2, O4}
I2 {O2, O2, O4, O4}
I3 {O2, O3, O4}
I4 {O2, O2, O3, O4, O4}

Table 6.4: Left: F1 and M tables. Right: Filtered image transaction table D2.

2 item-sets Support
{O2, O3} 2
{O2, O4} 6
{O3, O4} 2
{O2, O2} 3
{O4, O4} 2

2 item-sets Support
{O2, O3} 2
{O2, O4} 6
{O3, O4} 2
{O2, O2} 3
{O4, O4} 2

Table 6.5: Candidate 2 item-sets C2 and sufficiently frequent 2 item-sets F2.

The above example and discussion proceed to the following algorithm for mining content-

based multimedia association rules. Note that the supports used in the example are absolute

values for the sake of simplicity. Support for a k-item-set should be Count k−item−set in Dk∑
∀ transaction t

(
|t|
k)

,

160 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

3 item-sets Support
{O2, O3, O4} 2
{O2, O2, O3} 1
{O2, O2, O4} 3
{O2, O4, O4} 2
{O3, O4, O4} 1
{O2, O2, O2} 1

3 item-sets Support
{O2, O3, O4} 2
{O2, O2, O4} 3
{O2, O4, O4} 2

Table 6.6: Candidate 3 item-sets C3 and sufficiently frequent 3 item-sets F3.

4 item-sets Support
{O2, O2, O4, O4} 2

4 item-sets Support
{O2, O2, O4, O4} 2

Table 6.7: Candidate 4 item-sets C4 and sufficiently frequent 4 item-sets F4.

where (|t|k) are k-combinations of objects in transaction t without redundancy of unique

objects. Algorithm 6.1.4 gives a glimpse into the combination enumeration process. A

recursive algorithm could also be implemented.

Algorithm 6.1.3 (MaxOccur) Find sufficiently frequent item-sets for enumerating content-

based multimedia association rules in image collections.

Input: (i) D1 a set of transactions representing images, with items being the visual and non

visual descriptors of the images; (ii) a set of concept hierarchies for each attribute; (iii)

the minimum and maximum support thresholds σ′ and Σ′ for each conceptual level.

Output: Sufficiently frequent item-sets with repetitions allowed.

Method. The pseudo-code for generating sufficiently frequent item-sets is as follows:

begin

(1) C1 ← {Candidate 1 item-sets and their support}
(2) F1 ← {Sufficiently frequent 1 item-sets and their support}
(3) M ← {Maximum occurrence in an image of frequent 1 item-sets}
(4) Count # of k-item-sets (total[1..k])

(5) for (i← 2; Fi−1 6= ∅; i← i + 1) do{

6.1. MULTIMEDIA ASSOCIATION RULES 161

(6) Ci ← (Fi−1 ./ Fi−1) ∪ {y⊕X | X ∈ Fi−1 ∧ y ∈ F1 ∧ Count(y, X) < (M [y]− 1)}
(7) Ci ← Ci − {c | (i− 1) item-set of c /∈ Fi−1}
(8) Di ← FilterTable(Di−1, Fi−1)

(9) foreach image I in Di do {
(10) foreach c in Ci do {
(11) c.support← c.support + Count(c, I)

(12) }
(13) }
(14) Fi ← {c ∈ Ci | c.support

total i itemset > σ′}
(15) }
(16) Result ← ⋃

i{c ∈ Fi | i > 1 ∧ c.support < Σ′}
end 2

Line 1, 2, 3 and 4 are done doing the same initial scan. M contains the maximum

number of times an object appears in the same image. This counter is used later to generate

potential k-item-sets. The total number of k-item-sets is used for the calculation of the item-

set support in line 14.

In line 6 and 7, the candidate item-sets are generated by joining (i-1) frequent item-sets

and the use of M to generate repetitive objects (M [y] > 1). The pruning process (line 7)

eliminates infrequent item-sets based on the apriori property.

Line 8 filters the transactions in D to minimize the data set scanning time.

In line 14, only the frequent item-sets that are higher than the minimum support σ′
are kept. It is only at the end of the loop (line 16) that maximum support Σ′ is used to

eliminate item-sets that appear too frequently.

The calculation of the support for one item-set is based on the occurrence of the item-

set in the images. Line 11 cumulates this count. A particular precaution has to be taken

when counting appearances of k-item-set in an image, especially that objects and features

can be repeated. A simple k-permutation (Ckn = n!
n!(n−k)! where n =| t |) can lead to

miscalculations. For example, let the transaction t be composed of repeated four objects

such as t = {♦♠♠♠♥♥♣♣♣♣}. C2
10 = 45 while we have only 9 possible unique 2-item-sets

as shown below. There are also 14 possible 3-item-sets while C3
10 = 240.

162 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

{♦} 1

{♠} 3

{♥} 2

{♣} 4

{♦♠} 1 {♦♥} 1

{♦♣} 1 {♠♥} 2

{♠♣} 3 {♥♣} 2

{♠♠} 2 {♣♣} 2

{♥♥} 2

{♦♠♥} 1 {♦♠♣} 1

{♦♥♣} 1 {♠♥♣} 2

{♠♠♠} 1 {♣♣♣} 1

{♦♠♠} 1 {♦♥♥} 1

{♦♣♣} 1 {♠♠♥} 1

{♠♠♣} 1 {♠♣♣} 1

{♥♣♣} 2 {♥♥♣} 2
Possible one, two and three item-sets and their occurrences in t.

The correct calculation of the repetitions of these item-sets in the transaction requires

caution in order not to calculate occurrences more than necessary. The algorithm for enu-

merating the k-item-sets and counting their occurrences in the images transaction is given

in Algorithm 6.1.4.

Algorithm 6.1.4 Counting occurrences of k-item-sets in an image transaction.

Input: (i) Image transaction I; (ii) item-set size k.

Output: Set of k-item-sets and number of times they appear in I.

Method. Generate all combinations from the unique objects in I and verify if they can

be replicated (Combination and Replication); Generate item-sets with k times the

same objects (Twinning); Generate item-sets with combinations of repeated objects

(Combination of twinned objects). The pseudo-code for generating and counting the

item-sets is as follows:

begin

(1) U ← {unique 1-item-sets and their count in I}
(2) C ← {k-combinations of u in U}
(3) foreach c in C do { /* counting combinations and replications */

(4) c.count← 1

(5) do CountReplication(c)

(6) }
(7) V ← U

(8) foreach u in V do { /* Twinning */

(9) while V [u].count > k do {

6.2. MULTIMEDIA ASSOCIATION RULES WITH SPATIAL RELATIONSHIPS 163

(10) c← ⊗ku
(11) V [u].count← V [u].count− k

(12) Add c in C if not in set; c.count← c.count + 1

(13) }
(14) }
(15) foreach u in U do { /* Combination of twinned objects */

(16) for(n = 2; n < k − 1 ∧ n ≤ U [u].count; n + +) do {
(17) d← ⊗nu
(18) B ← {k-combinations of d and d′ | v ∈ d′ ∧ v 6= u ∧ U [v].count > 0}
(19) foreach c in B do {
(20) c.count← 1

(21) Add c to C

(22) do CountReplication(c)

(23) }
(24) }
(25) }
(26) Result ← C

end

begin CountReplication(c)

(1) V ← U

(2) foreach 1-item-set i in c do {V [i].count← V [i].count− 1}
(3) while V [j].count > 1(∀j in c) do {
(4) c.count← c.count + 1

(5) foreach 1-item-set i in c do {V [i].count← V [i].count− 1}
(6) }
end 2

6.2 Multimedia Association Rules with Spatial Relationships

While the previously presented content-based multimedia association rules exclusively use

visual atomic features such as in Table 6.1, multimedia association rules with spatial rela-

tionships in addition use the extended relation with spatial predicates such as in Table 6.2.

A method for mining multimedia association rules with spatial relationships is introduced

164 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

in this section. The method uses MaxOccur after minimizing predicates. Since spatial pred-

icates (next-to, overlap, etc.) have two arguments, the strategy is to find frequent one and

two-item-sets, combine the spatial predicates with only these frequent item-sets and consider

the result as the candidate 1-item-sets of the multimedia association rules with spatial rela-

tionship. MaxOccur is then used to find the k-item-sets of spatial predicates. This strategy

is based on the following property: for a spatial predicate P (X, Y) to be sufficiently frequent,

X and Y have to be sufficiently frequent, and the 2-item-set {X, Y } has to be sufficiently

frequent. This can be done at any conceptual level, starting from the highest concept in

the hierarchy to the lowest ones. The näıve method would be to combine all pairs of object

attributes at a given conceptual level and join them with all spatial predicates to derive

potential 1-item-sets. This, however, would generate a very large number of candidates and

even candidates that do not exist in the data set. Our modus operandi is to lessen the

candidate set to the minimum before computing the frequent spatial predicate k-item-sets.

To simplify the discussion, we will analyze an abstract example with one conceptual level

and one dimension (shape) as follows:

Example 6.2.1 Considering the three images in Figure 6.5 with one dimensional objects,

we would like to find association rules involving the spatial relationships between the objects

in the images. For simplicity, we are only considering the dimension shape at a given

conceptual level, but the same can be applied for other dimensions such colour, texture, etc.

with related concept hierarchies. Finding sufficiently strong association rules with spatial

relationships essentially consists of finding the sufficiently frequent conjunctions of spatial

predicates. To do so, given the transaction-based minimum support threshold σ′ = 3, a

first scan of the image set reveals only three frequent items: ©,4 and , each occurring

in the three images and appearing at maximum twice in an image. Considering only these

three frequent items, a second scan of the data set reveals the frequent pairs of items. The

first table in Tables 6.8 indicates the support of each of these pairs. Only three of them

are frequent enough and are coupled with the spatial predicates. Notice that if we added a

wildcard ∗ to the frequent items with a de facto support equal to σ′, we could combine it wiith

the frequent pairs of items, and thus generate association rules with wildcard attributes.

Since we only have four spatial predicates (H-next-to, V-next-to, overlap, and include), this

gives us up to 12 possibilities. However, a scan of the data set would reveal that only 7

combinations are possible, and at the same time, would also compute their support and

6.2. MULTIMEDIA ASSOCIATION RULES WITH SPATIAL RELATIONSHIPS 165

��
�� ��

��
��
��

��
���� �� �

�

	

��
��

�
� A
A

�
� A
A�

�
� A
A
A

Z
Z

��

�
� A
A

JJ
,

,
,�
�
�
�

Figure 6.5: Examples of images with objects.

maximum occurrence in an image. The second table in Tables 6.8 shows the result of

this scan, which is the set of frequent 1-item-set found in the first step of the MaxOccur.

MaxOccur can then be used to discover the following frequent k-item-sets: Overlap(©,4),

H-Next-to(©,4); Overlap(©,4), H-Next-to(©,); H-Next-to(©,4), H-Next-to(©,);

Overlap(©,4), H-Next-to(©,4), H-Next-to(©,), and all the derived association rules

such as: H-Next-to(©,) ∧ H-Next-to(4,) → Overlap(©,4) [100%]

Pairs of Objects Frequency
{©,©} 1
{©,4} 3
{©, } 3
{4,4} 2
{4, } 3
{ , } 1

1-item-set Frequency Max Occurrence
Overlap(©,4) 3 2

H-Next-to(©,4) 1 1
H-Next-to(©,) 3 2
H-Next-to(4,) 3 2
H-Next-to(,) 1 1
V-Next-to(©,4) 1 1
V-Next-to(4,) 2 1

Table 6.8: Frequent pairs of objects and Frequent spatial predicates.

The above example and discussion proceed to the following algorithm for mining multi-

media association rules with spatial relationships.

Algorithm 6.2.1 (MM-Spatial) Find sufficiently frequent item-sets for enumerating mul-

timedia association rules with spatial relationships in image collections.

Input: (i) D1 a set of image descriptors with spatial relationships being the visual and non

visual descriptors of the images; (ii) a set of concept hierarchies for each attribute; (iii)

the minimum and maximum support thresholds σ′ and Σ′ for each conceptual level.

166 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

Output: Sufficiently frequent spatial predicate conjunctions.

Method. The pseudo-code for generating sufficiently frequent item-sets with spatial rela-

tionships is as follows:

begin

(1) P1 ← {Frequent atomic items}
(2) P2 ← {Frequent pairs in P1 × P1}
(3) C1 ← {P2× {Spatial predicate set} and their support}
(4) F1 ← {Frequent 1 item-sets from C1}
(5) line 3 to line 16 of MaxOccur

end 2

In the process of discovering multimedia association rules with recurrent spatial relation-

ships, we have assumed the existence of enumerated spatial relationships such as in Table

6.2. These relationships are simply processed by comparing the centroid of each locale as

well as the radius of the locale’s shape approximated to a circle (minimum bounding circle).

The centroids and the radii of locales are sufficient to rapidly and efficiently give a good ap-

proximation of spatial relationships between objects in an image such as closeness, overlap

and inclusion. There exist other methods for determining more precise spatial relationships.

However, these methods to be effective can be computationally costly. The coarse-to-fine

strategy of the PRR algorithm simplifies the process by de facto eliminating in each round

the images and objects not leading to interesting rules. Ideally, we would preprocess once

the detailed spatial relationships at a fine granularity and lower granularity, and have a

table such as Table 6.2 provided to the mining module. If this computation is not prepro-

cessed before the discovery of association rules, another step could be added to the loop of

PRR (Algorithm 6.1.1) to determine rough spatial relationships at the current resolution

level and discover association rules with these approximate spatial relationships; then, the

next rounds would refine the spatial relationships for only the frequent item-sets discovered.

Notice that removing the minimum bounding circles at any resolution level like in Figure

6.3(a), assists at removing false positives from enumerated frequent spatial relationships.

We will discuss in the next subsection topological changes from rough to fine resolution.

6.2. MULTIMEDIA ASSOCIATION RULES WITH SPATIAL RELATIONSHIPS 167

6.2.1 Topological Relationships with Resolution Refinement

We have introduced in Figure 6.2 some simple spatial relationships: closeness (vertical

and horizontal), overlap, and containment. While these relationships have some level of

detail like for vertical and horizontal closeness, they are still kept simple to make the dis-

cussion on multimedia association rules with spatial relationship understandable. Spatial

relationships are essential components in query languages for geographic information sys-

tems and spatial databases, and describe topology of areas or regions in maps. In [75, 76]

Max Egenhofer presents a formal derivation for eight spatial relationships namely disjoint,

inside, contains, equals, meets, covered by, covers, and overlap. The relationships are for-

mulated for areas based on intersections of the boundary of an area A denoted ∂A, the

interior of the area denoted A◦ , and the exterior of the area denoted A−. The inter-

sections boundary/boundary, boundary/interior, boundary/exterior, interior/interior, inte-

rior/exterior, and exterior/exterior of two areas are characterized by the value empty (∅)
or non-empty (¬∅). For two areas A and B we can distinguish 29 = 512 different rela-

tionships by combining the boundaries, interiors and exteriors (i.e. 9 combinations and 2

values). Most of these combinations however, are not valid combinations and only 8 valid

relationships are derived. Because two of the relationships are symmetric, namely cover and

covered by, inside and contains, some view these relationships as 6 distinct ones: disjoint, in,

touch, equal, cover, and overlap [117]. In our discussion, we will use the eight relationships

as described by Egenhofer, but we will use only boundary (∂A) and interior(A◦) to define

them since the boundary and interior suffice to distinguish between the different spatial

relationships in our case. Table 6.9 shows the 24 = 16 combinations among which 8 are

valid.

The idea of progressive resolution refinement is to progressively reduce the size of the

data set to be analyzed. Spatial relationships are defined for a given resolution level. If the

spatial relationships are to be analyzed at the highest resolution level, the analysis could

be very costly if the data set is large. However, analyzing the same data set at a rough

resolution level can effortlessly yield some preliminary results. This preliminary result at

a rough resolution level can be used to filter the large data set and obtain a smaller data

set to be analyzed at a higher resolution. Doing the process recursively until reaching the

finest resolution level available is more efficient than analyzing the whole large data set

directly at the highest resolution level (see Algorithm 6.1.1). However, for the process to be

168 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

A◦ ∩ B◦ ∂A ∩ ∂B ∂A ∩ B◦ A◦ ∩ ∂B Relationship Graphic

∅ ∅ ∅ ∅ A disjoint B

n
�
��

B

A

¬∅ ∅ ¬∅ ∅ A inside B
�
����
��

A

B

¬∅ ∅ ∅ ¬∅ A contains B ��
��
�
��B

A

¬∅ ¬∅ ∅ ∅ A equals B �
��A
B

∅ ¬∅ ∅ ∅ A meets B �
���

��

A

B

¬∅ ¬∅ ¬∅ ∅ A covered by B ��
��
�
��B A

¬∅ ¬∅ ∅ ¬∅ A covers B ��
��
�
��

A

B

¬∅ ¬∅ ¬∅ ¬∅ A overlaps B �
���

��

A

B

¬∅ ∅ ∅ ∅ not valid
∅ ∅ ¬∅ ∅ not valid
∅ ∅ ∅ ¬∅ not valid
∅ ∅ ¬∅ ¬∅ not valid
∅ ¬∅ ¬∅ ∅ not valid
∅ ¬∅ ∅ ¬∅ not valid
∅ ¬∅ ¬∅ ¬∅ not valid
¬∅ ∅ ¬∅ ¬∅ not valid

Table 6.9: Topological relationships based on intersections of boundaries and interiors.

6.2. MULTIMEDIA ASSOCIATION RULES WITH SPATIAL RELATIONSHIPS 169

effective, the filtering operation should only remove data that would not yield interesting

results at a higher resolution level. In other words, the filtering operation weeds out data

that is proven not useful at the current resolution level and at all finer resolutions. If the

filtering removes data that is determinant at a higher resolution after all, the final results

could be incomplete or even erroneous. This is the reason why the number of occurrences,

for example, is not used to filter out non-frequent item-sets from one resolution level to the

other, since one rough locale could end up being two distinct locales at a finer resolution.

Thus, an infrequent two occurrences of a visual feature could become more frequent at a

higher resolution. As mentioned in Section 6.1.1, the same applies for visual features like

colour and texture: some are better preserved than others from fine to coarse resolution.

Spatial relationships between locales are non deterministic from one resolution level to a

finer resolution level. In other words, a given topological configuration between two areas

can become a different topological configuration at a higher resolution level.

As stated in Section 6.1.1, we envision three models for resolution refinement for objects

(or locales) in visual media: pixel based, bounding circle based, and tile size based. We will

discuss in the following subsections the resolution refinement with exclusion of minimum

bounding circles and the resolution refinement with resizing of locale tiles.

Resolution Refinement with Exclusion of Minimum Bounding Circles

With the bounding circle model, locales are first roughly estimated by a circle that comprises

the totality of the locale. A minimum bounding circle is the smallest circle that could

contain the whole locale. The centroid of the locale is taken as the centre of the circle

and the longest distance across the locale is the diameter of the minimum bounding circle.

While there could be many different minimum bounding rectangles for a polygon, there is

only one unique minimum bounding circle (Figure 6.6).

Resolution with minimum bounding circle has only two levels. In the first level (rough

resolution), the locales are approximated by circles and the topology is based on the bound-

ing circles. In the second level (fine resolution), the circles are excluded and the topology

is based on the envelope and mass of the locales (See Chapter 4 about locale definition and

characteristics). Obviously, the topology (i.e spatial relationships) could change from the

configuration with the bounding circles to the configuration without the bounding circles

and this potential change should be taken into account in the filtering process. As mentioned

before, there is a finite number of spatial relationships (8). For the filtering process to be

170 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

advantageous, a given spatial relationship at a rough resolution should not potentially result

in all the eight other topologies at the fine resolution, but only lead to a limited number of

possible new spatial relationships (< 8).

Figure 6.6: Minimum bounding circle and minimum bounding rectangles.

When taken one spatial relationship type at a time, it is possible to determine the

outcome of a resolution refinement (i.e. elimination of the minimum bounding circle) by

analyzing the valid combinations of intersections between boundaries and interiors. Let A

and B be two areas at a rough resolution (i.e. approximated to their minimum bounding

circles), and a and b the same areas at a higher resolution (i.e. without minimum bounding

circle). ∂A, ∂B, ∂a and ∂b are the boundaries of respectively A, B, a and b, and A◦, B◦, a◦

and b◦ are the interiors of A, B, a, and b respectively.

The topological relation between two areas A and B at any resolution level is defined

by a matrix R:

R(A, B) =

 A◦ ∩ B◦ ∂A∩ B◦

A◦ ∩ ∂B ∂A ∩ ∂B


The following are the eight possible topological relations and their valid outcomes with

a resolution refinement by elimination of the minimum bounding circle:

• A disjoint B (A◦ ∩B◦ = ∅, ∂A∩ ∂B = ∅, ∂A∩B◦ = ∅, A◦ ∩ ∂B = ∅)
A◦ ∩B◦ = ∅ =⇒ a◦ ∩ b◦ = ∅

∂A ∩ ∂B = ∅ =⇒ ∂a ∩ ∂b = ∅

∂A ∩B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅

6.2. MULTIMEDIA ASSOCIATION RULES WITH SPATIAL RELATIONSHIPS 171

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅

R(a, b) =

 ∅ ∅
∅ ∅


• A inside B (A◦ ∩B◦ = ¬∅, ∂A∩ ∂B = ∅, ∂A∩B◦ = ¬∅, A◦ ∩ ∂B = ∅)

A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ∅ =⇒ ∂a ∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩ B◦ = ¬∅ =⇒ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅ ∨ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ¬∅
∅ ∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅

 ∨
 ¬∅ ¬∅
∅ ¬∅


• A contains B (A◦ ∩ B◦ = ¬∅, ∂A∩ ∂B = ∅, ∂A∩ B◦ = ∅, A◦ ∩ ∂B = ¬∅)

A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ∅ =⇒ ∂a ∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩ B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅ ∨ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ¬∅ =⇒ a◦ ∩ ∂b = ∅ ∨ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ∅
¬∅ ∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅

 ∨
 ¬∅ ∅
¬∅ ¬∅


• A equals B (A◦ ∩B◦ = ¬∅, ∂A∩ ∂B = ¬∅, ∂A∩B◦ = ∅, A◦ ∩ ∂B = ∅)

A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a ∩ ∂b = ¬∅

∂A ∩ B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅ ∨ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅ ∨ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ∅
∅ ¬∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅

 ∨
 ¬∅ ¬∅
∅ ¬∅

 ∨
 ¬∅ ∅
¬∅ ¬∅


• A meets B (A◦ ∩B◦ = ¬∅, ∂A ∩ ∂B = ∅, ∂A∩B◦ = ∅, A◦ ∩ ∂B = ∅)

A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a ∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩ B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅

172 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

R(a, b) =

 ¬∅ ∅
∅ ∅

 ∨
 ∅ ∅
∅ ∅


• A covered by B (A◦ ∩B◦ = ¬∅, ∂A∩ ∂B = ¬∅, ∂A∩B◦ = ¬∅, A◦ ∩ ∂B = ∅)

A◦ ∩B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ∅ ∨ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩B◦ = ¬∅ =⇒ ∂a ∩ b◦ = ∅ ∨ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅

R(a, b) =

 ¬∅ ¬∅
∅ ¬∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅

 ∨
 ∅ ∅
∅ ∅

 ∨
 ¬∅ ¬∅
∅ ∅


• A covers B (A◦ ∩ B◦ = ¬∅, ∂A∩ ∂B = ¬∅, ∂A ∩B◦ = ∅, A◦ ∩ ∂B = ¬∅)

A◦ ∩B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ∅ ∨ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅

A◦ ∩ ∂B = ¬∅ =⇒ a◦ ∩ ∂b = ∅ ∨ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ∅
¬∅ ¬∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅

 ∨
 ∅ ∅
∅ ∅

 ∨
 ¬∅ ∅
¬∅ ∅


• A overlaps B (A◦ ∩B◦ = ¬∅, ∂A∩ ∂B = ¬∅, ∂A∩B◦ = ¬∅, A◦ ∩ ∂B = ¬∅)

A◦ ∩B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ∅ ∨ a◦ ∩ a◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩B◦ = ¬∅ =⇒ ∂a ∩ b◦ = ∅ ∨ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ¬∅ =⇒ a◦ ∩ ∂b = ∅ ∨ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ∅ ∅
∅ ∅

 ∨
 ¬∅ ¬∅
∅ ∅

 ∨
 ¬∅ ∅
¬∅ ∅

 ∨
 ¬∅ ∅
∅ ∅

 ∨
 ¬∅ ¬∅
∅ ¬∅

 ∨ ¬∅ ∅
¬∅ ¬∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅


The matrix

 ¬∅ ∅
∅ ¬∅

 is not valid in this context because a and b could not be

equal, since A overlaps B and by definition the minimum bounding circle of an area

is unique. If A and B overlap, this means that their minimum bounding circles are

6.2. MULTIMEDIA ASSOCIATION RULES WITH SPATIAL RELATIONSHIPS 173

A
A A

A
A

A
A A

B
B

B
BB

B

B

A

B
AB

A

B

A

B

A B
A B

A A
A

A

B

B
B

A

B

A

B

A

A

B

B

B

B

A

B

A

B

A

B

A

B

A

B

A

B

A disjoint B A inside B A contains B A equals B A meets B A covered by B A covers B A overlaps B

A
BA

B

A

B

A
B

A
B

A B

Figure 6.7: Topology and resolution increase with minimum bounding circles.

different, thus a and b could not be equal, otherwise it contradicts the unicity of the

minimum bounding circle.

The table in Figure 6.7 graphically summarizes the possible topological changes when

minimum bounding circles are eliminated for resolution refinement. Figure 6.8 gives exam-

ples for each case.

Resolution Refinement with Tile Resizing

Tiles are squares of 2 × 2, 4× 4, 8× 8, 16× 16 or 32× 32 pixels. As presented in Chapter

4, a tile can have different colours (or other visual features) at the same time; the bigger

the tile is, the higher the likelihood of a multi-valued visual attribute. Considering colour

as an example of a visual feature and starting from a large 32 × 32 tile, the more the tile

shrinks the more it is possible to distinguish between the different colours of the original

tiles. In other words, if the resolution refinement consists of dividing each tile by four, the

four new tiles would share or split the colours among themselves. It is also possible (for

peripheral tiles) that the new smaller tiles would lose the features from the parent tile. If

colour is the building factor for locales (see Chapter 4), whenever a tile is divided into four

174 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

A A A A
A A

A
A

B
B

B
BB

B

B

B

A disjoint B A inside B A contains B A equals B A meets B A covered by B A covers B A overlaps B

Figure 6.8: Examples of topological refinement with minimum bounding circles.

child tiles from one resolution level to a finer one, at least one child tile inherits the colour.

This is true for peripheral tiles. Peripheral tiles are considered the boundary of a locale,

and all other tiles are the interior. Figure 6.9 shows a locale with boundary and interior.

The intersection between boundaries and interiors of locales is based on shared tiles. For

two locales A and B, ∂A is intersecting ∂B if there exist a tile belonging to the boundary of

A and the boundary of B. A◦ is intersecting B◦ is there exists a tile belonging at the same

time to the interior of A and the interior of B. The same applies to ∂A∩B◦ and A◦ ∩ ∂B.

Neighbouring tiles are not intersecting (See Figure 6.9).

Figure 6.10 illustrates the progressive refinement in the case of shrinking tiles. The

roughest resolution level uses a 32× 32 tile size. Each finer resolution level divides the tile

size by four. Since the child tiles of peripheral tiles may lose colour, the boundary of a

locale may “retreat” inward which may result in a topological change from rough resolution

to finer.

The following are the eight possible topological relations and their valid outcomes with

a resolution refinement by shrinking the tiles:

• A disjoint B (A◦ ∩B◦ = ∅, ∂A∩ ∂B = ∅, ∂A∩B◦ = ∅, A◦ ∩ ∂B = ∅)

6.2. MULTIMEDIA ASSOCIATION RULES WITH SPATIAL RELATIONSHIPS 175

Disjoint

Meet

Boundary

Interior

Figure 6.9: Locale envelope with boundary tiles.

Figure 6.10: Progressive tile shrinking.

A◦ ∩ B◦ = ∅ =⇒ a◦ ∩ b◦ = ∅

∂A ∩ ∂B = ∅ =⇒ ∂a ∩ ∂b = ∅

∂A ∩ B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅

R(a, b) =

 ∅ ∅
∅ ∅


• A inside B (A◦ ∩B◦ = ¬∅, ∂A∩ ∂B = ∅, ∂A∩B◦ = ¬∅, A◦ ∩ ∂B = ∅)

A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ∅ =⇒ ∂a ∩ ∂b = ∅

∂A ∩ B◦ = ¬∅ =⇒ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅

R(a, b) =

 ¬∅ ¬∅
∅ ∅


• A contains B (A◦ ∩ B◦ = ¬∅, ∂A∩ ∂B = ∅, ∂A∩ B◦ = ∅, A◦ ∩ ∂B = ¬∅)

A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

176 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

∂A ∩ ∂B = ∅ =⇒ ∂a ∩ ∂b = ∅

∂A ∩B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅

A◦ ∩ ∂B = ¬∅ =⇒ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ∅
¬∅ ∅


• A equals B (A◦ ∩ B◦ = ¬∅, ∂A∩ ∂B = ¬∅, ∂A∩ B◦ = ∅, A◦ ∩ ∂B = ∅)

A◦ ∩B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ∅ ∨ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅ ∨ ∂a∩ b◦ = ¬∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅ ∨ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ∅
∅ ¬∅

∨
 ¬∅ ¬∅
¬∅ ¬∅

∨
 ¬∅ ¬∅
∅ ¬∅

∨
 ¬∅ ∅
¬∅ ¬∅

∨
 ¬∅ ¬∅
∅ ∅

∨ ¬∅ ∅
¬∅ ∅

 ∨
 ¬∅ ∅
∅ ∅

 ∨
 ∅ ∅
∅ ∅


• A meets B (A◦ ∩ B◦ = ¬∅, ∂A∩ ∂B = ∅, ∂A∩ B◦ = ∅, A◦ ∩ ∂B = ∅)

A◦ ∩B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅

R(a, b) =

 ¬∅ ∅
∅ ∅

 ∨
 ∅ ∅
∅ ∅


• A covered by B (A◦ ∩B◦ = ¬∅, ∂A∩ ∂B = ¬∅, ∂A∩B◦ = ¬∅, A◦ ∩ ∂B = ∅)

A◦ ∩B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩B◦ = ¬∅ =⇒ ∂a ∩ b◦ = ∅ ∨ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ∅ =⇒ a◦ ∩ ∂b = ∅ ∨ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ¬∅
∅ ¬∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅

 ∨
 ¬∅ ¬∅
∅ ∅



6.3. PERFORMANCE OF MAXOCCUR ALGORITHM 177

• A covers B (A◦ ∩B◦ = ¬∅, ∂A ∩ ∂B = ¬∅, ∂A∩B◦ = ∅, A◦ ∩ ∂B = ¬∅)
A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a ∩ ∂b = ∅ ∨ ∂a ∩ ∂b = ¬∅

∂A ∩ B◦ = ∅ =⇒ ∂a ∩ b◦ = ∅ ∨ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ¬∅ =⇒ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ∅
¬∅ ¬∅

 ∨
 ¬∅ ¬∅
¬∅ ¬∅

 ∨
 ¬∅ ∅
¬∅ ∅


• A overlaps B (A◦ ∩ B◦ = ¬∅, ∂A∩ ∂B = ¬∅, ∂A ∩B◦ = ¬∅, A◦ ∩ ∂B = ¬∅)

A◦ ∩ B◦ = ¬∅ =⇒ a◦ ∩ b◦ = ¬∅

∂A ∩ ∂B = ¬∅ =⇒ ∂a ∩ ∂b = ¬∅

∂A ∩ B◦ = ¬∅ =⇒ ∂a ∩ b◦ = ¬∅

A◦ ∩ ∂B = ¬∅ =⇒ a◦ ∩ ∂b = ¬∅

R(a, b) =

 ¬∅ ¬∅
¬∅ ¬∅


The table in Figure 6.11 graphically summarizes the possible topological changes when

the tile size is reduced for resolution refinement. Figure 6.12 gives examples for each case.

6.3 Performance of MaxOccur Algorithm

We have implemented Algorithm 6.1.2 to generate sets of synthetic images as presented in

Table 6.10, each image transaction had up to 15 objects. The different sized image sets

which were produced were intended to demonstrate the scalability of the algorithms and

compare their performance. Since The algorithm for mining multimedia association rules

with recurrent spatial relationships uses the Max-Occur algorithm after two extra scans of

the data set, we will only show in this section the performance of MaxOccur. It is obvious

that the scalability of both algorithms are related. We implemented the Apriori algorithm

[8] and two versions of the MaxOccur algorithm, as well as the näıve algorithm presented

earlier, in ANSI C on a PC 166Mhz and Ultra-Sparc workstation, both with 64Mb of main

memory. Since the Apriori algorithm uses the number of transactions as support, and

we wanted to compare our algorithm with Apriori, we have implemented MaxOccur and

the näıve with transaction based support (MaxOccur1). The second version of MaxOccur

178 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

A
A

A
BB

B
B

B

A disjoint B A inside B A contains B A equals B A meets B A covered by B A covers B A overlaps B

A B
A

A B

A
A

B

A

B
B A B

A
A

B

A
B A

B

A

B

A
B

B A B
A

B
A

B A

B

A

B

A

B

A

B

A

A
B

A
B

A
B

A
B

Figure 6.11: Topology and resolution increase with tile size shrinking.

A
A

A
BB

B
B

B

A disjoint B A inside B A contains B A equals B A meets B A covered by B A covers B A overlaps B

A B
A

A B

A
A

B

Figure 6.12: Examples of topological refinement with tile size shrinking.

6.4. ON-GOING WORK AND CONCLUSIONS 179

(MaxOccur2) used the object-based support as presented in Algorithm 6.1.3. Surprisingly,

the algorithms run 40% faster on the PC than on the Ultra-Sparc workstation. We believe it

is a network overhead since the PC used a local disk, while the Unix machine was connected

to a network. Table 6.11 shows the average execution times for the four algorithms running

on the PC with different image set sizes and σ′ = 0.05 for Apriori, “Näıve” and MaxOccur1,

and 0.0035 for MaxOccur2. The results are graphically illustrated in Figure 6.13. Clearly,

MaxOccur scales well with both versions treating one thousand images in 1.3 seconds, on

average, regardless of the size of the data set. The running time for filtering the frequent

item-sets with σ′, the maximum support threshold (line 16 of Algorithm 6.1.3), is negligible

since it is done in main memory once the frequent item-sets are determined. Moreover,

the calculation of the total number of items (line 4 of Algorithm 6.1.3) is done during

the first scan of the data set and has limited repercussion on the algorithms’ execution

time. The major difference between Apriori and MaxOccur is in ascertaining the candidate

item-sets and counting their repeated occurrences in the images. Obviously, MaxOccur

discovers more frequent item-sets. The näıve algorithm also finds the same frequent item-

sets but is visibly capable of less performance in execution time. Figure 6.15 shows the

average number of frequent item-sets discovered with the three algorithms: Apriori found

on average 109 different frequent k-item-sets, while MaxOccur1 and Näıve found 148 on the

same data sets, and MaxOccur2 found 145 on average. The discrepancy between MaxOccur1

and MaxOccur2 is basically due to the different definition of support. The price we pay

in performance loss with MaxOccur, is gained by more frequent item-sets and thus, more

potentially useful association rules discovered. We have experimented with different settings

of support thresholds with MaxOccur and we found that the scalability is not compromised.

The curves in Figure 6.14 show that while the performance is reduced when the minimum

threshold is reduced, the scalability remains. The foreseeable reduction in the performance

is due to the increase of the number of frequent item-sets in each round (| Fi |) because of

the lower support filter in line 14 of Algorithm 6.1.3. This intuition is also predictable and

true with the Apriori algorithm.

6.4 On-going work and Conclusions

In this chapter, we have introduced multimedia association rules based on image content

and spatial relationships between visual features in images using coarse to fine resolution

180 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

0

100

200

300

400

500

600

700

800

10K 25K 50K 75K 100K

Apriori MaxOccur1 MaxOccur2 Naïve

tim
e

images

Figure 6.13: Scale up of the algorithms.

0

20

40

60

80

100

120

140

10K 25K 50K 75K 100K

s=0.25 s=0.2 s=0.15 s=0.1 s=0.05

tim
e

images

Figure 6.14: Performance with variable σ′ values.

0 20 40 60 80 100 120 140 160

MaxOccur2 MaxOccur1 Naïve Apriori

Apriori

MaxOccur1

MaxOccur2

Naïve

|Fk|

Figure 6.15: Frequent item-sets found by the different algorithms.

6.4. ON-GOING WORK AND CONCLUSIONS 181

Database Number of images Size
MM-10 10,000 1.5MB
MM-25 25,000 3.7MB
MM-50 50,000 7.5MB
MM-75 75,000 11.3MB
MM-100 100,000 15.2MB

Table 6.10: Sample Databases of Synthetic Image Descriptors.

of images Apriori Näıve MaxOccur1 MaxOccur2
10K 6.43 70.91 13.62 13.68
25K 15.66 176.69 32.35 34.11
50K 30.54 359.38 66.07 67.44
75K 44.93 514.33 97.27 101.23
100K 60.75 716.01 130.12 137.81

Table 6.11: Average execution times with different number of images.

approach. We have put forth a Progressive Resolution Refinement (PRR) approach for

mining visual media at different resolution levels, and have presented two algorithms for

the discovery of content-based multimedia association rules. These rules would be mean-

ingful only in a homogeneous image collection; a collection of semantically similar images

or received from the same source channel. For other heterogeneous image collections, the

descriptor-based association rules described in the previous chapter, and implemented in the

MultiMediaMiner, would suffice. We have also formally presented the topological changes

with resolution refinement. We have enumerated all changes in spatial relationships with

of images σ′ = 0.25 σ′ = 0.20 σ′ = 0.15 σ′ = 0.10 σ′ = 0.05
10K 1.43 2.20 2.70 5.06 13.51
25K 2.80 4.78 6.31 11.20 32.35
50K 6.27 9.28 11.59 22.74 66.07
75K 8.24 13.57 17.69 33.94 97.27
100K 11.32 17.63 23.13 46.74 130.12

Table 6.12: Average execution time of MaxOccur with different thresholds.

182 CHAPTER 6. CONTENT-BASED MULTIMEDIA DATA MINING

the minimum bounding circle model and the locale tile shrinking model.

One major improvement in the performance of the multimedia association rules discov-

ery algorithms is the addition of some restrictions on the rules to be discovered. These

restrictions would add focus on the data set to be analyzed. A data mining query with

DMQL (see Chapter 3), for example, would substantially reduce the data set and put a

focal point on the interesting information to be discovered. While reducing and focusing

the data set would lessen the execution time, it does not necessarily improve the perfor-

mance of the algorithms. However, giving some restrictions on the form of the rules to be

discovered could decrease the execution time. Such restrictions could be given in a meta

rule form (see DMQL in Chapter 3 and Appendix C). MetaQueries and Meta-Rule Guided

Mining of association rules have been presented in [227] and [105]. Meta rules (or queries)

are logical descriptions in the form of the rules to be discovered. Such logical “templates”

could be for example P (u, v) ∧ ... ∧ Q(w, x) → R(y, z), where P, Q and R are predicate

variables bound to any concrete variable (or spatial relationship), and u, v, w, x, y and z

are variables bound to any data in the database or constants from the data set at multiple

conceptual levels. Meta-rule guided mining consists of discovering rules that not only are

frequent and confident, but also comply with the meta-rule template. The meta rule tem-

plate can convey a lot of information that could be exploited to improve the performance

of multimedia association rule mining. For example, the conjunction of the antecedent and

the consequent of the meta rule indicates the size of the frequent item-sets needed. In other

words, k is revealed by the template and would help stop the algorithm’s main loop when

necessary and sufficient k-item-sets are found. Moreover, the predicate variables P, Q, R

and the variables u, v, w, x, y, z in the rule template can substantially reduce the candidate

set size | Ck |. For example, with a meta rule such as “H-Next-to(X, Y) ∧ Colour(x, red) ∧
Overlap(Y, Z) → P (Y, Z)” one need only to find frequent 3-item-sets of the form {H-Next-

to(red, Y), Overlap(Y, ∗), P (Y, ∗)} where Y is an attribute value and P a visual descriptor

or spatial relationship predicate defined in Table 6.2. Obviously, such a filter would greatly

reduce the complexity of the search problem. A method for exploiting meta-rules for mining

multi-level association rules is given in [105].

In the process of discovering multimedia association rules with recurrent spatial rela-

tionships, we have assumed the existence of the enumerated spatial relationships such as

in Table 6.2. These relationships are simply processed by comparing the centroid of each

locale as well as the radius of the locale’s shape approximated to a circle. The centroids

6.4. ON-GOING WORK AND CONCLUSIONS 183

and the radii of locales are sufficient to rapidly and efficiently give a good approximation

of spatial relationships between objects in an image such as closeness, overlap and con-

tainment. There exist other methods for determining more precise spatial relationships.

However, these methods to be effective can be computationally costly. Ideally, we would

preprocess once the detailed spatial relationships at a fine granularity and have a table such

as Table 6.2 provided to the mining module. If this computation is not preprocessed before

the discovery of association rules, a first step could determine rough spatial relationships

and discover association rules with these high level approximate spatial relationships; then,

at a second stage, refine the spatial relationships for only the frequent item-sets discovered.

Notice that a concept hierarchy could be built on top of the spatial relationships, and an

iterative approach could be applied to discover sufficiently strong multimedia association

rules with recurrent spatial relationships from less accurate to refined spatial relationships.

Object recognition (or identification) in image processing and computer vision is a very

active research field. Accurately identifying an object in a video, for example, as being a

object in itself, is a very difficult task. We believe that data mining techniques can help in

this perspective. Multimedia association rules with spatial relationships using the motion

vector of locales as a conditional filter, can be used to discover whether locales moving

together in a video sequence are part of the same object with a high confidence. While

this cannot ascertain all objects in a set of video frames, it may help distinguish between

composite locales that might be objects and those that are definitely not composite objects.

Chapter 7

Conclusion

Man stays wise as long as he searches for wisdom;

as soon as he thinks he has found it, he becomes a fool.

Talmud

The information revolution is upon us. We are publishing all sorts of documents at an

amazing speed. In fact, we are overwhelmed by these publications. Techniques to manage

this excess of resources and retrieve pertinent documents when needed, have yet to be

developed. The phenomenal growth of the Internet, in terms of resources it contains and in

terms of users accessing these resources, shows the urgency and the crucial need for efficient

and effective resource discovery techniques.

Much of the bandwidth on the Internet is taken up by transmission of visual data.

Furthermore, it can be argued that image and video processing will be a central technology

in the information age. Visual data from satellites to video cameras and medical scanners

are provided in remarkable overwhelming amounts. The bulk of this data is never analyzed

or used because of lack of efficient and scalable techniques.

We have addressed in this thesis both of these problems. We have studied resource and

knowledge discovery from the Internet and investigated data mining from image collections.

In the following sections, our work is summarized and research directions are discussed.

7.1 Summary of the Thesis Work

In this thesis, we have demonstrated the inefficiency and inadequacy of the current infor-

mation retrieval technology applied on the Internet. We have proposed a framework, called

Virtual Web Views, for intelligent interactive information retrieval and knowledge discov-

ery from global information systems, and have put forward a query language, WebML, for

resource discovery and data mining from the Web using the Virtual Web Views.

184

7.1. SUMMARY OF THE THESIS WORK 185

We have illustrated in this thesis how descriptors collected for virtual web view building

can be exploited for content-based image retrieval, and have shown how to carry out on-line

analytical processing and data mining on visual data from the World-Wide Web, or other

multimedia repositories.

The major contributions of this thesis are summarized as follows:

1. We have proposed a framework in which virtual web views can be created to make

the web appear structured and use database technology to efficiently and interactively

retrieve information and discover implicit knowledge from the Internet. A multiple

layered database approach is used with concept hierarchies along which data is gener-

alized at high conceptual level. Different scenarios for interaction between heteroge-

neous views via a mediating agent are also proposed. This work has been published

in [127, 128, 276, 275].

2. We have proposed WebML a declarative web mining language for resource and knowl-

edge discovery from the Internet. The language allows interactive and progressive

querying of global information systems seen through virtual web views. Embedded in

other traditional programming languages, WebML could be used as a programming

language for Web mining, more than just an interactive query language. The language

has been published in [277].

3. Using the image descriptors extracted for summarizing images and videos in the Vir-

tual Web Views, we have designed and developed a system prototype, C-BIRD, for

content-based image retrieval from large image and video databases. The system was

demonstrated at the CASCON conference in 1997. It allows image search based on

colour and texture characteristics as well as search by objects contained in images. We

have put forth a feature localization and a three-step matching algorithm to support

search by object model. The system is also linked to the Internet allowing resource

discovery in the World-Wide Web based on image and video containment. The results

of this research was published in [168, 169, 167].

4. We have designed and developed an multimedia data mining system prototype, Multi-

MediaMiner, which offers on-line analytical processing (OLAP) with multi-dimensional

data cubes built on top of the descriptors initially extracted for content-based image

186 CHAPTER 7. CONCLUSION

retrieval, and descriptor-based data mining from multimedia repositories. MultiMe-

diaMiner, which was demonstrated at the ACM SIGMOD conference in 1998 [279],

has the following features: (i) a multi-dimensional multimedia data cube, (ii) mul-

tiple data mining modules, including characterization (or summarization), association,

and classification, and (iii) an interactive mining interface and display with Web in-

formation retrieval capabilities. The system combines data mining and information

retrieval from the Web by “drilling through” the visualized results. Our preliminary

experiments demonstrate that multimedia data mining may lead to interesting and

fruitful knowledge discoveries in multimedia databases. The result of this research

was published in [280].

5. We have studied and introduced association rules with recurrent items which are asso-

ciation rules with items that may appear more than once in the same rule. This type

of association rules is crucial in the multimedia context, especially for images where

features such as colours, textures, shapes, etc., can be repeated. We have presented

two scalable algorithms for the discovery of content-based multimedia association rules

with recurrent objects and multimedia association rules with recurrent spatial rela-

tionships between visual features. The algorithms and the results of the comparative

experiments conducted were submitted for publication in [281].

6. We have developed and implemented a data mining system DBMiner [125, 120] for

mining several kinds of knowledge and rules. Figure 3.2 to 3.5 in Chapter 3 show

examples of outputs of this system. As depicted in Figure 7.1, we have implemented

DBMiner with a multi-tier client-server architecture in a web-based environment ex-

ceeding the current stateless conjuncture of web servers by simulating user status and

implementing communication protocols between the different tiers. Our web-based

implementation of DBMiner was demonstrated at CASCON conference in 1996.

7. We have designed a data mining query language DMQL to describe needs and con-

straints in a data mining process. The language lets users specify the data mining task

at hand and the representation needed. It was implemented in the DBMiner system

and was published in [126]. The language was inspirational in the design of WebML.

7.2. DISCUSSION AND RESEARCH DIRECTIONS 187

Client
Server

browser HTTP
server

WWW
Master
server

Sybase
server

http
layer

Database
layer

visualisation
and

interaction
layer

Data
Mining
layer

DBMiner
server

validation
manipulation

User
status

Figure 7.1: DBMiner multi-tier client-server architecture for the web-based implementation

7.2 Discussion and Research Directions

• The massive and overwhelming aggregate of various documents on the Internet is

obvious. This continuous accumulation of documents is not only large, but also het-

erogeneous. Creating a data warehouse for Internet data (Web Warehousing) is a good

idea to alleviate some this heterogeneity problem and appease information gathering as

well as resource and knowledge discovery issues. Our study presents a general frame-

work of the VWV approach for the resource and knowledge discovery in the global

information system. More studies are needed in the construction and utilization of

the global multiple layered databases. A larger scale implementation and experiment

for an automatic construction and maintenance of a global MLDB, is needed to study

the efficiency of the initial design and probably refine and improve it.

• XML is widely predicted to improve the degree of interoperability between applications

on the Internet. However, the utility of XML is severely limited unless the semantics

of terms used in metadata is agreed upon. This has lead researchers to work on

new studies in an attempt to put forth means to provide interoperability between

applications that exchange information on the Internet. The Dublin Core elements,

already in use, could be a starting point to build a warehouse (i.e. VWV) with a

niche of resources that uphold the element set. The Resource Description Framework

(RDF) currently being revised by the World-Wide Web Consortium, is a domain-

neutral mechanism for describing on-line resources and a new foundation for processing

188 CHAPTER 7. CONCLUSION

metadata. Once ratified, it could be adopted by the information extraction tools (i.e.

for creation of Layer-1 of the VWV) which would comply with other web applications

for information exchange. The VWV itself could be accessed and queried through the

RDF.

• We have presented some scenarios in which co-existing heterogeneous VWVs ex-

changed information through Mediators as intermediary. Mediators allow VWVs to

specialize in geographic areas or topics, and count on other VWVs that warehouse

other web artifacts, when extra data is needed. However, Mediators may need to

translate exchanged data from ontologies to others if a global or common ontology

is not available. Common ontologies for restricted applications are in the works, like

the Ontology.com initiative for the electronic commerce domain. Many industries are

working on standard vocabulary and semantic requirements to ease interoperability

in their application domain. There is nevertheless a need for efficient algorithms for

intra and inter-domain ontology translations, in order for Mediators to play their role

of intermediary between VWVs.

• Web usage mining is a new research field that is drawing the attention of many scholars

and industry people. Unfortunately, web server logs collect only very limited infor-

mation. The structure and the content of web access logs were not designed for data

mining purposes. Data mining on this compilation of data necessitates expensive and

complex data cleaning and transformation. Established data mining techniques are

very difficult in this context. Often, information not collected in the logs are needed.

Further research is required in the collection of web access information, the data clean-

ing and transformation procedures, and in sophisticated algorithms. Moreover, there

is still an important challenge due to missing information resulting from caching prac-

tices at different levels, client browser, proxy server, etc. Accessing a cache instead

of a web site can mislead web access data analysis. In addition, the HTTP protocol

used for web information exchange makes it very difficult to identify user sessions ac-

curately, especially that the protocol is state-less. New protocols are being proposed

to solve some of these problems.

• Web usage mining, right from the beginning, is part of a large privacy debate involving

the personal data web servers retrieve from users when they browse for leisure or for

7.2. DISCUSSION AND RESEARCH DIRECTIONS 189

buying in electronic commerce sites. It is obvious that for marketing purposes, elec-

tronic businesses track what users do on a site, when they access, and try to correlate

it with who the users are. The marketers’ argument is that users may benefit from

this practice. By understanding surfing patterns and on-line buying habits, electronic

businesses can provide better services and even personalized services. On-line busi-

nesses even maintain preferential treatment by serving the best customers first and

excluding occasional users from special deals or services. Privacy advocates worry

secondarily about the sophisticated profiles created, but are specially and primarily

concerned with the proper use of this personal data accumulated. Several compa-

nies are sharing and even selling user information. This has lead to the Big Brother

syndrome–many web users refrain from making business on-line out of a concern over

the collection of personal data. Because of the stern warnings from privacy advocates,

more and more on-line services and retailers are adopting policies for non-divulging

transaction histories or releasing customer names. The issue is often more than just

a simple orientation: marketer versus customer, but imposing or allowing anonymity

in web transactions. Some even believe that posting anonymously in newsgroups and

chat rooms should be allowed. Some services like Anonymizer.com and many others

are making private surfing possible. However, for on-line shopping, retailers still have

to get addresses to ship the purchased goods and credit cards are used for payments.

Some digital cash schemes are being proposed that allow on-line payments that cannot

be correlated back to any other on-line identity. It remains that the privacy issue has

not been addressed in a meaningful way by the Internet community, and finding a

good balance between personal privacy and marketing is paramount for a righteous

growth for electronic commerce. It is important to note that privacy issues are not

proper to web mining but are problematic for data mining at large. Freedom and pri-

vacy organizations are dealing with the problem at a national and international level

trying to find solutions acceptable by all parties. It is sure though, that the dialectic

will remain since privacy issues are a very delicate matter.

• We have demonstrated how WebML, our declarative language for mining the Web,

can be very efficient and powerful for resource discovery and progressive information

retrieval from the Web. We have also illustrated the effective capabilities of the lan-

guage for data mining in the Web. However, the current design of the language does

190 CHAPTER 7. CONCLUSION

not emphasize web usage mining as it should be. The only information recovered from

web log files in the VWV that the language takes advantage of, are access counts. This

limits WebML in the expression of web usage mining tasks. For example, usage be-

haviour studies, clustering of users, correlation between requesters and resources, etc.,

can not be done with the current WebML.

• We have proposed the VWVs using MLDB structure with the extended relational

model. The relational model was used for simplicity and efficiency. However, because

of its flexible structure, the object-oriented model seems more suited for complex data

types and to handle the unstructured and semi-structured data that can be found

on the Internet. Besides, determining an effective and efficient design of data mining

systems using object oriented databases is still a research issue. Little has been done

so far on knowledge discovery from object-oriented databases. Because the object-

oriented data model is more suited to support complex data types, it is natural to use

object-oriented databases to store descriptors of Internet artifacts. However, new al-

gorithms for attribute-oriented induction and generalization have to be developed for

object-oriented databases. It is obvious that all algorithms pertaining to the construc-

tion and manipulation of the MLDB, as well as algorithms for data summarization

and classification and association rule extraction, tailored for relational databases, do

not operate in the object-oriented database context. The challenge is to find new al-

gorithms appropriate for on-line analytical processing (OLAP) operations, data cube

handling, and data mining with object-oriented databases. Integrating the object-

oriented paradigm in the VWV design and investigating new data mining algorithms

specific for object-oriented databases is one of our future objectives.

• The MultiMediaMiner prototype system we implemented, along with C-BIRD, our

content-based image retrieval system, could be integrated in a Visual Asset Man-

agement application. Managing large video or image data banks, like in the newscast

or film industry, is extremely difficult. We have subdivided videos in video sequences

represented by some selected frames. Text caption accompanying videos could also

be stored in the database. This hierarchical representation along with text caption,

content-based retrieval, and OLAP capabilities, are an excellent advantage to investi-

gate in a visual asset management context.

7.3. FINAL THOUGHTS 191

• Multimedia data are described with a large number of attributes, which makes multi-

media mining applications highly dimensional. Depending upon the impending data

mining task, most of these attributes are usually necessary. However, dealing with a

large number of dimensions is problematic. This is called the curse of dimensional-

ity. Each added dimension exponentially increases the search space by the number

of distinct values of the related added attribute. Choosing which dimensions to drop

and which to keep in order to reduce the size of the multi-dimensional data cube, is

a problem in itself. Moreover, constructing the data cube is expensive in time com-

plexity. We have briefly proposed a data cube materialization model, called Multi-

Dimensional Database (MDDB), in which data cubes are conceptualized in a database

and are materialized only when needed. The model allows a hierarchy of data cubes

where materialized cuboids can generalize other cuboids. Further investigation and

experiments with this model are necessary.

• We have presented and discussed the discovery of content-based multimedia associa-

tion rules and association rules with spatial relationships. There are other data mining

tasks calling for further research. Content-based descriptors of visual data could also

be used for clustering and classifications of images with respect to the attributes of

locales present in these images. There are a number of studies on classification and

clustering. However, most of the algorithms do not overlap between classes. New

algorithms for classification and clustering of multimedia objects, using image content

descriptors, should be developed. These algorithms should allow multi-classification

of the same objects in different classes.

7.3 Final Thoughts

Isaac Newton once said something like “We can see this far because we stand on the shoulders

of those who went before.” In this work we have put to use and built on top of research

contributed and started by others. We expect that our contribution will be a starting point

of many explorations, further study and probably debate in the field of information retrieval

and data mining.

The global information network of tomorrow will neither be what the Internet is today

nor just become the Memex that Vannevar Bush dreamed of. It will become an entity

intelligently organized and used in a way beyond what we might try to foresee in the present.

192 CHAPTER 7. CONCLUSION

We believe that the work in this thesis, no matter how insignificant it might be regarded

in the future, will contribute in the building of the next generations of sophisticated virtual

and physical global information networks.

Appendix A

Information Retrieval from the

Internet

We know what we are, but know not what we may be.

Shakespeare

The world is moving so fast these days that the man who says it can’t be done is generally

interrupted by someone doing it.

Elbert Hubbard

When Johannes Gutenberg introduced the printing press in Europe more than five cen-

turies ago, it spawned a revolution in publishing. Reproduction of publications was enabled

on a large scale. Today the World-Wide Web is bringing forth a revolution in electronic

publishing. We are witnessing phenomenal mass production of on-line publications of all

sorts. New text documents, images, videos, sound files, programs are made available every

single moment. However, with this overwhelming production of on-line resources it is very

difficult to know what is available and where and how it can be accessed.

At the end of the Second World War, in 1945, Vannevar Bush wrote an article inviting

scientists to join the effort in the massive task of building a system holding the sum of human

knowledge, and of making this astounding store of information accessible[44]. In his paper,

Bush wrote: “The difficulty seems to be, not so much that we publish unduly in view of the

extent and variety of present-day interests, but rather that publication has been extended

far beyond our present ability to make real use of the record.” He described the “Memex,”

a hypothetical machine that allows a scientist to store thoughts and link available material

in ‘trails’ of thoughts. The World-Wide Web technology and the convenient authoring

tools partially mimic Bush’s description of the Memex, and are available today not only

to scientists, but to millions of users who are continuously contributing to this remarkable

wealth of knowledge. However, one issue described by Bush still remains to be solved. Bush

wrote: “A record, if it is to be useful... must be continuously extended, it must be stored,

193

194 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

and above all it must be consulted.” Today the web consents to the storage of an extremely

large amount of multimedia and allows its continuous update. However, to make use of this

accumulated asset, one has to find the information and retrieve it. An efficient and effective

way has yet to be found.

Information retrieval has been a fertile research field. Many techniques have been pro-

posed and implemented in successful and less prevailing applications[209, 142, 218, 115].

With the advent of the World-Wide Web, the appearance of a panoply of services and ac-

cumulation of a colossal aggregate of resources, information retrieval techniques have been

adapted to the Internet, bringing forth indexing models and search engines. Finding ap-

propriate documents pertinent to a given request is known as Resource Discovery. Resource

discovery is the process of clarifying an information retrieval request and identifying and

retrieving resources relevant to this request. This is exactly the function that search engines

perform. However, the effectiveness of these tools is not satisfactory. The annoying results

of current search engine technologies have invited researchers to tackle new challenges. Bet-

ter indexing approaches, specialized information gathering agents, filtering and clustering

methods, etc. have since been proposed.

A new trend in the research in information gathering from the Internet is known as

Knowledge Discovery. Knowledge discovery from the Internet is the process of extracting

knowledge, or facts, from discovered resources or the global network as a whole. Knowledge

discovery on the Internet largely inherits from the data mining domain. This is not to be

confused with the access of databases from the World-Wide Web[251, 191] or data mining

in relational databases via the Internet. While the goal of resource discovery is to find

explicit information, like text documents, multimedia objects, or even web sites, the goal

of knowledge discovery is to bring to light implicit knowledge not necessarily stated in any

resource, such as classification of web artifacts, correlation between document descriptors,

relationships between resources or document content, summarization of resources, etc.

The Internet, since its inception, has evolved in a three dimensional space (Figure A.1).

A myriad of services has emerged allowing a variety of resource exchange and protocols.

Documents on the Internet have progressed from simple text documents, to semi-structured

documents, fully structured documents and multimedia records. Using Artificial Intelli-

gence, tools for information retrieval are becoming more skilled. Starting from manual

sifting and tools for resource browsing, some tools now learn to exploit available services for

information gathering, and others learn to deduce knowledge from document content. Tools

195

USENET FTPe-mail HTTP

text

Postscript

bibtex

HTML

images

Browsing

Resource Discovery

Knowledge Discovery

Service

Method
Capability

Autonomous
Learning Agents

Format

XML

F
igure

A
.1:

Internet
3D

space
representation.

196 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

can be categorized into five classes. Tools for direct resource access or browsing are in the

first class. Resource discovery tools like mega-indexes and search engines are in the second

class. The third class encompasses guided and autonomous agents that, given a specified

target or goal, would retrieve or filter information. More sophisticated agents are in the

fourth class. These agents have the ability to adapt and learn from experience. They can

infer user needs from a user profile and resource search and access patterns. Finally, Web

mining tools that discover and extract knowledge from found resources constitute the fifth

class. The axes in the figure A.1 represent the available document formats, the prevailing

services, and the axis of retrieval capability along which methods are evolving. Each infor-

mation retrieval method pertains to a set of services, performs on some types of documents,

and enjoys a retrieval power. Retrieval methods can be categorized on this last axis depend-

ing upon their aptitude in retrieving resources and/or knowledge from the Internet. Etzioni

in [82] has compared this evolution to a food chain organization where agents (carnivores)

feed on search engines (herbivores) which graze on documents. In [201] Peterson uses the

metaphor of biology taxonomy to compare information retrieval tools and their evolution -

from kingdom to species. He uses cladistics (i.e. biological classification scheme) to explain

the phenomenal rapid development of new tools on the Internet and foresee the outcome for

such tools.

In this Appendix we survey techniques for resource discovery on the Internet, and the

trends in the knowledge discovery field applied to the Internet. We also survey text retrieval

technology in document databases, as the same technology or variations and adaptations of

the technology are in the heart of resource discovery methods used on the Internet. A more

thorough survey can be found in our publications [270, 271].

A.1 Information Retrieval Technology

Librarians were among the first to adopt computer technology. Early library science re-

searchers dealt with the problem of manual indexing and text retrieval. The introduction

of computer technology in library science permitted the automation of some indexing and

retrieval. Library catalogues were automated and bibliography databases were created.

During the past few decades, much work has been done in information retrieval for library

systems[261, 212, 218, 197, 253, 209]. Automated document retrieval became important not

only in libraries, but also in other areas like patent offices, law offices for jurisprudence text

A.1. INFORMATION RETRIEVAL TECHNOLOGY 197

databases, business offices for computerized text retrieval from documents and memos, etc.

Information retrieval technology has drawn the attention of many researchers, and the

phenomenal increase of machine-readable material and network communications has brought

new challenges and has stimulated new research[131, 107, 64, 142, 115].

Information Retrieval (IR) is a term coined for the first time in a paper by Mooers

in 1952. Today, it is a field that subsumes many topics ranging from data retrieval from

databases to knowledge extraction, all related to information processing tasks. It is however

regarded as being synonymous with document retrieval. In this section, we will focus more

on the text retrieval aspect of the information retrieval field. Text retrieval, or document

retrieval, has three distinct activities: indexing, searching and ranking. Indexing refers

to the methods, or means, used to represent documents for retrieval purpose. Searching

refers to the process that examines documents (or their representation) and attributes these

documents to a search query. Finally ranking refers to the process of ordering documents

retrieved with respect to their relevance to the search query. This section will examine these

three activities for different document retrieval techniques.

Information Retrieval systems are evaluated based on effectiveness measures. Effec-

tiveness is typically characterized by three statistics: Precision, Recall and Fallout. In a

document retrieval system, after a search is completed, the document collection is divided

into two groups consisting of the documents that are retrieved and the documents that are

omitted. Each group is subdivided into those documents that are relevant to the search

query and those that are not relevant. Figure A.2 shows a table presenting these groups of

documents and defines precision, recall and fallout.

A good information retrieval systems minimizes c and b (silence and noise) and maxi-

mizes a and d (selection and rejection).

Precision is the fraction of the retrieved documents that are actually relevant to the

query. A system usually tends to maximize the precision. It is obvious that precision

could not be enough to evaluate an information retrieval system. Indeed, it is easy to

maximize the precision by simply retrieving only one document and having that document

relevant. The precision in that case would be 100%. The recall is the fraction of the

actual set of relevant documents that are correctly retrieved by the system. In other words,

the number of relevant documents retrieved from all relevant documents. An information

retrieval system should also maximize the recall. It is again obvious that simply retrieving

all documents in the collection maximizes the recall. All relevant documents are necessarily

198 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Relevant Non-relevant
Retrieved a b (a+b) all retrieved documents

Not retrieved c d (c+d) documents left out
(a+c) (b+d) (a+b+c+d) total collection

all relevant all non relevant
documents in documents in

collection collection

precision = a×100
(a+b)

recall = a×100
(a+c)

fallout = b×100
(b+d)

Figure A.2: Precision, Recall and fallout in IR.

in the collection. Therefore, precision and recall should be used together. A compromise to

maximize them both should be found. When used together, precision and recall measure

selection effectiveness. Because both precision and recall are insensitive to the total size

of the collection, fallout is used to measure rejection effectiveness. Fallout is the fraction

of the non-relevant documents that are retrieved. An information retrieval system should

minimize the fallout. The calculation of recall requires knowledge of the total number of

relevant documents in the collection (a+c). In a large collection, this is not always practical

and even impossible. Often, the number of not retrieved relevant documents (c) is estimated.

Sampling techniques and other methods like pooling are used to estimate this number.

It is important to note that precision, recall and fallout depend upon the definition of

relevance. The relevance of each document-query pair is rated individually. Relevance rating

is obtained by experts or users. Thus, this measure is highly subjective and represents a

user need. To avoid a user-centered evaluation, a population of users (or experts) might

be used. Nevertheless, with the same collection of documents, the same queries, and the

same relevancy, precision, recall and fallout can be used to compare different information

retrieval systems performance. In addition, time performance can also be used for system

evaluation.

A.1. INFORMATION RETRIEVAL TECHNOLOGY 199

A.1.1 Conventional Document Retrieval

The most obvious way to look for documents that match a query string is to examine all

documents one by one, and search for the string [148, 36, 240]. While this brute force

method guarantees to locate all documents containing the exact string, it is certainly not

scalable, and is redundant. However, this method generates no space overhead since no

representation for documents is used except the documents themselves.

It was clear for the information retrieval research community that indexing was key

for successful information retrieval systems. Researchers have devoted a lot of attention

to the development of automated indexing techniques. A myriad of techniques have been

implemented and tested. Some of them are still at the heart of modern techniques used

for resource discovery from the Internet. As will be outlined in the following sub-sections,

indexes differ significantly from one information retrieval method to the other. Each method

has its own indexing technique and index structure. Indexes may contain terms, like for the

inverted file technique, or a representation of some sort of these terms. Bit strings constitute

the indexes for some information retrieval techniques, where a particular bit may indicate

the presence or the absence of a term, for example. Not all words of a document are indexed.

Words that occur with a high frequency are usually eliminated before the indexing process.

A list of these words, called a stopword list[261], is consulted for each word encountered

during the document indexing, or during the query parsing. Indeed, commonly occurring

words are also discarded from queries when these are submitted in natural language.

Other means are also used to reduce the set of words for inclusion in the index. For

example, plurals are converted to singulars. Different language normalization techniques

borrow from natural language processing to reduce words with similar meanings to a gen-

eralized common concept. These are called conflation techniques. Stemming, for instance,

reduces all words with the same root to a single form by stripping the root of its derivational

and inflectional affixes (i.e. suffix, prefix, and infix). That is, all words are transformed to

their canonical form. In the English language, stripping the suffixes usually suffices. Con-

flation techniques are usually language dependent and are often based on dictionaries, like

dictionaries of common word endings, dictionaries of synonyms, etc. In general, there are

three classes of word normalization:

1. morphological stemming: For example, for the term “retrieving”, the stem “retriev”

would be extracted.

200 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

2. lexicon-based word normalization: For example, “retrieval” would be reduced to “re-

trieve”.

3. term clustering into synonymy classes or subsumption hierarchies: For example, “re-

trieve”, “recover”, “fetch”, “bring”, etc. could be grouped in the same class.

Word normalization not only reduces the size of the indexes, but it has also been proven

to improve the selection effectiveness of information retrieval systems. Not all information

retrieval systems use these natural language techniques for word normalization. Some sys-

tems are notorious in choosing to only eliminate some stopwords like articles and pronouns.

For simplicity, they index the whole full text document content. This increases the size of

the index and, more importantly, may decrease the recall.

When systems include phrases in their indexes, the phrase recognition phase is processed

before stopwording and normalization in order to keep phrases in their original form. Many

alternatives are used for phrase recognition; some based on syntactic recognition, some on

word co-occurrence statistics, and some on manually built phrase dictionaries. Often a

combination of these approaches is used.

Information retrieval systems normally involve the following:

1. Documents (or other records) are processed to record features about them that will

assist in the matching with the queries. This is the indexing which either associates

terms with the documents (keywords and phrases extraction) or generates a document

representation.

2. Queries are processed in a similar manner as documents to extract features associated

with them, such as phrases.

3. The document features and the query features are compared in such a way as to

separate the documents that are relevant to the query from the others.

4. An ordering of the selected documents is prepared according to the relevancy.

In systems with relevance feedback, another step may be involved where the user may mark

the relevance of the documents displayed and resubmit the ranking to the system. Using the

judgment submitted, the system modifies the original query and re-evaluates it. Because

it is difficult to formulate queries in a retrieval system when the document collection is

A.1. INFORMATION RETRIEVAL TECHNOLOGY 201

unknown, relevance feedback yields progressive refinement and reformulation of queries.

Reference feedback significantly improves retrieval performance [217].

Traditional information retrieval approaches used in library science are signature file

methods and clustering methods which index documents by generating bit strings represen-

tations. While these systems are not as popular today as they were, hybrid variations of

the technology still subsists. By and large, inverted file index is the most commonly used

approach in information retrieval systems. These methods are outlined in the following sub-

sections. Artificial intelligence-based methods like neural networks and genetic algorithms

are not covered in this survey.

Document Clustering

The idea behind document clustering is that similar documents tend to be relevant to

the same request. By grouping similar documents into clusters, the search space can be

reduced and the search accelerated. Document clustering involves cluster generation, which

is the indexing process, and the cluster search which is the query processing and matching.

Clustering techniques operate on vectors. Each document is represented as t-dimensional

vector, where t is the number of selected index terms. From all documents in the collection,

t terms are chosen and are represented in the vector. “0” in the corresponding position

in the document vector indicates the absence of a term in a document. The presence of a

term is indicated by “1” or by a term weight which is either the occurrence frequency of

the term in the document or a calculated term weight based on a relative occurrence of the

term in the whole collection[89]. The vector model yields a representation of the documents

in a t-dimensional space. Each document becomes a point in this space. Partitioning

these points into groups constitutes the cluster formation. There have been many cluster

formation methods proposed. Most are classified into three types of methods: similarity-

based methods, iterative methods, and hybrid methods.

Methods based on similarity matrix[218]: These methods apply graph theoretic tech-

niques and require a similarity function that measures how closely two documents are re-

lated. Many such document similarity measures have been proposed in the literature. The

methods of this class are basically the following: Connect by an edge the two points rep-

resenting two documents if the two documents have the similarity measure exceed a given

threshold. When all documents are compared, the maximal cliques (i.e. the connected com-

ponents) in the resulting graph are proposed clusters. If n is the number of documents in the

202 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

collection, these methods require O(n2). Other methods using graph theory and requiring

quadratic time have also been proposed[269].

Iterative methods[218]: These methods do not require a document-document similarity

function, but they necessitate empirically determined thresholds like the number of clusters

desired, the size of clusters, etc. Many iterative methods were proposed. They usually

operate in the order O(n logn) or O(n2/ logn). The general approach is to determine

an initial partitioning and iteratively re-assign documents to clusters until there are no

assignments that can improve the clusters based on a document-cluster measure. These

methods can allow overlap between clusters.

The same document clustering can be applied to terms. Co-occurring terms are usually

related or relevant to each other. This grouping of terms into clusters is very useful in

dimensionality reduction. Clusters are represented by concepts that can be used in the

t-dimensional vectors as term representatives. Using concepts instead of terms reduces the

keyword dimension.

Hybrid methods: These methods combine similaritymatrix and iterative methods. Salton

and McGill, for example, present in [218] a method that uses an iterative approach to gen-

erate rough partitioning of documents and then uses a graph-theoretic method to subdivide

each partition into smaller clusters.

The cluster search starts by processing the query and representing it in a t-dimensional

vector. A cluster to query similarity function is required. This function compares the query

vector to the cluster centroids. The search is done only in the clusters which have a similarity

with the query vector exceeding a certain threshold.

The vector model of the clustering method allows relevance feedback. After relevant

documents among the retrieved ones are marked by the user, the system reformulates the

query vector and restarts the cluster search. The effectiveness of the search has been shown

to increase after two or three iterations.

Clustering techniques are still attracting much interest. In [163] Lee presents two similar-

ity based approaches to solve the sparse data problem in clustering methods. The techniques

applied for word classification in natural language processing are also used for document

clustering and speech recognition error-rate reduction.

A.1. INFORMATION RETRIEVAL TECHNOLOGY 203

Document signatures

In the signature file document retrieval method, each document yields a bit string called

a signature or filter. Signatures of all documents are collected in a signature file to form

the index. Signatures are either stored sequentially in the same order as their correspond-

ing documents in the document file, or are stored with a pointer to their corresponding

document. A document signature is generated by transforming words in a document into

bit strings using hashing, and superimposing or concatenating the coding. By perform-

ing similar transformations on the query words and comparing the resulting bit string to

the document signatures, it is possible to determine the documents that contain the query

words. Being smaller than the document collection, the signature file can be searched much

faster. However, since hash functions are not precise, this method can generate noise (i.e.

false positives: documents retrieved that are not relevant to the query).

The signature file method is more efficient when the distribution of the “1”s in the sig-

natures is uniform. Hence the importance of selecting a good and effective hash function.

Many techniques were proposed aiming at a uniform distribution in signatures[89]. Varia-

tions in the signature file method are based on the choice of hash function and the approach

adopted for combining the word signatures into a document signature.

Stiassy proved that, for a given signature size, the probability of false positives occurring

is minimized if the number of “1”s in the document signatures is equal to the number of

“0”s[235]. Indeed, if there are too many “0”s there is space wasted in the signature, while

if the number of “1”s is too high, most query-document pairs would match. To have each

bit convey optimal information, it is necessary to have half the bits set to “1”. In [33]

Bloom automatically selects a size for the document signature (bloom filter) that conveys a

probability of 50% for a bit in the filter to be “1” or “0”. The size of the filter is calculated

based on the distribution of numbers of words per document in the collection and the number

of transformations performed on each word.

Two-level signature files as well as tree structured document signatures, and a cluster-

ing signatures approach have been proposed to improve the search speed of signature file

techniques[89].

Despite its low accuracy rate (compared to other methods) the signature file method

is popular because of the low space overload required. However, the method has another

major drawback. Since the entire signature file has to be consulted for each query, the

204 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

method is expensive in terms of disk input/output (I/O) operations when the number of

documents is large. To reduce the I/O cost for retrieval, Roberts suggests in [212] to store

signature files in “bit slices”. Instead of organizing the signature files in rows of signature

bits one signature per row, the file is organized one signature per column. In other words,

the first bit of all document signatures are stored consecutively in the first row, then the

second bit of all signatures in the second row and so on. This structure in a random access

file can reduce the I/O operations drastically. However, while the updates are easy in the

normal signature files, bit slice signature files are very costly in maintenance. Each time a

document is updated or added, the whole signature file has to be changed.

Inverted Indexes

Just as the relational model is the most used model in commercial databases, inverted

indexes are followed by most commercially available information retrieval systems [218]. An

inverted index (or inverted file) is a file containing every term in a set of documents with the

list of documents where they appear. The file is ordered in alphabetical order and each term

appears only once. Terms can be words, compound words or phrases. In practice, terms

are stored sorted in the inverted file along with a pointer to a posting file which contains

the document accession numbers of the documents containing them. Figure A.3 shows an

example of such structure: the term “retrieval” appears in four documents pda, pdb, pdc,

and pdd. A pointer points to a record in the posting file where pda pointer is stored. pda,

pdb, pdc and pdd pointers are stored consecutively in the posting file. They all point to

the appropriate documents in the document file.

This structure is easily built by going over the document collection once and cumulating

counters for selected terms. The search process simply locates documents containing a

specific term by retrieving the document pointers in the posting file pointed by the term

entry in the inverted file. By using a B+tree structure on top of the sorted inverted file, the

search process becomes extremely fast. Moreover, the inverted file structure permits easy

processing of boolean expressions by using set operations on the document sets of the terms

in the expression. For example, a simple intersection between a document set pointed by

a term A and the set pointed by a term B would yield the documents satisfying A and B.

The union of such sets yields the documents satisfying A or B. The not operation can also

be processed in the same manner.

A.1. INFORMATION RETRIEVAL TECHNOLOGY 205

term

"retrieval"

Inverted file

4

pda
pdb
pdc
pdd

doc ptr

Posting file

size ptr
list
doc

list
doc Document file

document1

document2

document3

document4

document5

pda

Figure A.3: Inverted Index File structure.

The most significant problem with inverted file structure is the storage overhead. Typ-

ically, an inverted file structure requires 50% to 300% of the original document collection

size [131] depending upon how terms are chosen (words, phrases, overlapping phrases, syn-

onyms etc.). Another disadvantage of this method is the maintenance cost. Adding new

documents involves updating many document lists in the posting file, while adding new

term may necessitate costly B+tree structure updates. However, the easy implementation

and the speed of the inverted file outweigh the disadvantages, making this method by and

large the most popular, even in today’s World-Wide Web search engine applications.

The simple structure of the inverted file can convey additional information that can be

useful in the ranking of the documents retrieved. Relevance ranking of documents is usually

based on heuristics using the number of terms from the query that appear in the documents,

and the popularity of the terms in the collection. This information can be obtained from

the inverted file structure. An enhanced information file structure has an additional file

holding the positions of the terms in the documents. A change in the posting file schema

allows adding pointers to the posting file. Figure A.4 shows such a structure. The term

“retrieval” is used in four documents. A pointer from the inverted file points to a record in

206 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

term

"retrieval"

Inverted file

4

Posting file

size ptr
list
doc

list
doc Document file

document1

document2

document3

document4

document5

pda

Position file

4

113
552

pda
pdb
pdc
pdd

ptr
doc

ptr
pos.

occur.
numb

3
12
4
8

Figure A.4: Inverted Index File structure with position file.

the posting file which is the first of four consecutive records like in the structure in Figure

A.3. A record in the posting file has a pointer to the corresponding document but also the

number of occurrences of the term in the document and a pointer to a list of positions of

this term in the document. The list is stored in the position file. For instance, “retrieval”

appears three times in the document pda in positions 4, 113, and 552. With this new

structure, the number of occurrences of a term in a document can be used in the relevancy

of a document, and the relative position of search term in a document can also be used to

rank the relevance of the document. Moreover, the proximity of terms (i.e. how close two

terms are to each other) can be used in retrieval queries.

Term Weight Assignments

Terms in a document are not equally useful in content representation. Some terms are

more important than others. Giving weight to terms according to their importance in the

document can help rank documents according to their relevance to a query, hence, the term

weighting approach. In order to assign high weight to terms deemed important and low

A.1. INFORMATION RETRIEVAL TECHNOLOGY 207

weight to less important terms, frequency of terms in a document with respect to their

frequency in the whole collection can be used. In other words, terms that are frequent in

a document but do not appear in other documents are important, while terms that are

repeated in all documents are not important. For a term t in a document Di, its weight

is equal to the term frequency in Di times the inverse of the frequency of the term in

the collection (wit = ft(Di) × 1
ft(C)). This definition of weight favours terms with high

frequency (ft(Di)) in a particular document Di but with a low frequency overall in the

collection (ft(C)). When all documents in the collection are represented by weighted term

vectors of the form Di = (wi1, wi2, ..., win) where wit is the weight of the term t in the

document Di and n the number of distinct terms, a similarity measure can be calculated for

each pair of vectors. This measure reflects the text similarity between the two documents.

If queries are processed in the same manner and a weighted vector is generated, given a

query Qj, a similarity computation of the form Similarity(Di, Qj) =
∑n
k=1 wik × wjk can

be computed for any document Di in the collection. Given this similarity function, a ranked

list of documents in decreasing order of similarity can be obtained for any query or sample

document.

A.1.2 Hypertext and multimedia

Because major resources on the Internet reside on the World-Wide Web and the World-Wide

Web is using the hypertext paradigm, indeed, the World-Wide Web started as a hypertext

project, it is important to provide a glimpse of the hypertext development.

Hypertext basic concepts were introduced by Ted Nelson, who coined the term “hyper-

text” in 1965 [188]. Following Vannevar Bush’s Memex idea [44], Ted Nelson developed the

Xanadu project1 which aimed at placing the entire world’s literary corpus on-line. Hypertext

systems, also known as non-linear text systems, provide non-sequential access to informa-

tion by incorporating the notion of navigation, annotation, and tailored presentation [31].

Hypertext has been defined as “an approach to information management in which data is

stored in a network of nodes connected by links. Nodes can contain text, graphics, audio,

video, as well as source code, or other forms of data” [230]. With multimedia, hypertext is

called hypermedia.

The major original concept with hypertext is the concept of links. Links can either

1http://www.xanadu.com.au

208 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Datamining

discovers

patterns and

trends in

databases

Information

Retrieval from

resources

databases

and Internet

Database

Management

Systems

Knowledge Discovery

Internetfrom the is the

extraction of implicit

information from the
network.

a collection

of networks

The Internet is

Figure A.5: Example of a hypertext document.

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 209

be within a node, or between nodes. A document in a hypertext system is a collection of

nodes interconnected by links, which can be unidirectional or bi-directional. Bi-directional

links permit backward traversals of documents. It is the linking capability that allows the

non-linear organization of text. Figure A.5 shows an example of a hypertext document. The

node from which a link originates is called the reference, and the node at which the link

points is called the referent. The starting point of a link is referred to as an anchor point,

or a button. When reading a document, a user is presented with nodes which can be con-

sidered as document parts conveying the same theme. By clicking an anchor, the associated

link is traversed, taking the user to the associated node. Obviously, the user interface is

paramount in hypertext systems for navigating through large amounts of information. Au-

thoring documents with such systems have been known to be somehow problematic, causing

cognitive overhead, referred to as cognitive task scheduling problem. Authors need an ad-

ditional effort and concentration to maintain several tasks and keep track of different links

at one time[59]. User interface issues and hypermedia authoring issues have drawn much

attention in the research community [112, 59, 31, 230]. The major information retrieval

approach used for such a model is a query-less approach using simple browsing - navigating

the document by traversing it node after node following its links. Browsing, however, has

a major drawback: disorientation. Users have the tendency to lose their sense of location

and direction in a non-linear document. This is known as the “Lost in Space” problem.

Some aspects of this problem can be addressed by the user interface offered by the browser.

Much effort has been put into this issue by Human Computer Interaction and User Inter-

face researchers. Another solution for coping with disorientation is a query mechanism. By

looking at nodes as records, or documents, as in the traditional information systems, stan-

dard information retrieval indexing techniques can be applied. Usual queries with boolean

operations combining keywords allow a user to locate interesting nodes. Links, however, can

give additional information that ranking heuristics can exploit for node relevance ranking.

A.2 Survey on Resource Discovery on the Internet

Many consider the moon landing to be the most significant event in our time, however, the

advent of the Internet had, has, and will still have a greater impact on our society. Historians

will not remember the 20th century as the atomic bomb century but rather as the century

of the birth of the global communication network. The atomic bomb certainly struck an

210 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

immense reaction among scientists, politicians and the homo qualque. The emotional impact

on our society is unprecedented. However, hopefully, this means will never be used again

and will be remembered as a bad experience in our civilization. On the other hand, the

Internet and its collection of services will continue to grow to a level we cannot even imagine

today. Already the Internet is a necessity we can not afford to lose. We use it to interact,

learn, communicate, and entertain.

Many agree that the Internet started as the ARPANET, an initiative of the Advanced

Research Projects Agency, during the Cold War in 1969. By building the ARPANET, the

US Department of Defense wanted to explore the possibility of a communication network

that could survive a nuclear attack. Initially the network connected four sites, but very

rapidly, many research centres and universities were connected. The introduction of the

communication protocol TCP/IP in the early 1980s helped interconnect various research

networks, which resulted in the Internet with ARPANET as a backbone. During the same

period, the National Science Foundation (NSF) established six supercomputer centres in

the United States. In 1986, a dedicated network (NSFNET), funded by the NSF, connected

these centres and became the new Internet backbone when ARPANET was dismantled.

Since then, the growth in the number of hosts and the growth in packet traffic on the

backbone have been increasing exponentially [185, 283]. The table in Figure A.6 and the

graphs in Figures A.7, A.8 and A.9 show the growth of the Internet in host numbers, domain

numbers and web site numbers. The data was collected and compiled from various sites

on the Internet, among them [185, 283, 237]. The growth of the Internet accelerated even

more with the advent of the World-Wide Web and the connection of commercial TCP/IP

providers. Along with the growth of the Internet, there has been an important increase

in the number of software tools to make use of the multitude of resources in the network.

Moreover, different transfer protocols have been adopted each creating a “subspace” of

resources within the Internet. File Transfer Protocol (FTP) for instance, which was the

most frequently used service on the Internet until 1994 (in terms of data packet transferred),

has a subspace of more than 3 million documents estimated at a few tera-bytes scattered on

a few thousand sites[70]. Other subspaces like gopher- space, USENET space and World-

Wide Web space contribute to the ever-growing size of the Internet. It is interesting to note

that many attempts have been made to index on-line resources, all of which aim at one

Internet subspace or another. Archie for example indexes FTP sites, and Veronica indexes

Gopher space, while search engines cover the World-Wide Web. Most of recent World-Wide

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 211

Web indexes include USENET subspace and/or FTP or Gopher as well.

A.2.1 Internet tools for information Retrieval

This section outlines some of the widespread networked information retrieval tools and ser-

vices. The number of tools available today is very large and still growing very quickly. The

following classification is one possible ordering of some of the most popular services on the

Internet aiding in the proliferation of resources or the retrieval of those resources. There

are four categories of networked information retrieval tools or services. The first category

encompasses communication services like electronic mail, news groups, telnet, synchronous

chat tools, etc. The second category groups information storage and information exchange

services, like FTP, Gopher, Alex, etc. Information indexing and information retrieval ser-

vices, like Archie, Veronica, WAIS, WHOIS and Netfind, are in the third category. Finally,

the interactive multimedia information delivery service, namely the World-Wide Web and

its indexes, is in the fourth category.

Communication Services

Electronic mail (e-mail): E-mail has been one of the main uses of the Internet and was

one of its first applications. E-mail is a way to send messages from a user on a computer

to a recipient user on a destination machine, both user machines being connected via a

network. The message can contain any text such as a business memo or a personal letter.

Today, e-mail can contain multimedia like sound, images or video. Although e-mail is still

one of the major uses of the Internet, the documents generated by this service are usually

private and do not contribute largely to the proliferation of public on-line resources on the

Internet. However, it is common, on corporate Intranets, to archive office memos exchanged

by e-mail. Such archives or personal electronic mailboxes grow very rapidly and necessitate

information retrieval techniques to locate particular e-mail messages, or even data mining

techniques to summarize message contents.

USENET (network news groups): USENET is a collection of hosts that receive network

news groups, which are discussion groups or forums about a variety of topics. Network

news is a mechanism for broadcasting messages from one host to a large number of hosts.

A message or article sent to a news group is received by a host on USENET. People who

access the USENET hosts can read the messages. This connection simulates the message

212 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Date Hosts Domains Web sites
09/1969 4
04/1971 23
06/1974 62
03/1977 111
08/1981 213
05/1982 235
08/1983 562
10/1984 1,024
10/1985 1,961
02/1986 2,308
11/1986 5,089
12/1987 28,174
07/1988 33,000
10/1988 56,000
01/1989 80,000
07/1989 130,000 3,900
10/1989 159,000
10/1990 313,000 9,300
01/1991 376,000
07/1991 535,000 16,000
10/1991 617,000 18,000
01/1992 727,000
04/1992 890,000 20,000
07/1992 992,000 16,300 50
10/1992 1,136,000 18,100
01/1993 1,313,000 21,000
04/1993 1,486,000 22,000
07/1993 1,776,000 26,000 150
10/1993 2,056,000 28,000
01/1994 2,217,000 30,000 650
07/1994 3,212,000 46,000 3,000
10/1994 3,864,000 56,000
01/1995 4,852,000 71,000 10,000
07/1995 6,642,000 120,000 25,000
01/1996 9,472,000 240,000 100,000
07/1996 12,881,000 488,000 300,000
01/1997 16,146,000 828,000 650,000
07/1997 19,540,000 1,301,000 1,200,000
01/1998 29,670,000 2,500,000 2,450,000
07/1998 36,739,000 4,371,603

Figure A.6: Growth of the Internet from 1969 to 1998. (Compiled from [185, 283] and other
sites)

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 213

 Internet Growth

5000000
10000000
15000000
20000000
25000000
30000000
35000000
40000000

S
ep

-6
9

S
ep

-7
1

S
ep

-7
3

S
ep

-7
5

S
ep

-7
7

S
ep

-7
9

S
ep

-8
1

S
ep

-8
3

S
ep

-8
5

S
ep

-8
7

S
ep

-8
9

S
ep

-9
1

S
ep

-9
3

S
ep

-9
5

S
ep

-9
7

S
ep

-9
9

H
os

ts

0

Figure A.7: Growth of the Internet in terms of number of unique hosts.

Number of Internet Domain Growth

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

S
ep

-6
9

S
ep

-7
1

S
ep

-7
3

S
ep

-7
5

S
ep

-7
7

S
ep

-7
9

S
ep

-8
1

S
ep

-8
3

S
ep

-8
5

S
ep

-8
7

S
ep

-8
9

S
ep

-9
1

S
ep

-9
3

S
ep

-9
5

S
ep

-9
7

S
ep

-9
9

D
om

ai
ns

Figure A.8: Growth of the Internet in terms of number of unique Internet domains.

Number of Web Sites Growth

0

500000

1000000

1500000

2000000

2500000

3000000

S
ep

-6
9

S
ep

-7
1

S
ep

-7
3

S
ep

-7
5

S
ep

-7
7

S
ep

-7
9

S
ep

-8
1

S
ep

-8
3

S
ep

-8
5

S
ep

-8
7

S
ep

-8
9

S
ep

-9
1

S
ep

-9
3

S
ep

-9
5

S
ep

-9
7

S
ep

-9
9

W
eb

 S
ite

s

Figure A.9: Growth of the Internet in terms of number of Web Sites.

214 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

19
70

20
00

19
95

19
90

19
85

19
80

19
75

A
R

P
A

N
E

T
19

82

tr
an

si
ti

on
 to

 T
C

P
/I

P

19
71

F
T

P
 o

n
N

C
P

19
86

N
N

T
P

W
A

IS

19
92

W
W

W
in

 C
E

R
N

19
92

V
er

on
ic

a

19
93

M
os

ai
c 19
93

C
ra

w
le

rs

19
93

W
3C

19
93

A
li

w
eb

19
94

H
ar

ve
st

19
95

Ja
va

19
96

A
lt

aV
is

ta

19
96

W
eb

S
Q

L

19
98

In
te

rn
et

 T
ax

19
96

In
te

rn
et

ph
on

e

19
99

In
te

rn
et

 2
an

d
N

G
I

ye
ar

ye
ar

#c
ou

nt
ri

es

#h
os

ts

1
3

11
33

96
81

59
49

13
4

17
1

19
69

19
73

19
89

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
69

19
74

19
93

19
95

19
81

19
85

19
90

19
98

62
4

21
3

1,
96

1
31

3,
00

0
1,

48
6,

00
0

36
,7

39
,0

00
6,

64
2,

00
0

A
R

P
A

N
E

T
ce

as
es

 to
 e

xi
st

N
S

F
-N

E
T

cr
ea

te
d19

86
19

90
19

74
T

C
P

/I
P

19
69

A
R

P
A

N
E

T
co

m
m

is
si

on
ed

by
 D

oD

19
72

A
R

P
A

N
E

T
de

m
on

st
ra

ti
on 19

73
F

ir
st

 in
te

rn
at

io
na

l

(U
K

+
N

or
w

ay
)

co
nn

ec
ti

on
s

19
79

U
S

E
N

E
T

19
81

B
IT

N
E

T
an

d
C

S
N

E
T

co
m

e
in

to
 b

ei
ng

19
85

F
T

P
 o

n
T

C
P

19
83

A
R

P
A

N
E

T
 s

pl
it

s
in

to
 A

R
P

A
N

E
T

an
d

M
IL

N
E

T

IR
C

19
90

A
rc

hi
e

19
88

19
91

19
91

19
91

G
op

he
r

N
et

fi
nd

19
92

M
B

O
N

E

19
94

19
94

19
94

19
94

E
-C

om
m

er
ce

Y
ah

oo

U
C

S
T

R
I

M
L

D
B

 +
W

eb
Q

L

19
95

V
R

M
L

19
96

W
eb

L
og

19
97

19
97

W
ir

el
es

s

W
eb

O
Q

L

In
te

rn
et

 a
cc

es
s

F
re

ed
om

 A
ct

19
98

19
98

IB
M

 C
le

ve
r

G
oo

gl
e

19
99

R
S

V
P

in
 u

se

Figure A.10: Timeline of the Internet.

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 215

broadcast. People who access news groups can browse and read articles, post new messages,

or reply to particular messages. News group messages are archived and are accessible on-

line. There are thousands of news groups on different topics from scientific or technical, to

political or esoteric. The large collection of articles posted daily on USENET contributes

significantly to the rapid expansion of the size of the on-line resource accumulation.

Internet Relay Chat (IRC): Real-time textual chatting has been very popular since

the early days of the Internet with Unix facilities like “talk”. This service allows real-time

interactive character-based communication between two or more remote users. IRC sessions

are usually not archived. However, in a business context, chat session may be saved on a

corporate Intranet for later retrieval and reference.

With the growing popularity of the Internet, thanks to the World-Wide Web, new com-

munication services are added and enhanced regularly. Newcomers like net telephony, net

fax, and video conferencing, will significantly contribute to the large number of on-line

resources.

Information Storage and Information Exchange Services

Anonymous FTP: File Transfer Protocol (FTP) allows the access of resources, mainly files,

on remote computers. An FTP server provides a portion of its file directory structure and

allows exchange of files. Before the World-Wide Web became widely used, anonymous FTP

archive sites (i.e. publicly accessible FTP sites) were the most widely accessible source of

information on the Internet. Each FTP site usually offers files related to one or more topics

of interest. These files can be document files, executable programs, data files, or any file a

computer can store. FTP archive sites are usually maintained as a volunteer effort. Each

file directory accessible by anonymous FTP, contains a “readme file” explaining the content

of each file in the directory. There are no standards about the content or the structure of the

readme file or even the name of the file2. Usually, free text is used to compendiously describe

the files. Thus, it is necessary to manually browse the FTP server directory structure and

read the readme files in order to find sought for resources. Techniques like Archie[69] and

UCSTRI[250] were implemented to help find resources in anonymous FTP archive sites.

Archie and UCSTRI are described later in the following subsection.

An analysis of the files available at FTP sites was presented in [70]. On 1044 anonymous

2Files can be called “index”, “readme”, “read.me”, “dir”, etc.

216 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

FTP sites, there were 3.1 million files, 44% of which were textual documents. Clearly,

anonymous FTP and FTP sites contribute to the wealth of information available on the

Internet. Today, there are thousands of FTP sites with a total of a few million files, and

roughly a tera-byte of data.

Gopher: The Internet Gopher[255] is a distributed document delivery system originally

developed in an effort to provide the University of Minnesota students and staff with a

flexible campus-wide information system for disseminating news, announcements, and other

kinds of information to the university community. Its simple single menu-driven interface

made it very popular and helped its rapid adoption by many sites across the Internet.

Gopher evolved from a system primarily intended to distribute documents to an environment

for providing access to many different types of files, and network services through gateways.

Despite its initial popularity and the proliferation of Gopher documents, gopher space is

shrinking and is gradually being “translated” to World-Wide Web documents. Veronica,

an indexing and retrieving system for gopher documents, has been developed. Veronica is

presented in following subsection.

Alex: Alex[13] is a file system that provides transparent read access to files in distributed

anonymous FTP sites on the Internet. Rather than accessing FTP files by logging in to

remote hosts and copying files locally, Alex allows the user to see FTP files as part of the

local file system. Transparently, file directories of FTP sites are “mounted” to the local

file system with /alex as root directory. The Internet domain of an FTP site is coded as

sub-directories in the Alex structure. The Simon Fraser University FTP site for example

would be /alex/ca/sfu, while FTP Berkeley would be /alex/edu/berkeley. Local Unix tools

like grep or find can be used to find and retrieve documents from remote sites without having

to make local copies or keep track of remote file updates. Any document or file put into any

anonymous FTP site becomes available via Alex.

Information Indexing and Information Retrieval Services

Archie: Until 1995, when the World-Wide Web became the most used service on the

Internet in terms of data packets transferred on the NSF backbone, FTP was the most used

service on the Internet. FTP still accounts for a large amount of data transferred on the

Internet. Hundreds of FTP sites offer reports, documents, raw data, images, programs, etc.,

however, in order to find a file, one has to know the FTP site where the file might be archived

then browse the directory structure of the FTP site, download readme files and eventually

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 217

find the file sought for. Archie is an electronic directory service implemented at McGill

University by Peter Deutsh, Alan Emtage, and Bill Heelan[69], that allows locating files

archived in anonymous FTP sites. The automatic cataloging system periodically retrieves

listings of file names from anonymous FTP sites by recursively browsing directories via

anonymous FTP. Listings are combined into a searchable database which can be accessed

from the Internet via telnet, Archie clients, or various information system gateways. Archie

database contains only file names, modification dates and FTP sites and paths where files

can be found. Its index is produced once a month and is mirrored in 13 sites to reduce

traffic. The problem with Archie is that only file names are indexed. This means that in

order to locate a file, its name or portion of its name has to be known. It is not possible to

find a file with Archie when only a description of the file or the file topic is known. Despite

its limitations, Archie has been extremely popular, and new World-Wide Web Archie-like

systems have been implemented like FTPSEARCH3 or CNET4 which provide indexes of

free software on FTP and World-Wide Web servers organized by topic.

Veronica (Very Easy Rodent-Oriented Net-wide Index to Computerized Archives): The

Internet Gopher system provides a simple menu-driven user interface. Its protocol is a

simple client-server stateless protocol. When a server gets a request it returns a document

or a menu and closes the connection. This makes an automated traversal of gopher space

easy. When searching for a document manually, one has to browse a hierarchy of menus

to eventually locate the resource. Veronica, developed at the University of Nevada, makes

it easy to search for items in gopher space by title. Veronica periodically traverses gopher

space by recursively requesting menus from different Gopher servers starting from a set of

registered menus. It indexes all titles in each text menu received. A search with a term

results is a menu with links to known gopher menus containing the search term as a menu

entry. Veronica has been very popular among Gopher users, but since gopher space is fading,

Veronica is becoming useless.

WAIS (Wide Area Information Servers): WAIS, developed by Thinking Machines Cor-

poration, is a system that allows users to deploy, search and retrieve documents and different

types of resources from indexed databases. WAIS was developed in collaboration with Ap-

ple Computer and Dow Jones initially for use by business executives. In contrast to Archie

3http://ftpsearch.ntnu.no/ftpsearch
4http://www.cnet.com

218 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Server Directory

WAIS servers

Server selection

User

Query

Figure A.11: WAIS general architecture.

which indexes only file names, WAIS indexes contain keywords from the content of tex-

tual documents, bibliographical databases, and even descriptors from graphical files. While

Archie or Veronica centralize their index in a single global index which is mirrored, WAIS ad-

dresses scalability with a better approach decentralizing its index. WAIS divides its indexes

among the servers that provide information. Each server indexes its information locally and

registers its repository and index in a directory operated by Thinking Machines. The di-

rectory is a top-level index that classifies servers and provides knowledge about information

available on each WAIS server. Servers are thus specialized and each usually contains re-

sources on a particular topic. When searching for a resource, users connect to the directory

of servers and select a particular server to search. Queries are submitted in natural language

to the selected server. After eliminating stopwords, the conjunction of the remaining words

and phrases is applied to the full text index to find relevant documents. Documents are

ranked based on heuristics using word weighing algorithms. Relevant documents can be fed

back to the server to refine the search (i.e. relevance feedback). Successful searches can be

automatically run to alert the user when new information becomes available. WAIS is used

by many systems as the underlying indexing scheme. The first World-Wide Web search

engines, for example, used WAIS to index information retrieved by their spiders (see section

A.2.3). Figure A.11 shows the general architecture of the WAIS approach with distributed

indexes.

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 219

UCSTRI

Master

Index File

HTTP Search Engine

Index Builder

queries

pooling

Users with WWW clients

FTP servers with CS tech. reports

Figure A.12: UCSTRI general architecture.

UCSTRI: The Unified Computer Science Technical Report Index[250], built by Marc

VanHeyningen in Indiana University in 1994, is a service which provides a searchable index

over existing technical reports, theses, and other documents broadly related to computer

science and stored in anonymous FTP sites. UCSTRI index pulls information from a large

number of registered anonymous FTP sites each with its own format for the readme files.

UCSTRI regularly visits the registered FTP sites and automatically downloads the readme

files it finds. All these readme files with different free text formats are parsed and merged

in a large master index. 6,000 technical reports are indexed by UCSTRI from about 120

different FTP sites. UCSTRI uses file names and descriptions found in the readme files

to index technical reports and academic papers. The system has the advantage of being

completely automated. However, the maintenance of the index is cumbersome because

readme files are written in free text. Moreover, the name of the readme file differs from

site to site and can be named README, read.me, dir, about, etc. Each time a new FTP

site is added to the registered FTP site list, the UCSTRI index builder has to be rewritten

or updated in order to take into account the structure of the readme files of the new site.

Figure A.12 shows the general architecture of the UCSTRI system.

220 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Netfind: Netfind is an Internet directory service developed by the Networked Resource

Discovery Project at the University of Colorado. Despite the fact that Netfind does not

locate documents in the Internet, it is a service worth mentioning for the exemplary method-

ology used for resource discovery. Netfind attempts to locate electronic mail addresses and

other information about Internet users dynamically. Rather than developing a protocol to

collect and register every user on the Internet in a database, which would be very difficult

to maintain, the Netfind approach is to use already existing network services to locate likely

machines where the sought for user might reside and address these machines with a finger

service. This strategy has been adopted by many intelligent agents on the Internet (see

section A.2.4). Netfind regularly browses USENET archives and other services to retrieve

unique e-mail addresses and build an Internet domain-based hierarchy of addresses that help

future searches. A search query is submitted by providing the name or login identification,

and some keywords describing the institution or location where the user sought for might

reside. Netfind uses a set of heuristics to locate hosts on which the desired user may have

an account or mailbox. The query can be refined by the user selecting among the different

locations Netfind guesses. The subset of domains selected by the user is searched in parallel,

again taking advantage of existing network services. Netfind has been very successful and

scalable despite the incredible growth of the Internet. Using existing network services and

resources proved to be a viable and prevailing method of supplying a new service on the

Internet.

Interactive Multimedia Information Delivery Service

The World-Wide Web is the interactive multimedia information delivery service on the Inter-

net. Many hypertext and text retrieval systems, still in use, were available before the advent

of the World-Wide Web. Researchers in hypertext were very active, but most focussed on

user interface and authoring issues. Apart from the Xanadu project, no hypertext project

was emphasizing wide area distribution and global system access. In 1992, an internal

project at CERN in Switzerland, led by Tim Berners-Lee and Robert Caillau, attempted to

make distribution of information easy for physicists working around the world and exchang-

ing data. The World-Wide Web was born out of this project and was very rapidly adopted

by Internet users for its ease of use, interactivity and multimedia support. The World-Wide

Web relies on hypertext technology[27, 28]. Documents are formatted using HTML (Hy-

perText Markup Language), and hypertext links within the documents are used to travel

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 221

from current documents to others. HTML allows annotating documents using hypertext

links and colours, and intermixing text with images and other media in the same document.

When the World-Wide Web browser Mosaic was released in 1993, the World-Wide Web

became widely used thanks to the “point and click” interface of Mosaic. No Internet service

used to share information across the Internet allows simple browsing and ease of use like the

World-Wide Web, which allows users to browse large collections of information across the

network without having to log in or know in advance where to look for information. The

World-Wide Web became the technology of choice to deploy information on the Internet and

was the major reason for the tremendous growth of the Internet in terms of the amount of

published information and in terms of use of the network. Figure A.9 shows the exponential

increase of numbers of web sites on the Internet. Because gateways to most Internet services

have been developed for the World-Wide Web, the World-Wide Web is becoming for many

a synonym of the Internet. Because of the huge amount of data rapidly cumulated in the

World-Wide Web space, “surfing” the web to find information became cumbersome. Find-

ing real information is often a hit-and-miss process. While browsing to look for a particular

information, a user may drift and end up reading other possibly interesting pages which

may be irrelevant to the original quest, a phenomenon similar to browsing an encyclopedia.

The following sections highlight the evolution of information retrieval techniques applied to

the World-Wide Web.

A.2.2 Catalogues and Directories

Because the number of web pages available on-line was reasonably small at the start of the

World-Wide Web project, browsing through a list of web servers maintained at the CERN

sufficed in looking for on-line resources. The very large number of web servers and available

web pages today prohibits this method for information retrieval from the World-Wide Web.

Many started building lists of interesting links (i.e. bookmarks) and made these lists publicly

available. NetServices list and NCSA Meta Index were maintained lists of references. These

lists were very useful because users could access references to on-line resources without

having to collect them themselves browsing the web. However, the rapid increase of web

sites and web pages made these lists obsolete. In an attempt to make these lists more up-to-

date, automatic collection of on-line references was introduced. The “CUI W3 catalog”

at the Centre Universitaire d’Informatique at the University of Geneva was based on an

automatic retrieval of references from a fixed set of documents like the “NCSA What’s new

222 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

list” that reported new sites on the web, or automatic sifting through news groups articles.

These automatically collected lists of references to on-line resources were comprehensive and

reasonably up-to-date, however, their size rapidly became too large to be a valuable resource.

To make the lists more useful despite their sizes, lists were made searchable. A search key

would then allow a user to find entries in the reference list that could be interesting. No

real indexes were constructed but searches were processed in real time going though the

list text and matching strings. The response time was acceptable, however, the dynamic

nature of the World-Wide Web made these lists stale and thus impractical. Catalogues and

directories built this way could not be representative enough of the wealth of resources on

the web given the rapid growth of the Internet. Maintenance of these lists is too expensive

and not scalable.

The only successful on-line catalogue of web pages is Yahoo5, an initiative from two

graduate students from Stanford University. Yahoo is a classification of topics built in a

hierarchical tree. A node in the tree is a category visualized by a menu of sub-categories (i.e.

arcs in the tree structure coming out of that node) and leaves are links to web resources.

Resources are collected, reviewed and classified manually by editors. Authors submit the

URL (Unified Resource Locator) of their web page (or web site) along with a title and

a description of the resource to Yahoo editors. If the submission is accepted (only 33%

are[237]), the reference to the new resource is classified and added to the Yahoo directory.

A searchable index on Yahoo directory has been implemented. Contrary to what many

might believe, Yahoo is not a search engine for web resources at large. Yahoo searchable

index contains only resources catalogued by Yahoo editors. Moreover, the index does not

contain keywords from the resources’ content. The index entries are words Yahoo category

names, resource titles and resource descriptions submitted by the authors. Apart from the

classification of resources that allow the users to browse the hierarchy to find information

related to a topic of interest, the originality of Yahoo is the fact that resources are not

necessarily individual web pages like automated discovery indexes might have. Submissions

that describe entire web sites are also accepted. The content of the web pages is never

used for indexing. When users search for resources, they can either browse the directory by

topic or submit terms to search. In the case of a search, matches are resources in categories

containing the search terms and resources with titles or descriptions containing the search

5http://www.yahoo.com

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 223

terms. Documents in the result are ranked in priority based on the terms appearing in their

category, their title, and finally their description.

Because of the success of Yahoo, others have tried to copy their concept and present a

friendly user interface with a reviewed directory of sites. The LookSmart6 approach, for

example, is to present to the user an initial list of 10 topics. After a topic is chosen, a new

classification of 10 topics is presented with the original list remaining on the screen. After

a second choice, a third sub-classification is displayed, in addition to retaining the first two

lists. This continues on with each further selection until a document list is displayed. This

allows the user to easily see the path taken to reach the resource in a concept hierarchy like

classification. LookSmart is a hybrid search engine. It allows a search on its catalogue like

Yahoo, but also combines the result with the result of a search on the World-Wide Web

space like other search engines.

Other popular types of catalogues or directories, are specialized directories; directories

that contain only references to resources pertaining to a particular topic. For example,

a directory for triathlon contains only references to web pages about triathlon or related

to triathlon. These directories are either created manually (i.e. author’s submission) or

generated from the result of a query submitted to a search engine. Building a search engine

on top of such a specialized directory creates a specialized search engine.

Rings are another type of specialized directory [104]. Resources in such directories

are inter-linked in a circular list. Maintainers of web sites pertaining to a common topic

collaborate to insert a bi-directional hypertext link in each web site to link to the next and

previous site in the circle. Site Si for example is linked to Si+1 and Si−1. The last site in the

list and the first site are inter-linked to form a ring. A centralized “authority” orchestrates

the ring by accepting newcomers and maintaining on a server a list of links to all sites in

the ring. When browsing, a user can jump from one site to the other in the ring following

the links, or randomly access any site by requesting a link from the centralized list on the

server. Figure A.13 shows an example of ring with six web sites interconnected.

A.2.3 Robots and Search Engines

Since simple browsing, listing, and even automatic collection of resources did not solve

the problem for information retrieval on the web, automatic discovery became necessary

6http://www.looksmart.com

224 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Centralized

list of sites

S1

S6

S3

S2

S4

S5

Figure A.13: Example of a ring with 6 sites.

to make effective use of this wealth of information in the World-Wide Web space. There

are programs that traverse the World-Wide Web, download documents, analyze them, and

store some information about them in an index that can be queried. Documents are found

by exploring the graph that hypertext links form between documents. From an initial Web

page, all its links are extracted and added to a queue of URLs (Unified Resource Locator).

The recursive process repeatedly selects a URL from the queue, retrieves the page and

extracts its links. These programs are known as robots, crawlers, spiders, or wanderers

[157]. Robots may have different purposes. They can crawl the Web for indexing, filtering,

mirroring documents, or for statistical intent, like calculating the size of the World-Wide

Web space (it is estimated today at 1.5 TB.) or the number of web sites.

Perhaps the first academic work describing these robots is the work of Jonathan Fletcher

at Stirling University in Scotland, who implemented JumpStation [98], and the work of

Oliver McBryan at the University of Colorado, who developed the World-Wide Web Worm

(WWWW) [179] (today the Goto.com search engine). A paper by Eichmann revealed

the anatomy of RBSE spider [77], built for the Repository-Based Software Engineering

Program funded by NASA. While the WWWW indexed only text that appeared in the

title and headers of HTML documents, RBSE spider did a full text indexing in the hope

of improving precision and recall of the system. The architecture of these systems has

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 225

three major components: a spider, a parser and indexer, and the index itself. The spider

is the program that traverses the known, or visible World-Wide Web and downloads the

documents found. It is important to note that the visibility of a spider is limited to the

connected graph of documents commencing at the starting point. Starting from a particular

document, there is no guarantee that all documents in the World-Wide Web will be somehow

indirectly connected to it. Thus, the need for a set of starting points to ensure a better

coverage. Directories of web sites are usually good starting points. Spiders are usually the

most elaborate component of the search engine and manipulate large databases of URLs

[40, 55]. With respect to the visibility of the World-Wide Web space, it is also important to

note that most spiders do not traverse frame-based web pages and can not access dynamically

generated web pages or authenticated ones. Dynamic web pages are web pages that do not

exist on the web server and are generated on the fly after a web-based form is filled and

submitted. Usually these dynamic web pages contain answers to database queries.

The indexer (and parser) receives a document downloaded by the spider and parses it to

extract new URLs from the links found in the document. These new references are passed

back to the spider for download. When parsing the document, text is also analyzed to

extract terms for indexing. The extraction of terms differs from one system to the next.

Some may index the full text, some may select terms depending on their location in the

document (i.e. title, header, etc.), while others may choose to analyze only the beginning of

the document. The third component is the index itself, which is the result of the automatic,

and recursive traversal. The index depends largely upon the information retrieval technology

chosen. While some systems use inverted file technology, others use the vector space model

or the probabilistic indexing model [177, 213]. What is called a search engine is in fact

the program that sifts through the index to answer user requests. In other words, it is

the interface between the user and the index. This automatic and autonomous exploration

of the World-Wide Web structure to build a searchable index seems a simple and elegant

solution for information retrieval in the World-Wide Web. However, it involves ethical

concerns relating to its resulting impact. Spiders continuously retrieve entire objects and

then discard them after retaining some of their content. It seems that robots are generating

substantial load on web servers, and are generally increasing the traffic on the Internet

backbone, especially with the proliferation of such spiders [156]. To index the whole World-

Wide Web, the entire World-Wide Web content has to be downloaded. With the plethora

of search engines doing the same exercise, the entire corpus is circulating continuously

226 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Web Server

Web Crawler

Repetitive and
Consecutive Requests

Stressing
a Server

Figure A.14: Crawlers overload Web Servers.

on the Internet. The number of crawlers doing this procedure today is estimated at 400

[237]. This means that more than 400 processes are independently downloading the entire

visible content of the World-Wide Web to build their own indexes. Since the content is

continuously changing, indexes need to be updated in an uninterrupted manner. For each

pass, the entire World-Wide Web content, estimated today at more than one tera-byte, is

sent through the network more than 400 times, again and again. It is true that crawlers

usually download only text documents (i.e. HTML files) and not images and other large

artifacts in the Web, but there exist more and more specialized crawlers (like the one

described in Chapter 4) that also download images, Videos, VRLM objects (i.e. Virtual

Reality), pdf and postscript documents, software, etc. At the rate the content of the World-

Wide Web is increasing (behaving similarly to an exponential growth) and the number of

new crawlers are developed, this approach is definitely not scalable and even not viable in

the long term even if the network bandwidth is enlarged by one order of magnitude.

Moreover, spiders can unnecessarily overload web servers. When parsing a web page, or

a set of web pages from the same site, to extract hyperlinks to follow, these hyperlinks often

end up pointing to pages localized in a common web site. By continuously and consecutively

requesting all documents pointed by those hyperlinks, spiders overload web servers and can

flood them and prevent them from serving other users. It is desirable to spread the request

to the same server in time to give the server the opportunity to attend to other users (or

spiders). Furthermore, spiders tend to download all possible documents; all the documents

that the spider comes across are requested. This is not always necessary, and sometimes

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 227

even undesirable. Indexing a web page can sometimes be meaningless if the web page is

duplicated, under construction, or simply not meant by its author to be indexed. This has

precipitated controversy. Based on these concerns, guidelines for implementing spider-like

programs were proposed [154, 155]. Breadth-first traversal, instead of depth-first traversal

of the Web was suggested, for example, to alleviate some of the load on the servers. The

suggested standards for robot exclusion specify some mechanisms to indicate to spiders

which part of a server can be indexed, and which part should not be accessed, and suggest

to avoid submitting too many requests to the same server at any given time. Spiders that

follow these recommendations exclude superfluous web pages and avoid bombarding servers

by sending consecutive requests to the same server in a short period of time. This is done

by randomly selecting, rather than sequentially selecting, a page to visit from the list of all

pages still to visit. Alternatively, a list of servers visited can be maintained with the time

of last visit. This list could be consulted when a page to request is chosen from the list of

pages still to visit, avoiding calling upon the same server too quickly.

Other researchers advocate spider-less techniques to index the World-Wide Web. Aliweb

[153] is particularly interesting in that it does not use a spider to create its index. Instead,

web page authors write their own descriptions of their pages, and register with Aliweb,

which indexes these summaries. This process removes the problems of server overload that

web crawlers in general are causing. Moreover, only pertinent information is indexed since

it is submitted by the authors or web site managers. However, it does require extra work

on the part of the pages’ authors to describe their resources and notify Aliweb about their

existence. The Harvest system [34] and the Multiple Layered Database approach (MLDB)

[127, 276] are supportive of a distributed index architecture. Harvest solves the problem of

server load and network traffic by moving the indexing task to the information provider site.

The system comprises two major components: a gatherer and a broker. A gatherer collects

information from a provider for indexing purposes, like a spider would do, while a broker

provides an interface to the index. The originality of the solution is the variety of possible

configurations. Many gatherers and brokers can co-exist on the network. While brokers

can specialize by providing customized indexes, gatherers can reside on the same host as

the information server, and be executed during off-peak periods. The Multiple Layered

Database approach [127], presented in Chapter 2, is to build a distributed repository of

metadata describing artifacts on the Internet. Specialized tools, similar to Essence [129],

are executed on information provider sites by the site maintainer during off-peak times

228 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

Parser and

Indexer

Index

Search Engine

LTV

LNV

LV

Spider

page

page

1

2

4

5

3
8

6

7

Figure A.15: The spider-based search engine general architecture.

to extract pertinent data from the documents, and build a local structured database. By

successive transformations, these distributed databases can be generalized to form a multi-

layered structure where each layer generalizes the concepts held in the lower level. This

architecture offers to users the possibility to browse the hierarchy of layers and interactively

drill-down to the pertinent resources. Moreover, using structured databases, this approach

takes advantage of the high precision and recall that database technology presents. In

addition, the Multiple Layered Database architecture has knowledge discovery potential

that no other techniques offer.

How search engines work

Figure A.15 shows the general architecture of a search engine with four components: the

spider, the indexer, the index, and the search engine. The spider component, as well as

the indexer can be replicated to parallelize the crawling and indexing. Therefore, the index

might be distributed or centralized. Other components are different URL lists managed in

a shared local database. In the simplest version, there are three lists: the first list, LTV,

is a list of URLs to visit. Initially, it contains the starting points, then all found URLs are

also stored in this list for processing. When a page is visited, its URL is removed from LTV

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 229

and stored in LV, the list of visited pages. This list avoids revisiting the same page again.

The third list, LNV, is a list of pages not to visit. This is to conform to the robot exclusion

guidelines and to avoid revisiting known problematic sites. The spider selects a URL from

LTV (1) and downloads the corresponding page (2), then moves the URL from LTV to LV

(3). LNV is updated, if necessary (4). If the page is downloaded successfully, it is passed

to the indexer (5). The indexer parses the page to extract new URLs, and stores them in

LTV (6), if they do not already exist in LV or LNV, then extracts terms from the page for

indexing purposes (7). Once LTV is empty, the entire “visible” web is indexed. The index

is used by the search engine to answer user requests (8).

Because the index rapidly becomes stale, it is necessary to rebuild the index often by

restarting the web traversal with LTV initialized with a starting point list. The starting

point list can be augmented with new URLs submitted by users who want their sites indexed.

The described scenario is a simplistic one. There are other considerations when “spider-

ing” the Web. The execution of a web spider is a challenging task that involves performance

issues as well as “net social” issues. Despite the high parallelism in the implementation of

Web crawlers, due to the very large size of the Web it takes weeks, if not months, to index

the World-Wide Web [237]. Hence the existence of different strategies for URL selection

from LTV. For example, spiders may store modification dates of pages visited in order to

revisit pages that are updated regularly more often than static pages. Particular domains

or popular sites may also be revisited more often than others. In addition, when selecting

a URL to visit, the spider has to take into account the fact that it should not consecutively

request several pages from the same server. In other words, the selection of URLs from LTV

is not a sequential selection, but may involve complex heuristics.

In a recent paper[55] Cho, Garcia-Molina and Page present a new technique for URL

selection based on backlink counts. URLs that are referenced more often by other pages are

selected and visited more often by the spider. Priority in the selection from LTV and the

re-iteration through LTV is given to “cyber-popular” pages.

Relevancy and Ranking of Documents

Due to the profusion of commercial search engines, the competition pushed spiders to crawl

and index as many resources as possible in order to assert the most complete index. Today,

some search engines claim to have indexed more than 100 million documents [237]. However,

completeness is not the most important factor. As long as the search result is adequately

230 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

presented, indexing the whole Internet or a portion of it wouldn’t matter. Indeed, a set

of 8000 matching documents or a set of 1000 matching documents does not make a big

difference for a user. The user still has to go over this large set to identify the documents

fitting the quest. It has been demonstrated in [223] that any single web search engine pro-

vides the user with only 15-42 % of the relevant documents. Because of the over-abundance

of resources on the Internet, any search query would yield hundreds, if not thousands, of

matches. Search engines, like traditional information retrieval systems, rank the resources

found by relevancy and present them ordered with the most relevant first. Apart from the

size of the index, the model chosen for indexing and the user interface, the most important

difference between search engines is the ranking mechanism. Relevance is a very subjective

term. Moreover, it is very difficult to ascertain with high confidence the real need of the

user from a query. Queries present little context, and search engines do not learn from past

experience (yet).

Most search engines would analyze how often terms appear in relation to other terms

in the document. The higher the frequency, the more relevant the document is considered.

The location of the term is also taken into consideration. Being semi-structured, HTML

documents can disclose information regarding the location of a word or phrase. For exam-

ple, if a term appears in the title or in a header of the document, it is considered more

relevant than a word in the body of the document. Frequency and location are not the only

factors used to determine relevancy. Each search engine uses different stimuli to influence

the relevancy. Since relevance ranking is capital for the success of search engines, these

algorithms are securely guarded and rarely disclosed. Usually, the factors used to calculate

the relevance of a document are the following. These are heuristics that may not have large

support.

Frequency: Documents with a higher frequency of keywords are ranked better than

documents with a low keyword frequency. The frequency is calculated using the percentage

of keywords in the document in order to normalize documents of different sizes.

Location: When counting the frequency of keywords, words can be weighted based on

their location in the document or their location with respect to each other. Words that

appear in the title are generally considered more important. Other locations considered are

the headers, the URL of the document, the anchors (or hyperlinks), and the beginning of

the document. A word is considered more important if it appears in the first paragraph

(or paragraphs) for example. The closeness of keywords to each other can also be a factor

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 231

to increase the word weight. Some search engines may also disadvantage isolated words by

favouring keywords that appear in complete sentences.

Entirety: The number of matched keywords in a query is an important factor in deter-

mining the relevancy. The more terms from the query match words in the document, the

more the document is relevant to the query. In other words, if all search terms appear, it is

considered better than if only some of the terms do. Documents can be ranked by entirety

to create clusters in which documents can be ranked by frequency.

Size: It seems that some search engines favour smaller documents over larger ones[237].

Age: The date of the last modification of a document can be accessed easily. This date

can be used to favour old documents for instance. By keeping track of modification dates of

documents, search engines “learn” the update frequency of documents and favour in their

ranking documents that are updated regularly.

Directory: Hybrid search engines (i.e. those that also maintain a directory of sites)

usually favour documents that appear in their catalog. Since the sites appearing in their

catalogs are reviewed, they are considered more important (i.e. relevant).

Links: Web pages that are referenced by many other pages seem to be more important

than others. This popularity of web pages can be estimated by counting the number of links

leading to a page. When ranking pages, search engines favour pages that have many links

pointing at them. Links can also be weighed based on the popularity of the web page they

come from. Hence the notion of link quality.

Metadata: The Dublin Metadata workshop has stressed the importance of metadata

(i.e. document descriptors) in networked documents to facilitate resource discovery [259,

258]. Extensions to the HTML specifications include new tags allowing the description of

keywords and content summary inside the HTML document. Figure A.16 shows an excerpt

of an HTML document example using these tags (see Appendix D for more information on

the HTML META tag extensions). Obviously these tags have to be entered by the document

author. However, when present, these keywords may reflect better the real content of the

document. During the relevance ranking of web pages, some search engines may favour

pages that have keywords from the meta tag match search terms before those that have

matches only with terms in the document body. Thus, terms extracted from the meta tags

(i.e. keywords and description) get a higher weight than others.

Domain: The Internet domain from which web pages are retrieved may play a role in

the ranking. Domains like “.com” or “.org” can be ranked before others.

232 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

<HTML>
<HEAD>
<META NAME=”description” CONTENT=”This is a survey about search engine tricks”>
<META NAME=”keyword” CONTENT=”Spider,Indexing,relevance ranking,spamming”>
<TITLE>Search Engine Tricks</TITLE>
</HEAD>
<BODY>
...

Figure A.16: A snippet from an HTML document with META tags.

$Money$: Unfortunately, some search engines may allow companies to pay to have

their pages ranked first when a match with their pages occurs. Being ranked among the 10

or 20 first documents is important since rare are the users who dig deeper than two or three

pages of document lists. Statistics show that less than 7% of users go beyond the fist three

pages of results[237].

Knowing these ranking factors, some web pages authors try to “cheat” to see their web

pages better ranked. This is commonly called spamming. Spamming consists of adding for

example the same keyword over and over in the same page. These keywords are usually

invisible to users (using comment tags or using same colour for text and background), but

clearly visible to web crawlers. One of the most common techniques is also to put keywords

in the meta tags that do not relate to the page’s actual content, like general keywords that

are frequently used in queries, or keywords copied from meta tags of sites that rank high

by search engines. There are techniques and heuristics to detect spamming. Some search

engines penalize documents, when detecting spamming, by ranking them lower.

Some new techniques for ranking retrieved documents were recently unveiled: Direct

Hit by Direct Hit Technologies Inc.7, CLEVER by IBM Almaden Research Labs8, and

PageRank by Stanford University9.

Direct Hit is a relevance feedback approach. Users’ selections from the usual search

result are recorded. For any given query, the documents that are selected the most become

7http://www.directhit.com
8http://www.almaden.ibm.com/cs/k53/clever.html
9http://google.stanford.edu

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 233

the most relevant the next time the same query is submitted. Obviously, this technology

is useful only if the query is frequent. Direct Hit needs to gather information about users’

selections per query. When enough information is gathered, the Direct Hit ranking can

proceed.

Direct Hit does not exclude the other ranking strategies but is a supplement that can

be added on any ranking strategy.

This idea is not completely novel. MetaCrawler presented in section A.2.4 exploits user

chosen references as metrics for their search result ranking. This metric takes also into

account the origin of the resource selected [224].

PageRank used in the experimental search engine at Stanford University is based on

links[40]. The basic component of its ranking metric is link popularity. A large link graph

of the web, called citation graph, is constructed. It represents all present links between

web pages. This graph is used to attribute the PageRank weight to each web page, which

is later used for ranking pages when appearing in a search result. The mechanism to

calculate PageRank is the following: Each Page P has a number of links coming out of it

C(P) (C for citation), and a number of pages pointing at it P1, P2, ..., Pn. PageRank of P

PR(P) = (1− d) + d× (
∑n
k=1

PR(Pk)
C(Pk)). d is a dumping factor between 0 and 1. Intuitively,

PageRank represents the probability to choose a page after a random browsing[40, 55].

CLEVER also is heavily based on link frequency. It ranks documents by measuring

links between them. The main purpose of CLEVER, as stated in [46], is not to simply

rank documents in a search result, but to find authoritative resources in a pool of web

pages. The objective is to build directories like Yahoo directories but automatically find the

authoritative entries in each category. Starting from categories (i.e. category hierarchy),

queries are generated and sent to standard search engines. For each given query, the result

that is gathered from the search engines constitutes a pool of documents. In order to rank

these documents and keep the most authoritative in the topic of the query (i.e. current

directory category in process), all pages pointing to and all pages pointed by the documents

in the pool are retrieved and add to the pool of documents. All pages collected are then

weighted by iteratively calculating the weight of links pointing to each page, and carry more

weight from pages that cumulate more weight in each iteration. This way, pages that are

pointed by important pages get more weight and become the “authority”. CLEVER uses

also page content, like text in hyperlinks, to add more weight to corresponding links if the

search terms appear in the text. By sorting the pages by weight, the more authoritative are

234 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

selected to represent the catalog category. CLEVER can also be used for real-time search

result ranking, however, the calculation of weight may take time depending upon the size

of the root set. One might classify CLEVER as a knowledge discovery approach since it

finds networked information based on relationships between resources, rather than finding

resources on the Internet.

Concept-Based Retrieval

Furnas, et al. [111] show that due to widespread synonymy and polysemy in natural lan-

guages, indexing methods based on the occurrence of single words do not perform ade-

quately. Concept-based methods match words with similar meanings rather than string

patterns. Concept-based search tools can find related documents even when they do not

contain any of the search words specified in the query. By searching for documents about

“fruit jam”, one can retrieve documents with “blueberry jam” for example (i.e. subsump-

tion). Concept siblings and synonyms are also possible. One way to broaden the scope of a

search to include such concepts, is to use thesauri. A thesaurus correlates terms and helps

search engines to conjoin the search terms with related terms. Thesauri can either be static

based on a language, or built dynamically by statistically tracking cross-references for words

commonly appearing together in queries or documents. Relevancy ranking usually favours

matches with search terms before matches with similar concepts.

Stemming is also a common technique used for concept-based retrieval. It consists of

extracting the stem from search terms and concatenating suffixes to generate new terms.

This approach, however, may generate poor precision in many cases. The stem “tea” for

example, may generate words like “tear”, “teak”, “team”, “teal”, “teach”, etc. Stemming

nevertheless has advantages for substring matching.

The document similarity search can also be considered a type of concept-based retrieval.

The word weighting technique generating term weight vectors representing documents can

be used to compare documents with a similarity function similar to the function presented

in section A.1.1. By starting with a document about kangaroos, a similarity search could

find documents about wombats, even though, these documents do not contain the term

kangaroo. Since kangaroos and wombats are both marsupials living in Australia, documents

about these two leaping herbivorous animals may share many similar words, hence the vector

similarity. Research in knowledge representation and natural language processing is paving

the way for automatic paraphrasing[262]. Techniques for generating paraphrases of queries

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 235

can lead to more precise content retrieval.

Some other approaches use concept hierarchy to match concepts. These concept hier-

archies are either built by experts like in [127] and may contain synonyms from different

languages allowing multi-lingual querying, or built by automatic subject extraction using

assumption grammars[273, 272].

A.2.4 Agents for Information Retrieval

While spiders are a type of information gathering agent, there are other types of agents

specialized in information retrieval. Agent based information retrieval has stimulated great

interest over the past several years. While the definition of an agent is still in question and

generating much debate, research in related fields has been very productive. Heterogeneous

database access, knowledge representation, cognitive science, learning algorithms, commu-

nication protocols, distributed query processing, are all fields of interest for agent-based or

multiagent-based information gathering systems[138, 38].

Desirable characteristics for an “intelligent” agent were proposed or alluded to by many

researchers. No single agent or agent prototype today compounds all the desirable charac-

teristics yet. However, many of the agents include most of them. The commonly advisable

characteristics which distinguish agents form other software components are:

Autonomy: An agent should be able to take initiatives and have a certain control over

its actions like modifying high-level requests, dialoguing with the user to clarify requests or

even invoking help from other agents.

Adaptability: An agent should not be static but able to change the sequence of its

actions in response to its environment. Ideally, it should learn from its interaction with

users and other agents and customize itself to the preferences of its users.

Communicability: An agent should be able to communicate and engage in involving

communications with the user and other agents. Dialogues with the user are necessary to

disambiguate some requests or priorities, while communication and collaboration with other

agents or users is paramount in information gathering and task delegation.

Personality: An agent should have a perceivable and plausible behavioural and emo-

tional state. This well-defined agent character is significant for effective communication and

conversation like for avatars representing or acting on behalf of users in virtual spaces.

Mobility: Agents typically run on one host and retrieve information scattered around

236 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

the Internet. This may make them look like moving, however, only the resources are trans-

mitted. Real mobile agents (i.e. agents that move, transport themselves or duplicate them-

selves, to execute on different hosts on the web) exist nevertheless. While the usefulness of

agent mobility is still disputed, itinerant agents can be very useful for information gathering.

When the amount of information on servers is greater than can reasonably be transmitted

to a client for processing, mobile agents can be sent to execute on servers for information

gathering and filtering. Mobile information gathering agents are of great importance when

client machines are disconnected or lack the necessary processing power and resources to

perform the filtering.

In the information retrieval context, an agent can be seen as a program that learns about

user needs adapts to the needs, and reacts to them by collecting and retrieving resources or

even knowledge that could satisfy those needs.

Networked information retrieval agents are personal assistants that act on behalf of users

on the World-Wide Web, often relying on tools and services already available. After users

state their needs, agents determine where to find the information on the Internet and how

to retrieve it. One such simple agent is the MetaCrawler[224] which alleviates the burden of

resubmitting requests to different search engines by automatically simultaneously sending

the user query to several of the most popular search engines. The agent knows specific

features of each search engine and adapts the search query accordingly. Users need not

remember these specific characteristics and peculiarities of the different query interfaces.

Moreover, the agent merges the different results and eliminates unnecessary duplicates. It

even downloads the web pages in the result list to scan their content for search terms. This

allows further filtering and the presentation of concise relevant result list. SavvySearch[135]

does a similar job, but rather than using always the same resources it selects the search

engines to query. SavvySearch learns to identify which search engines are most appropriate

for particular queries by tracking long-term performance of these search engines. The agent

keeps a compendium of search experience and uses it to rank specialized search engines

to query. SavvySearch does not adapt to the users but rather adapts to the available

resources. The approach is very similar to the information agent matchmaking presented in

[158], where an intelligent facilitator (agent) matches information providers with consumers’

needs. Other agents adapt to the user by observing the users activity (i.e. browsing,

querying, etc.) and may recommend resources or queries that other users on the system

with similar profile and needs have retrieved or submitted. The agent manages user profiles

A.2. SURVEY ON RESOURCE DISCOVERY ON THE INTERNET 237

that it updates regularly based on the user interest and activity on the World-Wide Web.

WebWatcher[18] developed at Carnegie Mellon University observes users’ browsing activity

and provides advice on which hyperlink might lead to preset goals. Some commercially

available agents, based on user behaviour observation, predict user needs and automatically

download and locally cache web pages potentially interesting to the user. If the user, for

example, regularly accesses a particular set of pages at a particular time in the day (i.e.

news, stock market, etc.), the agent would automatically retrieve the pages a few minutes

before the usual access time and cache them locally in preparation for the user’s on-line

browsing.

One popular task for agents is information filtering. Information filtering in the Internet

context is the extraction of relevant information from large volumes of dynamically generated

documents[192]. USENET news and electronic mail are the most commonly used dynamic

large document collections for information filtering in the Internet. The dynamic nature

of the document repository is a binding requirement for information filtering systems. A

continuously running process sifts through incoming e-mail messages for instance, and filters

out messages that satisfy the user’s requirement or interest. A similar agent can listen on

news groups channels and alert the user when interesting topics are being discussed. The

agent could even summarize articles of interest. SIFT[267], an agent developed at Berkeley,

uses keywords describing users topics of interest to filter new netnews articles and send

by e-mail to users articles or summaries of articles that are of interest to these users. The

DICA agent[3] applies this approach on the World-Wide Web and monitors previously found

relevant pages for any changes. The DICA agent only reports interesting changes.

A new breed of agents go beyond information filtering or gathering from the World-Wide

Web. Some shopping agents access vendors’ web pages and look for bargains by comparing

prices offered. Suggestions are presented to the user or automatic ordering of the product

is initiated. Netbot Jango10 one such web shopping agent, compares product prices offered

on-line, creates accounts on users’ behalf, and when instructed, can initiate the purchasing.

Networked agents for information retrieval from the Internet can be classified into three

categories: Exploiter agents, Watchdog agents, and Apprentice agents. Exploiters take ad-

vantage of existing networked services (or other agents) to find resources. Watchdogs mon-

itor given resources for interesting changes. They learn about the environment in which

10http://www.jango.com

238 APPENDIX A. INFORMATION RETRIEVAL FROM THE INTERNET

they act. Apprentices learn from users behaviour and infer new needs. An overlap between

these categories is possible and is desirable. Ideally, a good agent should be an apprentice,

a watchdog and an exploiter. In other words, it should learn about its users, learn about

its environment, and take advantage of existing services.

Many of the information gathering agents are at the same time in the information re-

trieval domain and the data-mining domain. By returning information or knowledge from

within documents, like comparison-shopping agents[71] rather than returning resource ref-

erences, agents can be perceived as web mining processes.

A.3 Summary and Conclusion

This survey outlines major information retrieval approaches used on the Internet and pin-

points some of their weaknesses. Alas, the currently most successful and widely practiced

approaches are using “spidering” techniques to index documents on the Internet, crawling

the Web from one artifact to the other. While heavily “parallelizing” the process in different

machines, like some business applications do, may partially solve the scalability problem,

it remains that the whole content of the Web has to be continuously downloaded to build

the indexes and keep them current. Despite the parallel indexing solutions, and the smart

methods for updating indexes, given the tremendous growth of the Internet size and the

great number of the independently built indexes, spidering the Web as it is done today will

always overload the Web traffic; this confirms our first thesis regarding the Web overload

(see Chapter 1). Spidering the Web could be viable if it is done in a collaborative way where

the resources to index could be divided geographically or other, and the indexes shared at

a higher level. Small indexes could be built locally and sent to a central body for sharing

and merging with generally visible index. This avenue is explored in Chapter 2 with Virtual

Web Views that could centralize, at a high level, indexes gathered from different channels.

The high level indexes are updated only when the changes are propagated from the different

channels.

Another major problem with current technology is the relevancy issue. The relevance of

documents in a search result is far from satisfactory, making current search engines almost

useless. Research effort is underway to develop new techniques, from concept-based retrieval

to web mining. This survey reports the initial undertaking. The research may necessitate

contribution and collaboration from different communities such as artificial intelligence, data

A.3. SUMMARY AND CONCLUSION 239

mining, information retrieval, natural language processing, etc.

Web Mining, knowledge discovery from the World-Wide Web, is becoming a new research

trend. Chapter 2 covers a brief survey on Web Mining.

Appendix B

Web Mining Language (WebML)

Grammar

There are two ways of being creative. One can sing and dance.

Or one can create an environment in which singers and dancers flourish.

Unknown

We present a simplified extended Backus-Naur Form (BNF) grammar for WebML. We

make use of the following conventions: “[]” represent zero or one occurrence; “{ }” represent

zero or more occurrences; upper case words represent WebML keywords; characters between

quotes are characters or symbols accepted in WebML; words starting with upper case are

variable; words in italic and starting with lower case are terminal categories. The termi-

nal categories are: Type (integer, float, string), Identifier (identifier-Tab, identifier-Var,

identifier-Attrib, identifier-AttSet), and Function (function-user, function-boolean, function-

compare). Types are self-explanatory. identifier-Tab is the name of a relation; identifier-Var

is a variable name; identifier-Attrib is the name of an attribute; and identifier-AttSet is the

name of a set-valued attribute (example: set of links, set of authors, etc.). Functions are

user defined functions: function-boolean returns a boolean 0 or 1; function-compare takes

two arguments, A and B, and returns -1 (if A < B), 0 (if A = B) or 1 (if A > B); and

function-user has no restrictions on the value it can return.

WebML-Query

::= Select-clause [INTO identifier-Tab]

From-clause

Pertinence-clause

Where-clause

[Ordering-clause]

240

241

[Ranking-clause]

[Grouping-clause]

[Threshold-clause]

Select-clause

::= Retrieval-header | Mining-header

Retrieval-header

::= Selection-header Attribute-name-list

Selection-header

::= SELECT | LIST

Attribute-name-list

::= ∗ | Attribute-name {, Attribute-name}

Attribute-name

::= [identifier-Var.]identifier-Attrib

From-clause

::= FROM Relation-list

Relation-list

::= Relation-reference {,Relation-reference}

Relation-reference

::= identifier-Tab [identifier-Var] [LEVEL integer]

242 APPENDIX B. WEB MINING LANGUAGE (WEBML) GRAMMAR

Pertinence-clause

::= [RELATED TO Name-list] [IN Location-list]

Name-list

::= Name-reference{, Name-reference}

Location-list

::= Name-reference{, Name-reference}

Name-reference

::= [identifier-Var.]identifier-Attrib

Where-clause

::= WHERE Where-predicate

Where-predicate

::= Predicate-term | Where-predicate OR Predicate-term

Predicate-term

::= Predicate-factor | Predicate-term AND Predicate-factor

Predicate-factor

::= [NOT] Predicate-condition

Predicate-condition

::= Condition | (Where-predicate)

243

Condition

::= Compare-condition

| In-condition

| Like-condition

| Between-condition

| Exist-condition

| Null-condition

Compare-condition

::= Scalar-expression Comparison Scalar-expression

| Scalar-expression Comparison (Select-expression)

Comparison

::= “=” | “! =” | “<” | “>” | “<=” | “>=”

In-condition

::= Scalar-expression [NOT] IN Set-expression

Set-expression

::= Set-of-scalar | string (Link-path) | (Link-path) string

Link-path

::= Link-element{Link-element} [OR Link-path]

Link-element

::= Link[∗]

Link

::= 7→|→|⇒

244 APPENDIX B. WEB MINING LANGUAGE (WEBML) GRAMMAR

Set-of-scalars

::= identifier-AttSet | (Constant-list) | (Select-expression)

Constant-list

::= Constant{, Constant}

Constant

::= String-item | integer | float

String-item

::= string | SUBSTRING(string)

Select-expression

::= Retrieval-header

From-clause

Pertinence-clause

Where-clause

[Ordering-clause]

[Ranking-clause]

[Grouping-clause]

Like-condition

::= [Quantifier] Like-element [NOT] Like-operator Set-of-scalars

Like-element

::= Attribute-name | Set-of-scalars

Like-operator

::= LIKE | CLOSE TO | COVERED BY | COVERS | function-boolean

245

Quantifier

::= ONE OF | ALL

Between-condition

::= Attribute-name [NOT] BETWEEN Scalar-expression AND Scalar-expression

Exist-condition

::= [NOT] EXISTS (Select-expression)

Null-condition

::= Attribute-name IS [NOT] NULL

Scalar-expression

::= EXACT Constant

| Scalar-term

| Scalar-expression “+” Scalar-term

| Scalar-expression “-” Scalar-term

| Scalar-expression “|” Scalar-term

Scalar-term

::= Scalar-factor

| Scalar-factor “*” Scalar-factor

| Scalar-factor “/” Scalar-factor

Scalar-factor

::= [“+” | “-”] Scalar-primary

Scalar-primary

::= Constant | Attribute-name | (Scalar-expression) | Aggregate-function(Scalar-expression)

246 APPENDIX B. WEB MINING LANGUAGE (WEBML) GRAMMAR

Aggregate-function

::= COUNT | AVG | SUM | MIN | MAX | function-user

Mining-header

::= Describe-header | Classify-header | Associate-header

Describe-header

::= DESCRIBE IN RELEVANCE TO Attribute-name-list

Classify-header

::= CLASSIFY ACCORDING TO Attribute-name{, Attribute-name}
IN RELEVANCE TO Attribute-name-list

Associate-header

::= ASSOCIATE IN RELEVANCE TO Attribute-name{, Attribute-name}

Ordering-clause

::= ORDER BY Order-item-list

Order-item-list

::= Order-attribute{, Order-attribute}

Order-attribute

::= Attribute-name [ASC | DESC]

Ranking-clause

::= RANK BY Ranking-function

247

Ranking-function

::= ACCESS | INWARD | OUTWARD | function-compare

Grouping-clause

::= GROUP BY Attribute-name{, Attribute-name}

Threshold-clause

::= Threshold-specification{, Threshold-specification}

Threshold-specification

::= Threshold-name THRESHOLD “=” Threshold-value [FOR Attribute-name]

Threshold-name

::= SUPPORT | CONFIDENCE | CLASSIFICATION

Threshold-value

::= integer | float

Note that the syntax presented above is very permissive. It allows the generation of some

constructs that are not legal or semantically incorrect in WebML. For example, there is no

distinction between numeric and string expressions in Scalar-expression. We have simplified

the grammar for clarity, to avoid complicated production rules due to the context-sensitivity

of WebML. For clarity, we have also allowed redundancy, like for Name-list and Location-list.

Appendix C

Data Mining Query Language

(DMQL) Grammar

Language is called the garment of thought: however, it should rather be,

language is the flesh-garment, the body, of thought.

Thomas Carlyle

We present a simplified extended Backus-Naur Form (BNF) grammar for the Data Min-

ing Query Language DMQL. We make use of the following conventions: “[]” represent zero

or one occurrence; “{ }” represent zero or more occurrences; upper case words represent

WebML keywords; characters between quotes are characters or symbols accepted in DMQL;

words starting with upper case are variable; words in italic and starting with lower case are

terminal categories. The terminal categories are: Type (integer, float, string) and Identifier

(identifier-DB, identifier-Tab, identifier-Var, identifier-Attrib, identifier-Cube). Types are

self-explanatory. identifier-DB is the name of a database; identifier-Tab is the name of a

relation; identifier-Var is a variable name; identifier-Attrib is the name of an attribute; and

identifier-Cube identifies a multi-dimensional data cube.

DMQL-statement

::= DMQL-hierarchy-manipulation | DMQL-query

DMQL-hierarchy-manipulation

::= Hierarchy-definition | Hierarchy-insertion | Hierarchy-deletion

Hierarchy-definition

::= DEFINE HIERARCHY FOR Concept-hierarchy [Hierarchy-name“:”] Hierarchy-expression

248

249

Hierarchy-expression

::= Schema-hierarchy | Group-hierarchy

Schema-hierarchy

::= “{” Schema-attribute-list “}” “>” “{” Schema-attribute-list “}”

Group-hierarchy

::= “{” Constant-list “}” “>” “{” Constant-list “}”

Hierarchy-name

::= string

Concept-hierarchy

::= Schema-attribute-name | Attribute-name “}”

Schema-attribute-name-list

::= Schema-attribute-name{, Schema-attribute-name}

Schema-attribute-name

::= [identifier-Tab.]identifier-Attrib

Constant-list

::= Constant{, Constant}

Constant

::= string | integer | float

250 APPENDIX C. DATA MINING QUERY LANGUAGE (DMQL) GRAMMAR

Hierarchy-insertion

::= INSERT Concept-name UNDER Concept-name

TO HIERARCHY [Hierarchy-name “:”] FOR Concept-hierarchy

Concept-name

::= Constant | Attribute-name

Hierarchy-deletion

::= DELETE Concept-name UNDER Concept-name

FROM HIERARCHY [Hierarchy-name “:”] FOR Concept-hierarchy

Attribute-name

::= [identifier-Var.]identifier-Attrib

DMQL-query

::= Summarizer-query

| Comparator-query

| Associator-query

| Classifier-query

| Clusterer-query

| Predictor-query

Summarizer-query

::= [Use-db-clause]

[Hierarchy-clause {, Hierarchy-clause}]

Summarizer-clause

From-clause

Where-clause

[S-Threshold-clause]

[Show-clause]

251

Comparator-query

::= [Use-db-clause]

[Hierarchy-clause {, Hierarchy-clause}]

Comparator-clause

From-clause

Where-clause

[S-Threshold-clause]

[Show-clause]

Associator-query

::= [Use-db-clause]

[Hierarchy-clause {, Hierarchy-clause}]

Associator-clause

From-clause

Where-clause

[A-Threshold-clause]

[Show-clause]

Classifier-query

::= [Use-db-clause]

[Hierarchy-clause {, Hierarchy-clause}]

Classifier-clause

From-clause

Where-clause

[C-Threshold-clause]

[Show-clause]

Clusterer-query

::= [Use-db-clause]

[Hierarchy-clause {, Hierarchy-clause}]

Clusterer-clause

252 APPENDIX C. DATA MINING QUERY LANGUAGE (DMQL) GRAMMAR

From-clause

Where-clause

[T-Threshold-clause]

[Show-clause]

Predictor-query

::= [Use-db-clause]

[Hierarchy-clause {, Hierarchy-clause}]

Predictor-clause

From-clause

Where-clause

[T-Threshold-clause]

[Show-clause]

Use-db-clause

::= USE [DATABASE] identifier-DB

Hierarchy-clause

::= USE HIERARCHY Hierarchy-name FOR Attribute-name

From-clause

::= FROM Source-list

Source-list

::= Relation-list | Cube-reference

Relation-list

::= Relation-reference {,Relation-reference}

253

Relation-reference

::= identifier-Tab [identifier-Var]

Cube-reference

::= identifier-Cube

Where-clause

::= WHERE Where-predicate

Where-predicate

::= Predicate-term | Where-predicate OR Predicate-term

Predicate-term

::= Predicate-factor | Predicate-term AND Predicate-factor

Predicate-factor

::= [NOT] Predicate-condition

Predicate-condition

::= Condition | (Where-predicate)

Condition

::= Compare-condition

| In-condition

| Like-condition

| Between-condition

| Exist-condition

| Null-condition

254 APPENDIX C. DATA MINING QUERY LANGUAGE (DMQL) GRAMMAR

Compare-condition

::= Scalar-expression Comparison Scalar-expression

| Scalar-expression Comparison (Select-expression)

Comparison

::= “=” | “! =” | “<” | “>” | “<=” | “>=”

In-condition

::= Scalar-expression [NOT] IN (Set-of-scalar)

Set-of-scalars

::= Constant-list | Select-expression

Select-expression

::= Select-clause

From-clause

Where-clause

[Ordering-clause]

[Grouping-clause]

[Having-clause]

Like-condition

::= Attribute-name [NOT] LIKE Constant

Between-condition

::= Attribute-name [NOT] BETWEEN Scalar-expression AND Scalar-expression

Exist-condition

::= [NOT] EXISTS (Select-expression)

255

Null-condition

::= Attribute-name IS [NOT] NULL

Scalar-expression

::= EXACT Constant

| Scalar-term

| Scalar-expression “+” Scalar-term

| Scalar-expression “-” Scalar-term

| Scalar-expression “|” Scalar-term

Scalar-term

::= Scalar-factor

| Scalar-factor “*” Scalar-factor

| Scalar-factor “/” Scalar-factor

Scalar-factor

::= [“+” | “-”] Scalar-primary

Scalar-primary

::= Constant | Attribute-name | (Scalar-expression) | Aggregate-function-reference

Aggregate-function-reference

::= COUNT(∗)

| Aggregate-function ([ALL] Scalar-expression)

| Aggregate-function(DISTINCT Attribute-name)

Aggregate-function

::= COUNT | AVG | SUM | MIN | MAX

256 APPENDIX C. DATA MINING QUERY LANGUAGE (DMQL) GRAMMAR

Select-clause

::= SELECT [ALL | DISTINCT] Attribute-name-list

Attribute-name-list

::= ∗ | Attribute-name {, Attribute-name}

Ordering-clause

::= [ORDER BY Order-item-list]

Order-item-list

::= Order-attribute{, Order-attribute}

Order-attribute

::= Attribute-name [ASC | DESC]

Grouping-clause

::= GROUP BY Attribute-name{, Attribute-name}

Having-clause

::= HAVING Where-predicate

Summarizer-clause

::= SUMMARIZE Attribute-name-list WITH RESPECT TO Attribute-name-list AS string

Comparator-clause

::= COMPARE Target-name Where-clause Contrasting-classes

WITH RESPECT TO Attribute-name-list

257

Contrasting-classes

::= IN CONTRAST TO Contrast-name Where-clause

{IN CONTRAST TO Contrast-name Where-clause}

Target-name

::= string

Contrast-name

::= string

Associator-clause

::= MINE ASSOCIATION AS string WITH RESPECT TO Attribute-association-list

[Meta-rule-clause]

Attribute-association-list

::= ∗ | Attribute-name [AS string]{, Attribute-name [AS string]}

Classifier-clause

::= MINE CLASSIFICATION AS string FOR Attribute-name

WITH RESPECT TO Attribute-name-list

Clusterer-clause

::= MINE CLUSTERING AS string FOR Attribute-name

WITH RESPECT TO Attribute-name-list

Predictor-clause

::= MINE PREDICTION AS string FOR Attribute-name

WITH RESPECT TO Attribute-name-list

258 APPENDIX C. DATA MINING QUERY LANGUAGE (DMQL) GRAMMAR

S-Threshold-clause

::= S-Threshold-specification{, S-Threshold-specification}

S-Threshold-specification

::= [SET] SUPPORT [THRESHOLD] Threshold-value

| [SET] DISTINCT-VALUE [THRESHOLD] Threshold-value [FOR Attribute-name]

A-Threshold-clause

::= A-Threshold-specification{, A-Threshold-specification}

A-Threshold-specification

::= [SET] A-Threshold-name [THRESHOLD] Threshold-value

A-Threshold-name

::= SUPPORT | CONFIDENCE | INTERESTING

Meta-rule-clause

::= MATCHING Predicate-list “=>” Predicate-list

Predicate-list

::= Predicate {AND Predicate}

Predicate

::= string(identifier-VAR, Constant)

C-Threshold-clause

::= C-Threshold-specification{, C-Threshold-specification}

259

C-Threshold-specification

::= [SET] C-Threshold-name [THRESHOLD] Threshold-value

C-Threshold-name

::= CLASSIFICATION | NOISE | TRAINING-SET

T-Threshold-clause

::= [SET] TRAINING-SET [THRESHOLD] Threshold-value

Threshold-value

::= integer | float

Show-clause

::= SHOW Output

Output

::= RULES | TABLES | GRAPHS

Note that the syntax presented above is very permissive. It allows the generation of

some constructs that are not legal or semantically incorrect in DMQL. We have simplified

the grammar for clarity, to avoid complicated production rules due to the context-sensitivity

of DMQL.

Appendix D

Defining Metadata for the Internet

Knowledge is a rich storehouse for the glory of the Creator and the relief of man’s estate.

Francis Bacon

Knowledge comes, but wisdom lingers

Alfred Lord Tennyson

The most common definition of the term “metadata” is data about data. Metadata for

documents would greatly help in the indexing process and improve relevancy of information

retrieval. Most on-line documents today have no specific metadata with them. However,

in HTML 2.0, new tags were introduced to allow web developers and authors to identify

document creators, keywords, description, and even specify web agent behaviours regarding

some documents. In the first section, we enumerate some of these tags and variables that

allow to define metadata for on-line documents.

The second section gives a document type definition for XML-based documents using

the Dublin Core Metadata element set.

D.1 META tags in HTML

HTML 2.0 defines the META element, a tag type which allows a limited ability to describe

a particular document. META tags have two possible attributes:

1. <META HTTP-EQUIV=”name” CONTENT=”content”>

2. <META NAME=”name” CONTENT=”content”>

The corresponding structure of the META element is defined by the following DTD (Doc-

ument Type Definition):

<!ELEMENT META - O EMPTY>

<!ATTLIST META

260

D.1. META TAGS IN HTML 261

HTTP-EQUIV NAME #IMPLIED

NAME NAME #IMPLIED

CONTENT CDATA #REQUIRED >

META tags are placed in the head of the HTML document, between the <HEAD> and

</HEAD> tags. The major difference between HTTP-EQUIV and NAME is that HTTP-

EQUIV is to define variable destined to be part of the HTTP response header1. Variable

defined in this form have an equivalent effect as when they are specified directly in the

HTTP header. Some Web servers actually translate HTTP-EQUIV META tags into actual

HTTP headers automatically. META tags with a NAME attribute are used for other types

which do not correspond to HTTP headers. The CONTENT element contains the associated

data to the variable named in NAME or HTTP-EQUIV.

D.1.1 Examples of HTTP-EQUIV META Tags in HTML

Here are some examples of the variables defined in the META tag with HTTP-EQUIV

attribute (conform to RFC1945 and RFC2068):

• Content-Language may be used to declare the natural language of a document,

example: <META HTTP-EQUIV=”Content-Language” CONTENT=”en”>

• Content-Length is used to specify the size of a document in bytes.

• Content-Location is used for the URL of the resource.

• Content-Type specifies the media type and can be extend to give the character set,

example:

<META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=ISO-2022-JP”>

• Content-Version may be used to indicate the version of the evolving document.

• Expires is used to declare the expiry date of the document. This date is used to

control caching and update indexes, example:

<META HTTP-EQUIV=”Expire” CONTENT=”Fri, 26 Mar 1999 09:30:57 GMT”>

• Last-Modified indicates the date the document was last modified.

1HTTP headers are defined in RFC1945 (HTTP/1.0) and RFC2068 (HTTP/1.1).

262 APPENDIX D. DEFINING METADATA FOR THE INTERNET

• Link is used to indicate relationships to other resources.

• PICS-Label is for document content labeling. PICS stands for Platform for Inter-

net Content Selection2 and the tag is used to declare a document’s rating in terms

of adult content (sex, violence, etc.), for example: <META HTTP-EQUIV=’PICS-Label”

CONTENT=”(PICS-1.1 ”http://www.picsservice.org/v1.0” labels on ”1999.01.05T09:30-0500”

for ”http://www.site.com/mypage.html” ratings (s 0 v 0 g 0))’>

• Pragma allows the document content to stay current by preventing caching by browsers

and web agents, example: <META HTTP-EQUIV=”Pragma” CONTENT=”no-cache”>

• Refresh specifies the time in seconds before a Web browser (or agent) reloads the doc-

ument automatically. It can also specify an alternative URL to load, example: <META

HTTP-EQUIV=”Refresh” CONTENT=”5; URL=”http:www.somewhere.ca/document.html”>

D.1.2 Examples of NAME META Tags in HTML

Here are some examples of the variables defined in the META tag with NAME attribute.

Except for the Dublin Core elements, these are not standardized and are suggested by a

variety of companies and organization.

1. Dublin Core: there are 15 elements in the Dublin Core. They can be used in the HTML

META tags by adding the DC prefix to their label: DC.TITLE, DC.CREATOR,

DC.SUBJECT, DC.DESCRIPTION, DC.PUBLISHER, DC.CONTRIBUTOR,

DC.DATE, DC.TYPE, DC.FORMAT, DC.IDENTIFIER, DC.SOURCE,

DC.LANGUAGE, DC.RELATION, DC.COVERAGE, and DC.RIGHTS.

See Section 2.3.1 in Chapter 3 for more details.

2. Other variables

• Robots controls crawling robots on a per-page basis. Normally, well behaved

crawling robots consult the robots.txt file to verify indexing permission on a site.

This tab allows to specify to visiting crawlers how they should behave with regard

to the document. Values can be all, none, index, noindex, follow and nofollow.

For example, to allow a crawler to index the document but not to follow its

2see PICS standard at http://www.w3c.org/PICS.

D.2. EXAMPLE OF WEB DOCUMENT DESCRIBED WITH DUBLIN CORE 263

hyperlinks, the following tag is needed:

<META NAME=”Robots” CONTENT=”index | nofollow”>

• Keywords is used to enumerate important keywords and synonyms associated

with the document. They can be used and are given priority by search engines

for indexing or given weights to keywords, for example:

<META NAME=”Keywords” CONTENT=”Information Retrieval, Data Mining”>

• Description can be used to describe the content of the document in plain text.

Search engines index it and display it as a snippet related to the document.

• Author is used to qualify the document’s author.

• Contact is used to specify the authors e-mail address.

• Location can be used to specify the geographical location like country, province,

city, etc.

• Note is used to add any supplemental information in plain text.

• Copyright indicates the document copyright statement.

There are many other variables for the META NAME tag suggested by different appli-

cations such Microsoft Office (Generator, Editor, Language, Office, Publisher,

Project, Status, Subject, Date-Completed, etc.) and others. It is also important

to notice that there are many different variables with the same semantics, for exam-

ple DateofLastModification, Date-Completed, LastUpdated and timestamp

specify the date of the last update.

D.2 Example of Web Document Described with Dublin Core

As an example of adding metadata in web documents, we make use of the Dublin Core

elements to describe the information pertaining to the document. These elements are in-

tended to support access to information on the World Wide Web or other digital libraries.

The excerpt shown bellow, contains some descriptive metadata, invisibly embedded in the

HTML using the <META> tag in the <HEAD> section of the document.

<META NAME=”package” CONTENT=”(TYPE=begin)(VERSION=0.1) Dublin Core”>

<META NAME=”DC.title” CONTENT=”Resource and Knowledge Discovery From the Internet

and Multimedia Repositories”>

264 APPENDIX D. DEFINING METADATA FOR THE INTERNET

<META NAME=”DC.subject” CONTENT=”Data Mining, WWW, Knowledge Discovery, Visual

Data, Content-Based Retrieval”>

<META NAME=”DC.creator” CONTENT=”(TYPE=name) Osmar R. Zaiane”>

<META NAME=”DC.creator” CONTENT=”(TYPE=email) zaianecs.sfu.ca”>

<META NAME=”DC.creator” CONTENT=”(TYPE=affiliation) Simon Fraser University”>

<META NAME=”DC.creator” CONTENT=”(TYPE=homepage) http://www.cs.sfu.ca/~zaiane”>

<META NAME=DC.Description CONTENT=”In this thesis, the inefficiency and inadequacy of

the current information retrieval technology applied on the Internet is demonstrated. A framework,

called Virtual Web Views, for intelligent interactive information retrieval and knowledge discovery

from global information systems is proposed, and a query language, WebML, for resource discovery

and data mining from the Web using the virtual web views is put forward. it is also illustrate how

descriptors collected for virtual web view building can be exploited for content-based image retrieval,

and how to carry out on-line analytical processing and data mining on visual data from the World-

Wide Web, or other multimedia repositories.”>

<META NAME=”DC.date” CONTENT=”(TYPE=creation) (SCHEME=ISO31) 1999-01-12”>

<META NAME=”DC.form” CONTENT=”(SCHEME=imt) text/html”>

<META NAME=”DC.identifier” CONTENT=”(TYPE=url) http://www.cs.sfu.ca/~zaiane/thesis.html”>

<META NAME=”DC.language” CONTENT=”(SCHEME=iso639) en-GB”>

<META NAME=”DC.Rights” CONTENT=”http://www.cs.sfu.ca/~zaiane/rights.html”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#title”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#subject”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#creator”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#date”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#form”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#Description”>

<LINK REL=SCHEMA.imt HREF=”http://sunsite.auc.dk/RFC/rfc/rfc1521.html”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#identifier”>

<LINK REL=SCHEMA.dc HREF=”http://purl.org/metadata/dublin core/elements#language”>

<META NAME=”package” CONTENT=”(TYPE=end)(VERSION=0.1) Dublin Core”>

D.3. DUBLIN CORE XML DTD FRAGMENT 265

D.3 Dublin Core XML DTD Fragment

The Dublin Core is a set of 15 key metadata elements, the form of which has been agreed

upon and has become the basis of a standard for metadata on the WWW. The 15-element

metadata element set is intended to facilitate discovery of electronic resources. The 15

elements are: CREATOR, TITLE, SUBJECT, DESCRIPTION, PUBLISHER, CONTRIB-

UTOR, DATE, TYPE, FORMAT, IDENTIFIER, SOURCE, LANGUAGE, RELATION,

COVERAGE, and RIGHTS. An explanation of these elements can be found in Section

2.3.1 of Chapter 3.

The following is a DTD (document type definition) for XML documents using the Dublin

Core elements.
<!– Beginning of metadata element declarations –>

<!– $Id: XML.dtd,v 2.0 1999/01/12 Osmar Zaiane, modified from v 1.1 jon Exp$ –>

<!– The METAPACKAGE element is intended to be the outer grouping element for a whole set of

related metadata from a single metadata schema (such as Dublin Core). It implicitly forms an AND

grouping of its child elements. The default schema attribute value should be taken by applications

as ”DublinCore” and the default version as ”1.0”. –>

<!ELEMENT METAPACKAGE (ANDGROUP* |ORGROUP* |CREATOR* |TITLE* | SUBJECT

| DESCRIPTION* | PUBLISHER* | CONTRIBUTOR* | DATE* | TYPE* | FORMAT* | IDEN-

TIFIER* | SOURCE* | LANGUAGE* | RELATION* | COVERAGE* | RIGHTS* | META*)>

<!ATTLIST METAPACKAGE SCHEMA CDATA #IMPLIED VERSION CDATA #IMPLIED>

<!– The ANDGROUP element is used to explicitly form a conjunction between its child elements.

–>

<!ELEMENT ANDGROUP (ANDGROUP* | ORGROUP* | CREATOR* | TITLE* | SUBJECT |
DESCRIPTION* | PUBLISHER* | CONTRIBUTOR* | DATE* | TYPE* | FORMAT* | IDENTI-

FIER* | SOURCE* | LANGUAGE* | RELATION* | COVERAGE* | RIGHTS* | META*)>

<!– The ORGROUP element is used to explicitly form a disjunction between the child elements

within it –>

<!ELEMENT ORGROUP (ANDGROUP* | ORGROUP* | CREATOR* | TITLE* | SUBJECT |
DESCRIPTION* | PUBLISHER* | CONTRIBUTOR* | DATE* | TYPE* | FORMAT* | IDENTI-

FIER* | SOURCE* | LANGUAGE* | RELATION* | COVERAGE* | RIGHTS* | META*)>

<!– Now we get the actual metadata elements themselves. Here the elements are named after the

Dublin Core v1.0 element set names. Note that the all take the same set of attributes (relating to

their qualifiers) except for contributor that also requires a role attribute as well. –>

<!ELEMENT TITLE (#PCDATA)>

<!ATTLIST TITLE SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET CDATA

266 APPENDIX D. DEFINING METADATA FOR THE INTERNET

#IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT CREATOR (#PCDATA)>

<!ATTLIST CREATOR SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT SUBJECT (#PCDATA)>

<!ATTLIST SUBJECT SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT DESCRIPTION (#PCDATA)>

<!ATTLIST DESCRIPTION SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT PUBLISHER (#PCDATA)>

<!ATTLIST PUBLISHER SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT DATE (#PCDATA)>

<!ATTLIST DATE SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET CDATA

#IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT TYPE (#PCDATA)>

<!ATTLIST TYPE SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET CDATA

#IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT FORMAT (#PCDATA)>

<!ATTLIST FORMAT SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT IDENTIFIER (#PCDATA)>

<!ATTLIST IDENTIFIER SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT SOURCE (#PCDATA)>

<!ATTLIST SOURCE SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET CDATA

#IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT LANGUAGE (#PCDATA)>

<!ATTLIST LANGUAGE SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT RELATION (#PCDATA)>

<!ATTLIST RELATION SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED ROLE CDATA #IMPLIED>

<!ELEMENT COVERAGE (#PCDATA)>

<!ATTLIST COVERAGE SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED>

D.3. DUBLIN CORE XML DTD FRAGMENT 267

<!ELEMENT RIGHTS (#PCDATA)>

<!ATTLIST RIGHTS SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET CDATA

#IMPLIED LANGUAGE CDATA #IMPLIED>

<!ELEMENT CONTRIBUTOR (#PCDATA)>

<!ATTLIST CONTRIBUTOR SCHEME CDATA #IMPLIED TYPE CDATA #IMPLIED CHARSET

CDATA #IMPLIED LANGUAGE CDATA #IMPLIED ROLE CDATA #IMPLIED>

<!– This is similar to the HTML 2.0/3.2 META element definition and is included for some limited

backwards compatibility and use with non-DC like metadata schemes. –>

<!ELEMENT META EMPTY>

<!ATTLIST NAME CDATA #IMPLIED HTTP-EQUIV CDATA #IMPLIED CONTENT CDATA

#IMPLIED>

<!– End of metadata declarations –>

Bibliography

[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.
Wiener. The lorel query language for semistructured data, 1997. http://www-
db.stanford.edu/~abitebou/pub/jodl97.lorel96.ps.

[2] S. Abitibout. Querying semi-structured data. In Int. Conf. on Database Theory, 1997.

[3] Mark S. Ackerman, Brian Starr, and Michael Pazzani. The do-i-care agent: Effec-
tive social discovery and filtering on the web. In Proc. RIAO’97(Computer Assisted
Information Searching on the Internet), Montreal, Canada, 1997.

[4] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In Proc. 4th Int. Conf. Foundations of Data Organization and Algorithms,
Chicago, October 1993.

[5] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval classifier for
database mining applications. In Proc. 18th Int. Conf. Very Large Data Bases, pages
560–573, Vancouver, Canada, August 1992.

[6] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of
items in large databases. In Proc. 1993 ACM-SIGMOD Int. Conf. Management of
Data, pages 207–216, Washington, D.C., May 1993.

[7] R. Agrawal and J. C. Shafer. Parallel mining of association rules: Design, implemen-
tation, and experience. IEEE Trans. Knowledge and Data Engineering, 8:962–969,
1996.

[8] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
1994 Int. Conf. Very Large Data Bases, pages 487–499, Santiago, Chile, September
1994.

[9] A.V. Aho and M.J. Corasick. Fast pattern matching: an aid to bibliographic search.
Communications of ACM, 18(6):333–340, June 1975.

[10] AI Magazine, 18(2). Intelligent Systems on the Internet, 1997.

[11] AI Magazine, 19(2). Intelligent Agents, 1998.

268

BIBLIOGRAPHY 269

[12] P. Aigrain, H. Zhang, and D. Petkovic. Content-based representation and retrieval of
visual media: A state-of-the-art review. Int. J. Multimedia Tools and Applications,
3:179–202, November 1996.

[13] Alex ftp filesystem. ftp://alex.sp.cs.cmu.edu/usr0/anon/www/alex.html.

[14] K. Ali, S. Manganaris, and R. Srikant. Partial classification using association rules.
In Proc. 3rd Int. Conf. Knowledge Discovery and Data Mining (KDD’97), Newport
Beach, California, August 1997.

[15] R. Alonso, D. Barbara, and H. Garcia-Molina. Data caching issues in an information
retrieval system. In ACM Transactions on Database Systems, pages 359–384, 1990.

[16] American National Standards Institute. Database Language SQL, ansi x3.135-1992
edition, 1992.

[17] Yigal Arens, Chun-Nan Hsu, and Craig A. Knoblock. Query processing in the sims
information mediator. In ARPA/Rome Laboratory Knowledge-Based Planning and
Scheduling Initiative Workshop, 1996.

[18] Roberts Armstrong, Dayne Freitag, Thorsten Joachims, and Tom Mitchell. Web-
Watcher: A learning apprentice for the world wide web. In AAAI Spring Sympo-
sium on Information Gathering from Heterogeneous, Distributed Environments, March
1995.

[19] Gustavo O. Arocena and Alberto O. Mendelzon. WebOQL: Restructuring documents,
databases and webs. In Proc of ICDE Conf., Orlando, Florida, USA, February 1998.

[20] P. Atzeni, G. Mecca, and P. Merialdo. Semistructured and structured data in the web:
Going back and forth. In Proc. Workshop on Semi-structured Data, Tucson, Arizona,
May 1997.

[21] J.R. Bach, C. Fuller, A. Gupta, and et al. The Virage image search engine: An open
framework for image management. In SPIE Storage and Retrieval for Image and Video
Databases IV, February 1996.

[22] D. Ballard. Generalizing the Hough transform to detect arbitrary shapes. Pattern
Recognition, 13(2):111–122, 1981.

[23] D.H. Ballard and C.M. Brown. Computer Vision. Prentice Hall, 1982.

[24] E. Baralis and G. Psaila. Designing templates for mining association rules. Journal
of Intelligent Information Systems, 9:7–32, 1997.

[25] R. Beckwith, C. Fellbaum, D. Gross, K. Miller, G.A. Miller, and R. Tengi. Five
papers on WordNet. Special Issue of Journal of Lexicography, 3(4):235–312, 1990.
ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.ps.

270 BIBLIOGRAPHY

[26] Gordon Bell and Jim Gemmell. On-ramp prospects for the information superhighway
dream. Communications of the ACM, 39(7):55–61, 1996.

[27] Tim Berners-Lee. The world wide web initiative. CERN,
http://info.cern.ch/hypertext/WWW/TheProject.html.

[28] Tim Berners-Lee, Robert Caillau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur
Secret. The world-wide web. Communication of the ACM, 37(8):76–82, August 1994.

[29] Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike Franklin, Hector
Garcia-Molina, Jim Gray, Jerry Held, Joe Hellerstein, H. V. Jagadish, Michael Lesk,
Dave Maier, Jeff Naughton, Hamid Pirahesh, Mike Stonebraker, and Jeff Ullman. The
asilomar report on database research. ACM Sigmod Record, 27(4), December 1998.
also available at: http://www.acm.org/sigmod/record/issues/9812/asilomar.html.

[30] I. Bhandari, E. Colet, J. Parker, Z. Pines, and R. Pratap. Advanced scout: Data
mining and knowledge discovery in NBA data. Data Mining and Knowledge Discovery,
1(1):121–125, 1997.

[31] Michael Bieber. Providing information systems with full hypermedia functionality. In
Proc. 26th Hawaii Int. Conf. on System Sciences, 1993.

[32] Eric Bina, Vicki Jones, Rob McCool, and Marianne
Winslett. Secure access to data over the internet.
http://bunny.cs.uiuc.edu/CADR/winslett/pubs/SecureDBAccess.ps.

[33] B. Bloom. Space time tradeoffs in hash coding with allowable errors. Communications
of ACM, 13(7):422–426, 1970.

[34] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, and
Michael F. Schwartz. Harvest: A scalable, customizable discovery and ac-
cess system. Technical Report CU-CS-732-94, University of Colorado, 1994.
ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Harvest.FullTR.ps.Z.

[35] C. Mic Bowman, Peter B. Danzig, Udi Manber, and Michael F. Swartz. Scalable
internet resource discovery: Research problems and approaches. Communication of
the ACM, 37(8):98–107, August 1994.

[36] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications of
ACM, 20(10):762–772, October 1977.

[37] P.M.E. De Bra and R.D.J. Post. Information retrieval in the world-wide web: Making
client-based searching feasible.

[38] Jeffrey M. Bradshaw. Software Agents. AAAI Press / The MIT Press, 1997.

BIBLIOGRAPHY 271

[39] S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing associ-
ation rules to correlations. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of
Data, pages 265–276, Tucson, Arizona, May 1997.

[40] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search
engine. In 7th Int. Conf. WWW, Brisbane, Australia, April 1998.

[41] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and opti-
mization techniques for unstructured data. In Proc. ACM SIGMOD Conf. on Man-
agement of Data, 1996.

[42] Peter Buneman. Semistructured data, tutorial in principal of database systems con-
ference. http://www.cis.upenn.edu/~db, 1997.

[43] P.J. Burt. Smart sensing within a pyramid vision machine. Proceedings of IEEE,
76(8):1006–1015, 1988.

[44] Vannevar Bush. As we may think. The Atlantic Monthly, 176(1):101–108, July 1945.

[45] Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases.
In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in
Databases, pages 213–228. AAAI/MIT Press Also in Proc. IJCAI-89 Workshop Knowl-
edge Discovery in Databases, Detroit, MI, August 1989, 26-36., 1991.

[46] S. Chakrabarti, B. Dom, D. Gibson, S.R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Experiments in topic distillation. In ACM SIGIR workshop on Hypertext
Information Retrieval on the Web, Melbourne, Australia, 1998.

[47] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26:65–74, 1997.

[48] S. Chaudhuri, S. Ghandeharizadeh, and C. Shahabi. Avoiding retrieval content for
composite multimedia objects. In Proc. 21st Int. Conf. on Very Large Data Bases
(VLDB), pages 287–298, 1995.

[49] Hsinchun Chen, Andrea Houston, Jay Nunamaker, and Jerome Yen. Toward intelligent
meeting agent. IEEE Computer, 29(8):62–70, August 1996.

[50] M. S. Chen, J. S. Park, and P.S. Yu. Data mining for path traversial patterns in a web
environment. In Proc. 16th Int. Conf. Distributed Computing Systems, pages 385–392,
May 1996.

[51] D.W. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu. A fast distributed algorithm for
mining association rules. In Proc. 1996 Int. Conf. Parallel and Distributed Information
Systems, pages 31–44, Miami Beach, Florida, Dec. 1996.

272 BIBLIOGRAPHY

[52] D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association
rules in large databases: An incremental updating technique. In Proc. 1996 Int. Conf.
Data Engineering, pages 106–114, New Orleans, Louisiana, Feb. 1996.

[53] D.W. Cheung, V. Ng, A. Fu, and Y. Fu. Efficient mining of association rules in
distributed databases. IEEE Trans. Knowledge and Data Engineering, 8:911–922,
1996.

[54] S. Chien, F. Fisher, H. Mortensen, E. Lo, and R. Greeley. Using artificial intelligence
planning to automate science data analysis for large image databases. In Proc. Third
Int. Conf. on Knowledge Discovery and Data Mining, pages 147–150, 1997.

[55] Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through
URL ordering. In 7th Int. Conf. WWW, Brisbane, Australia, April 1998.

[56] W. W. Chu, Q. Chen, and R. Lee. Cooperative query answering via type abstraction
hierarchy. In S.M Dee, editor, Cooperating Knowledge Based System, pages 271–292.
Now York: Elsevier, 1990.

[57] Kimberly C. Claffy, Hans-Werner Braun, and George C. Polyzos. Tracking long-term
growth of the NSFNET. Communication of the ACM, 37(8):34–45, August 1994.

[58] E. F. Codd. A relational model for large shared data banks. Communication of the
ACM, 13(6):377–387, June 1970.

[59] Jeff Conklin. Hypertext: An introduction and survey. IEEE ComputerDatabase En-
gineering, 20(9):17–41, September 1987.

[60] Dan Connolly and Jon Bosak World-Wild Web Consortium. Extensible markup
language-xml, April 1997. http://www.w3c.org/XML.

[61] W. Bruce Croft and Howard Turtle. A retrieval model for incorporating hypertext
links. In Proc. Hypertext89, pages 213–224, November 1989.

[62] F. Cuppens and R. Demolombe. Cooperative answering: A methodology to provide
intelligent access to databases. In Proc. 2nd Int. Conf. Expert Database Systems,
pages 621–643, Fairfax, VA, April 1988.

[63] A. Czyzewski. Mining knowledge in noisy audio data. In Proc. Second Int. Conf. on
Knowledge Discovery and Data Mining, pages 220–225, 1996.

[64] Jody J. Daniels and Edwardina L. Rissland. A case-based approach to intelligent
information retrieval. In Proc. ACM SIGIR’95 Conf., Seattle, WA, USA, 1995.

[65] Jody J. Daniels and Edwina L. Rissland. A case-based approach to intelligent in-
formation retrieval. In Proc. SIGIR 95 Conf., pages 238–245, Seattle, WA, USA,
1995.

BIBLIOGRAPHY 273

[66] P. Danzig, K. Obraczka, D. DeLucia, and N. Alam. Massively replicating services in
autonomously managed wide-area internetworks. Technical report, Technical report,
1994. Available from ftp://catarina.usc.edu/pub/kobraczk/ToN.ps.Z.

[67] P. B. Danzig, R. S. Hall, and M. F. Schwartz. A case for caching file objects inside
internetworks. In Proc. SIGCOMM’93, pages 239–248, ACM, New York, September
1993.

[68] B. de Ville. Applying statistical knowledge to database analysis and knowledge base
construction. In Proc. 6th Conf. on Artificial Intelligence Applications, pages 30–36,
Santa Barbara, CA, 1990.

[69] Deutsch, Emtage, and Heelan. Archie - an electronic directory service for the internet.
ftp://archie.ans.net/pub/archie/doc/whatis.archie.

[70] Martin Dillon, Erik Jul, Mark Burge, and Carol Hickey. Assessing information on the
internet: Toward providing library services for computer-mediated communication.
Internet Research, 3(1), Spring 1993.

[71] R. Doorendos, O. Etzioni, and D. Weld. A scalable comparison-shopping agent for
the world-wide web. In Proc. Autonomous Agents ACM, 1997.

[72] M.S. Drew, J. Wei, and Z.N. Li. Illumination–invariant color object recognition via
compressed chromaticity histograms of color–channel–normalized images. In Proc.
Int. Conf. on Computer Vision (ICCV ’98), pages 533–540, 1998.

[73] E.H. Durfee, D.L. Kiskis, and W.P. Birmingham. The agent architecture of the Univer-
sity of Michigan digital library. IEEE Software Engineering, 144(1):61–71, February
1997.

[74] Mark T. Maybury Editor. Intelligent Multimedia Information Retrieval. The AAAI
Press/The MIT Press, 1997.

[75] Max J. Egenhofer. Spatial Query Languages. PhD thesis, University of Maine, 1989.

[76] Max J. Egenhofer and Jayant Sharma. Topological relations between regions in r2

and z2. In Advances in Spatial Databases (SSD’93), Singapore, 1993.

[77] David Eichmann. The RBSE spider - balancing effective search against web load. In
Proc. 1st WWW Conf., May 1994.

[78] David Eichmann, Terry McGregor, and Dann Danley. Integrating structured
databases into the web: The MORE system. http://rbse.jse.nasa.gov:81/.

[79] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 2nd ed. Bem-
jamin/Cummings, 1994.

274 BIBLIOGRAPHY

[80] Hans Erickson. Mbone: The multicast backbone. Communication of the ACM,
37(8):54–60, August 1994.

[81] Oren Etzioni. The wold-wide web: Quagmire or gold mine? Communications of the
ACM, 39(11):65–68, 1996.

[82] Oren Etzioni. Moving up the information food chain: Deploying softbots on the world
wide web. AI Magazine, 18(2), 1997.

[83] Oren Etzioni, Neal Lesh, and Richard Segal. Building softbot for unix, November
1992. Preliminary report.

[84] Oren Etzioni and Daniel Weld. A softbot-based interface to the internet. Communi-
cations of the ACM, 37(7):72–76, 1994.

[85] Oren Etzioni and Daniel Weld. Intelligent agents on the internet: Fact, fiction, and
forecast, May 1995.

[86] Andrew Fall. Reasoning with Taxonomies. PhD thesis, School of Computing Science,
Simon Fraser University, December 1996.

[87] Andrew Fall. The foundations of taxonomic encoding. Computational Intelligence,
14(4):598–642, 1998.

[88] Christos Faloutsos. Access methods for text. Computing Surveys, 17(1):49–74, March
1985.

[89] Christos Faloutsos and Douglas W. Oard. A survey of information retrieval and
filtering methods. Technical Report CS-TR-3514, University of Maryland, August
1995. http://www.enee.umd.edu/medlab/filter/papers/survey.ps.

[90] U. Fayyad and P. Smyth. Image database exploration: Progress and challenges. In
Proc. Knowledge Discovery in Databases Workshop, pages 14–27, Washington, D.C,
1993.

[91] U. M. Fayyad, S. G. Djorgovski, and N. Weir. Automating the analysis and cata-
loging of sky surveys. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 471–493.
AAAI/MIT Press, 1996.

[92] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (eds.). Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

[93] R. Feldman and I. Dagan. Knowledge discovery in textual databases (KDT). In
Proc. 1st Int. Conf. Knowledge Discovery and Data Mining, pages 112–117, Montreal,
Canada, Aug. 1995.

BIBLIOGRAPHY 275

[94] R. Feldman and H. Hirsh. Mining associations in text in the presence of background
knowledge. In Proc. 2st Int. Conf. Knowledge Discovery and Data Mining, pages
343–346, Portland, Oregon, Aug. 1996.

[95] Mary Fernandez, Daniela Florescu, Jaewoo Kang, Alon Levy, and Dan Suciu. Catching
the boat with strudel: Experiences with a web-site management system. In Proc. ACM
SIGMOD Conf. on Management of Data, Seattle, WA, June 1998.

[96] D. Fisher. Improving inference through conceptual clustering. In Proc. 1987 AAAI
Conf., pages 461–465, Seattle, Washington, July 1987.

[97] David Flater and Yelena Yesha. Alibi: A novel approach to resource discovery. Journal
of Internet research, 1995.

[98] Jonathon Fletcher. Internet robots - structure from anarchy?, 1994. JumpStation
Front Page: http://www.stir.ac.uk/jf1bin/js.

[99] M. Flickner, H. Sawhney, W. Niblack, and et al. Query by image and video content:
The QBIC system. IEEE Computer, 28(9):23–32, September 1995.

[100] Daniela Florescu, Alon Levy, and Alberto Mendelzon. Database techniques for the
world-wide web: A survey. ACM SIGMOD Record, 27(3):59–74, September 1998.

[101] C. Frankel, M. Swain, and V. Athitsos. Webseer: An image search engine for the
World Wide Web. Technical Report TR-96-14, CS Department, Univ. of Chicago,
1996.

[102] C. Frankel, M. J. Swain, and V. Athitsos. Webseer: An image search engine for the
world wide web. Technical Report 96-14, University of Chicago, Computer Science
Department, August 1996.

[103] Jeff Frentzen. Meta tags can index, organize your web pages. PCWeek Online, 1996.

[104] Jeff Frentzen. Web rings: A novel way to get around the net. PCWeek Online, 1996.

[105] Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases.
In Proc. 1st Int. Workshop Integration of Knowledge Discovery with Deductive and
Object-Oriented Databases (KDOOD’95), pages 39–46, Singapore, Dec. 1995.

[106] Yiangjian Fu. Discovery of Multiple-level Rules from Large Databases. PhD thesis,
School of Computing Science, Simon Fraser University, July 1996.

[107] Norbert Fuhr and Ulrich Pfeifer. Probalistic information retrieval as a combination of
abstraction, inductive learning, and probalistic assumptions. ACM Transactions on
Information System, 12(1):92–115, 1994.

276 BIBLIOGRAPHY

[108] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-
dimensional optimized association rules: Scheme, algorithms, and visualization. In
Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data, pages 13–23, Montreal,
Canada, June 1996.

[109] R. Fuller and J. de Graaff. Measuring user motivation from server log files. In
http://www.microsoft.com/usability/webconf/fuller/fuller.htm, 1997.

[110] B.V. Funt and G.D. Finlayson. Color constant color indexing. IEEE Trans. Patt.
Anal. and Mach. Intell., 17:522–529, 1995.

[111] G. Furnas, T.K. Landauer, L.M. Gomez, and S. Dumais. The vocabulary problem in
human-system communications. Communications of the ACM, 30:964–971, 1987.

[112] Athula Ginige, David B. Lowe, and John Robertson. Hypermedia authoring. IEEE
Multimedia, pages 24–34, 1995.

[113] J. Graham-Cumming. Hits and miss-es: A year watching the web. In Proc. 6th Int.
World Wide Web Conf., Santa Clara, California, April 1997.

[114] Andrew S. Grimshaw and Wm.A. Wulf. The legion vison of a worldwide virtual
computer. Communications of the ACM, 40(1):39–45, 1997.

[115] David A. Grossman and Ophir Frieder. Information Retrieval: Algorithms and Heuris-
tics. Kluwer Academic Publishers, 1998.

[116] V. Gudivada and V. Raghavan. Content-based image retrieval systems. IEEE Com-
puter, 28(9):18–22, 1995.

[117] Ralf Hartmut Güting. In introduction to spatial database systems. The VLDB Jour-
nal, 3(4):357–399, 1994.

[118] P. Gvozdjak and Z.N. Li. From nomad to explorer: Active object recognition on
mobile robots. Pattern Recognition, 31(6):773–790, 1998.

[119] J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in rela-
tional databases. IEEE Trans. Knowledge and Data Engineering, 5:29–40, 1993.

[120] J. Han, J. Chiang, S. Chee, J. Chen, Q. Chen, S. Cheng, W. Gong, M. Kamber, G. Liu,
K. Koperski, Y. Lu, N. Stefanovic, L. Winstone, B. Xia, O. R. Zäıane, S. Zhang, and
H. Zhu. DBMiner: A system for data mining in relational databases and data ware-
houses. In Proc. CASCON’97: Meeting of Minds, pages 249–260, Toronto, Canada,
November 1997.

[121] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases.
In Proc. 1995 Int. Conf. Very Large Data Bases, pages 420–431, Zurich, Switzerland,
Sept. 1995.

BIBLIOGRAPHY 277

[122] J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data
mining. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 399–421. AAAI/MIT Press,
1996.

[123] J. Han, Y. Fu, Y. Huang, Y. Cai, and N. Cercone. DBLearn: A system prototype
for knowledge discovery in relational databases. In Proc. 1994 ACM-SIGMOD Conf.
Management of Data, page 516, Minneapolis, MN, May 1994.

[124] J. Han, Y. Fu, and R. Ng. Cooperative query answering using multi-layered databases.
In Proc. 2nd Int. Conf. Cooperative Information Systems, pages 47–58, Toronto,
Canada, May 1994.

[125] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski, D. Li, Y. Lu, A. Rajan,
N. Stefanovic, B. Xia, and O. R. Zäıane. DBMiner: A system for mining knowledge
in large relational databases. In Proc. 1996 Int. Conf. Data Mining and Knowledge
Discovery (KDD’96), pages 250–255, Portland, Oregon, August 1996.

[126] J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zäıane. DMQL: A data mining query
language for relational databases. In Proc. 1996 SIGMOD’96 Workshop Research
Issues on Data Mining and Knowledge Discovery (DMKD’96), pages 27–34, Montreal,
Canada, June 1996.

[127] Jiawei Han, Osmar R. Zäıane, and Yongjian Fu. Resource and knowledge discovery in
global information systems: A multiple layered database approach. Technical Report
TR94-24, School of Computing Science, Simon Fraser University, November 1994.

[128] Jiawei Han, Osmar R. Zäıane, and Yongjian Fu. Resource and knowledge discovery
in global information systems: A scalable multiple layered database approach. In In
Proc. Conf. on Advances in Digital Libraries, Washington, DC, May 1995.

[129] D. Hardy and M. F. Schwartz. Essence: A resource discovery system based on semantic
file indexing. In Proc. of the USENIX Winter Conf., pages 361–374, Berkeley, CA,
1993. ftp://ftp.cs.colorado.edu/pub/cs/techreports/schwartz/Essence.Conf.ps.Z.

[130] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.
In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data, pages 205–216, Mon-
treal, Canada, June 1996.

[131] R.L. Haskin. Special-purpose processors for text retrieval. Database Engineering,
4(1):16–29, September 1991.

[132] K. Hirata, Y. Hara, N. Shibata, and F. Hirabayashi. Media-based navigation for
hypermedia systems. In Proceedings of ACM Hupertext’93 Conf., pages 159–173,
Seattle, WA, 1993.

278 BIBLIOGRAPHY

[133] N. Hirzalla and A. Karmouch. Detecting cuts by understanding camera operations
for video indexing. Journal of Visual Languages and Computing, 6:385–404, 1995.

[134] T.H. Hong and A. Rosenfeld. Compact region extraction using weighted pixel linking
in a pyramid. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-
6(2):222–229, 1984.

[135] Adele E. Howe and Daniel Dreillinger. Savvysearch: A metasearch engine that learns
which search engine to query. AI Magazine, 18(2), 1997.

[136] W. Hsu, T.S. Chua, and H.K. Pung. An integrated color-spatial approach to content-
based image retrieval. In Proc. ACM Multimedia ’95, pages 305–313, 1995.

[137] Michael N. Huhn, Munindar P. Singh, and Tomasz Ksiezyk. Global information man-
agement via local autonomous agents. In Proc. ICOT Int. Symposium on Fifth Gener-
ation Computer Systems: Workshop on Heterogeneous Cooperative Knowledge Bases,
1994.

[138] Michael N. Huhns and Munindar P. Singh. Readings in Agents. Morgan Kaufmann
Publishers, 1998.

[139] The inktomi technology behind hotbot - a white paper. http://www.inktomi.com,
1996.

[140] International Organization for Standardization. Syntactic Metalanguage – Extended
Backus-Naur Form, iso/iec 14977:1996(e) edition, 1996.

[141] Sonny H.S. Chee Jiawei Han, Osmar R. Zäıane and Jenny Y. Chiang. Electronic Com-
merce Technologies: Challenges and Opportunities, chapter Towards On-Line Analyt-
ical Mining on the Internet for Electronic Commerce. Prentice Hall, 1999.

[142] Karen Sparck Jones and Peter Willett. Readings in Information Retrieval. Morgan
Kaufmann Publishers, 1997.

[143] I. Jurisica. Literature review: Information retrieval and hypertext systems, September
1995.

[144] S. Khoshafian and A. B. Baker. Multimedia and Imaging Databases. Morgan Kauf-
mann Publishers, 1996.

[145] M. Kifer, G. Lausen, and J. Wu. Logical foundations for object-oriented and frame-
based languages. Journal of ACM, 1995.

[146] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding
interesting rules from large sets of discovered association rules. In Proc. 3rd Int. Conf.
Information and Knowledge Management, pages 401–408, Gaithersburg, Maryland,
Nov. 1994.

BIBLIOGRAPHY 279

[147] E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets.
In Proc. 1998 Int. Conf. Very Large Data Bases, pages 392–403, New York, NY,
August 1998.

[148] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J.
Comput, 6(2):323–350, June 1977.

[149] David Konopnicki and Oded Shmueli. W3qs: A query system for the world-wide
web. In Proc. 21st Int. Conf. on Very Large Data Bases (VLDB), pages 54–65,
Zurich,Switzerland, 1995.

[150] K. Koperski and J. Han. Discovery of spatial association rules in geographic infor-
mation databases. In Proc. 4th Int. Symp. Large Spatial Databases (SSD’95), pages
47–66, Portland, Maine, Aug. 1995.

[151] Krzysztof Koperski. A Progressive Refinement Approach for Spatial Data Mining.
PhD thesis, School of Computing Science, Simon Fraser University, April 1999.

[152] H. F. Korth and A. Silberschatz. Database System Concepts, 2ed. McGraw-Hill, 1991.

[153] Martijn Koster. Aliweb - archie like indexing the web. In Proc. 1st Int. Conf. on the
World Wild Web, May 1994. http://www.nexor.com/public/aliweb/.

[154] Martjin Koster. Guidelines for robot writers. Nexor Corp,
http://web.nexor.co.uk/mak/doc/robots/guidelines.html.

[155] Martjin Koster. A proposed standard for robot exclusion. Nexor Corp,
http://web.nexor.co.uk/mak/doc/robots/norobots.html.

[156] Martjin Koster. The web robots database. Nexor Corp,
http://info.webcrawler.com/mak/projects/robots/active.html.

[157] Martjin Koster. World wide web wanderers, spiders and robots. Nexor Corp,
http://web.nexor.co.uk/mak/doc/robots/robots.html.

[158] Daniel Kuokka and Larry Harada. Matchmaking for information agents. In Proc. Of
the 14th Joint Conf. On AI, 1997.

[159] Daniel Kuokka and Larry Harada. Matchmaking for information agents. In Proc. 14th
Int. Joint Conf. on AI, pages 672–678, 1997.

[160] L. Lakshmanan, F. Sadri, and I. Subramanian. On the logical foundations of schema
integration and evolution in heterogeneous database systems. In Proc. 3rd Int. Conf.
on Deductive and Object-Oriented Databases (DOOD’93), December 1993.

[161] L. Lakshmanan, F. Sadri, and I. Subramanian. A declarative language for querying
and restructuring the web. In Proc. 6th Int. Workshop on Research Issues in data
Engineering, New Orleans, 1996.

280 BIBLIOGRAPHY

[162] Ora Lassila and Ralph R Swick. Resource description framework (rdf)
model and syntax specification. W3C Working Draft, October 1998.
http://www.w3c.org/TR/1998/WD-rdf-syntax-19981008/.

[163] Lillian Jane Lee. Similarity-Based Approaches To Natural Language Processing. PhD
thesis, Harvard University, 1997. also TR-11-97.

[164] B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proc. 1997 Int.
Conf. Data Engineering (ICDE’97), pages 220–231, Birmingham, England, April 1997.

[165] Michael Lesk. The seven ages of information retrieval.
http://community.bellcore.com/lesk/ages/ages.html.

[166] Alon Y. Levy, Avi Silberschatz, Divesh Srivastava, and Maria Zemankova. Challenges
for global information systems. In Proc. 20th VLDB Conf., Santiago, Chile, 1994.

[167] Ze-Nian Li, Osmar R. Zäıane, and Zinovi Tauber. Illumination invariance and object
model in content-based image and video retrieval. Journal of Visual Communication
and Image Representation, 1998. Accepted for publication.

[168] Ze-Nian Li, Osmar R. Zäıane, and Bing Yan. C-bird: Content-based image retrieval
from image repositories using chromaticity and recognition kernel. Technical Report
TR1998-03, School of Computing Science, Simon Fraser University, February 1998.

[169] Ze-Nian Li, Osmar R. Zäıane, and Bing Yan. C-BIRD: Content-based image retrieval
in digital libraries using illumination invariance and recognition kernel. In Proc. Int.
Workshop on Storage and Retrieval Issues in Image and Multimedia Databases, in
9th Int. Conf. on Database and Expert Systems (DEXA’98), Vienna, Austria, August
1998.

[170] Z.N. Li and B. Yan. Recognition kernel for content-based search. In Proc. IEEE Conf.
on Systems, Man, and Cybernetics, pages 472–477, 1996.

[171] Z.N. Li, B.G. Yao, and F. Tong. Linear generalized Hough transform and its paral-
lelization. Image and Vision Computing, 11(1):11–24, 1993.

[172] F. Liu and R.W. Picard. Periodicity, directionality, and randomness: Wold features
for image modeling and retrieval. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 18(7):722–733, 1996.

[173] W. Lu, J. Han, and B. C. Ooi. Knowledge discovery in large spatial databases. In Far
East Workshop on Geographic Information Systems, pages 275–289, Singapore, June
1993.

[174] M. Antonini, et al. Image coding using wavelet transform. IEEE Trans. on Image
Processing, 1(2):205–221, 1992.

BIBLIOGRAPHY 281

[175] Udi Manber and Peter A. Bigot. Connecting diverse web search facilities. Bulletin of
the IEEE, 1998.

[176] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering
association rules. In Proc. AAAI’94 Workshop Knowledge Discovery in Databases
(KDD’94), pages 181–192, Seattle, WA, July 1994.

[177] M.E. Maron and J.L. Kuhns. On relevance, probabilistic indexing and information
retrieval. Journal of ACM, 7, 1960.

[178] M. L. Mauldin. Lycos: Hunting WWW Information. CMU, 1994. Available from
http://lycos.cs.cmu.edu/.

[179] Oliver A. McBrian. GENVL and WWWW: Tools for tam-
ing the web. In Proc. 1st WWW Conf., May 1994.
http://www.cs.colorado.edu/home/mcbryan/mypapers/www94.ps.

[180] Sean McGrath. XML by Example, Building E-Commerce Applications. Prentice Hall
PTR, 1998.

[181] Kenneth A. Megill. The Corporate Memory, Information Management in the Elec-
tronic Age. Browker-Saur, 1997.

[182] A. Mendelzon and T. Milo. Formal models of web queries. In ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems, 1997.

[183] Alberto Mendelzon, George Mihaila, and Tova Milo. Querying the world wide web.
In Proc. PDIS’96, Miami, December 1996.

[184] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules.
In Proc. 1996 Int. Conf. Very Large Data Bases, pages 122–133, Bombay, India, Sept.
1996.

[185] Merit data. ftp://ftp.merit.edu/statistics/nsfnet.

[186] R.J. Miller and Y. Yang. Association rules over interval data. In Proc. 1997 ACM-
SIGMOD Int. Conf. Management of Data, pages 452–461, Tucson, Arizona, May
1997.

[187] Sougata Mukherjea, Kyoji Hirata, and Yoshinori Hara. Towards a multimedia world
wide web information retrieval engine. In Proc. Sixth Int. WWW Conference, Santa
Clara, CA, 1997.

[188] Ted Nelson. A file structure for the complex, the changing and the interminate. In
ACM 20th National Conference, 1965.

282 BIBLIOGRAPHY

[189] R. Ng and J. Han. Efficient and effective clustering method for spatial data mining.
In Proc. 1994 Int. Conf. Very Large Data Bases, pages 144–155, Santiago, Chile,
September 1994.

[190] R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. In Proc. 1998 ACM-SIGMOD Int.
Conf. Management of Data, pages 13–24, Seattle, Washington, June 1998.

[191] Tam Nguyen and V. Srinivasan. Accessing relational databases form the world wide
web. In Proc. ACM SIGMOD conf. on the Management of Data, Montreal, Canada,
June 1996.

[192] Doug Oard and Jinmook Kim. Information filtering resources.
http://www.clis.umd.edu/dlrg/filter/, 1998.

[193] Daniel E. O’Leary, Daniel Kuokka, and Robert Plant. Artificial intelligence and virtual
organization. Communications of the ACM, 40(1):52–59, 1997.

[194] J. Ostermann, E.S. Jang, J. Shin, and T. Chen. Coding of arbitrarily shaped video
objects in MPEG-4. In Proc. Int. Conf. on Image Processing (ICIP ’97), pages 496–
499, 1997.

[195] B. Özden, A. Biliris, R. Rastogi, and A. Silberschatz. A low-cost storage server for
movie on demand databases. In Proc. 20th Int. Conf. on Very Large Data Bases
(VLDB), pages 594–605, 1994.

[196] B. Özden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proc. 1998
Int. Conf. Data Engineering (ICDE’98), pages 412–421, Orlando, FL, Feb. 1998.

[197] Roger C. Palmer. Online Reference and Information Retrieval. Libraries Unlimited,
2 edition, 1987.

[198] J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining
association rules. In Proc. 1995 ACM-SIGMOD Int. Conf. Management of Data,
pages 175–186, San Jose, CA, May 1995.

[199] A. Pentland, R.W. Picard, and S. Sclaroff. Photobook: Tools for content-based ma-
nipulation of image databases. In SPIE Storage and Retrieval for Image and Video
Databases II, volume 2, 185, pages 34–47, San Jose, CA, 1994.

[200] M. Perkowitz and O. Etzioni. Adaptive sites: Automatically learning from user access
patterns. In Proc. 6th Int. World Wide Web Conf., Santa Clara, California, April
1997.

[201] Richard Einer Peterson. The biology of the internet: A cladistic taxonomy.
http://www2.hawaii.edu/~rpeterso/biology.htm, 1996.

BIBLIOGRAPHY 283

[202] G. Piatetsky-Shapiro, U. Fayyad, and P. Smith. From data mining to knowledge dis-
covery: An overview. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 1–35.
AAAI/MIT Press, 1996.

[203] G. Piatetsky-Shapiro and W. J. Frawley. Knowledge Discovery in Databases.
AAAI/MIT Press, 1991.

[204] Jeff Prosise. Crawling the web: A guide to robots, spiders, and other shadowy denizens
of the web. PC Magazine, 1996.

[205] D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.
Querying semistructured heterogeneous information, 1994.
ftp://db.stanford.edu/pub/quass/1994/querying-full.ps.

[206] S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting
patterns in association rules. In Proc. 1998 Int. Conf. Very Large Data Bases, pages
368–379, New York, NY, August 1998.

[207] A.R. Rao and G.L. Lohse. Towards a texture naming system: identifying relevant
dimensions of texture. In Proc. IEEE Conf. on Visualization, pages 220–227, San
Jose, 1993.

[208] R.L. Read, D.S. Fussell, and A. Silberschatz. A multi-resolution relational data model.
In Proc. 18th Int. Conf. Very Large Data Bases, pages 139–150, Vancouver, Canada,
Aug. 1992.

[209] E. Riloff and L. Hollaar. Text Databases and Information Retrieval. In Handbook of
Computer Science. A.B. Tucker (ed), CRC Press, 1996.

[210] Edwina L. Rissland and Jody J. Daniels. Using CBR to drive IR. In Proc. IJCAI 95
Conf., pages 400–407, Montreal, Canada, August 1995.

[211] R.M. Haralick, et al. Texture features for image classification. IEEE Trans. on Sys-
tems, Man, and Cybernetics, SMC-3(6):610–621, 1973.

[212] C.S. Roberts. Partial-match retrieval via the method of superimposed codes. Proc.
IEEE, 67(12):1624–164, December 1979.

[213] S.E. Robertson. The probibility ranking principle in IR. Journal of Documentation,
33, 1977.

[214] K. Ross and D. Srivastava. Fast computation of sparse datacubes. In Proc. 1997 Int.
Conf. Very Large Data Bases, pages 116–125, Athens, Greece, Aug. 1997.

[215] G. Salton. An automatic phrase matching. In D. Hays, editor, Readings in Automatic
Language Processing. American Elsevier Publishing Company Inc., New York, 1966.

284 BIBLIOGRAPHY

[216] G. Salton. Automatic information retrieval. IEEE Computer Mag., 13(9):41–56, 1980.

[217] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback.
Journal of the American Society for Information Science, 41:288–297, 1990.

[218] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill, 1983.

[219] Carsten Schlichting and Erik Nilsen. Signal detection analysis of www search en-
gines. In Design for the Web: Empirical Studies, Seattle, WA, USA, October 1996.
http://www.microsoft.com/usability/webconf.htm.

[220] Kyle Schurman. How the net has grown. Guide to going Online, 5(3):57–61, 1997.

[221] Kyle Schurman. Search engines and web directories. Guide to going Online, 5(3):77–
79, 1997.

[222] Michael F. Scwartz, Alan Emtage, Brewster Kahle, and B. Clifford Neuman. A com-
parison of internet resource discovery approach. Computing Systems, 5(4), 1992.

[223] E. Selberg and O. Etzioni. Multi-service search and comparison using the metacrawler.
In 4th International World Wide Web Conference, 1996.

[224] Erik Selberg and Oren Etzioni. Multi-engine search and comparison using the
metacrawler. In Fourth International World Wide Web Conference, pages 195–208,
Boston, 1995.

[225] S.F. Chang, et al. VideoQ: an automated content based video search system using
visual cues. In Proc. ACM Multimedia 97, pages 313–324, 1997.

[226] J. Shakes, M. Langheinrich, and O. Etzioni. Ahoy! the home page finder. In Proc.
Sixth World Wide Web Conf., Santa Clara, CA, USA, April 1997.

[227] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for data mining. In
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances
in Knowledge Discovery and Data Mining, pages 375–398. AAAI/MIT Press, 1996.

[228] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Concepts,
3ed. McGraw-Hill, 1997.

[229] Avi Silberschatz, Mike Stonebraker, and Jeff Ullman. Database research: Achivements
and opportunities into the 21st century. Report on an NSF Workshop on the Future
of Database Systems Research, May 26-27 1995.

[230] John B. Smith and Stephen F. Weiss. An overview of hypertext. Communications of
ACM, 31(7), July 1988.

BIBLIOGRAPHY 285

[231] J.R. Smith and S.F. Chang. Visually searching the web for content. IEEE Multimedia,
4(3):12–20, 1997.

[232] T.R. Smith. A digital library for geographically referenced materials. IEEE Computer,
29(5):54–60, 1996.

[233] Ellen Spertus and Lynn Andrea Stein. A hyperlink-based recommender system writ-
ten in squeal. In Proc. ACM CIKM’98 Workshop on Web Information and Data
Management (WIDM’98), pages 1–4, Washington DC, November 1998.

[234] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational
tables. In Proc. 1996 ACM-SIGMOD Int. Conf. Management of Data, pages 1–12,
Montreal, Canada, June 1996.

[235] S. Stiassy. Mathematical analysis of various superimposed coding methods. American
Documentation, 11(2):155–169, February 1960.

[236] P. Stolorz, H. Nakamura, E. Mesrobian, R.R. Muntz, E.C. Shek, J.R. Santos, J. Yi,
K. Ng, S.Y Chien, C.R. Mechoso, and J.D. Farrara. Fast spatio-temporal data mining
of large geophysical datasets. In Proc. First Int. Conf. On Knowledge Discovery and
Data Mining, pages 300–305, August 1995.

[237] Danny Sulivan. Search engine watch. http://searchenginewatch.com/.

[238] Danny Sullivan and Richard Karpinski. Supercharge your web searches. NetGuide
Magazine, pages 63–84, May 1997.

[239] T. Sullivan. Reading reader reaction : A proposal for inferential analysis of web server
log files. In Proc. 3rd Conf. Human Factors & the Web, Denver, Colorado, June 1997.

[240] D.M. Sunday. A very fast substring search algorithm. Communications of ACM,
33(8):132–142, August 1990.

[241] M.J. Swain and D.H. Ballard. Color indexing. Int. J. Computer Vision, 7(1):11–32,
1991.

[242] H. Tamura, S. Mori, and T. Yamawaki. Texture features corresponding to visual
perception. IEEE Trans. on Systems, Man, and Cybernetics, 8(6):460–473, 1978.

[243] Y. Taniguchi, A. Akutsu, and Y. Tonomura. PanoramaExcerpts: extracting and
packing panoramas for video browsing. In Proc. ACM Multimedia 97, pages 427–436,
1997.

[244] Gary Taubes. Indexing the internet. http://www.edoc.com/aaas/computers/webindex.html.

[245] L. Tauscher and S. Greenberg. How people revisit web pages: Empirical findings
and implications for the design of history systems. International Journal of Human
Computer Studies, Special issue on World Wide Web Usability, 47:97–138, 1997.

286 BIBLIOGRAPHY

[246] A.M. Tekalp. Digital video processing. Prentice Hall PTR, 1995.

[247] L. Teodosio and W. Bender. Salient video stills: Content and context preserved. In
Proc. First ACM Int. Conf. on Multimedia, pages 39–46, 1993.

[248] V. Tucakov and R. Ng. Identifying unusual spatio-temporal trajectories from surveil-
lance videos. In Proc. of 1998 SIGMOD Workshop on Research Issues on Data Mining
and Knowledge Discovery (DMKD’98), Seattle, Washington, June 1998.

[249] Elizabeth Tudhope. Query based stremming. Technical Report CS-96-31, University
of Waterloo, 1996.

[250] Marc D. VanHeyningen. The unified computer science technical report index: Lessons
in indexing diverse resources. In Proc. Second Int. WWW Conf., Chicago, October
1994. http://www.cs.indiana.edu/ucstri/paper/paper.html.

[251] C. Varela, D. Nekhayev, P. Chandrasekharan, C. Krishnan, V.Govindan, D. Modgil,
S.Siddiqui, and M. Winslett D. Lebedenko. Browsing object-oriented databases over
the web. In Fourth International World Wide Web Conference, pages 209–220, Boston,
1995.

[252] Ronald J. Vetter, Chris Spell, and Charles Ward. Mosaic and the world-wide web.
IEEE Computer, 27(10):49–57, October 1994.

[253] Peter J. Vigil. Online Retrieval Analysis and Strategy. John Willey and Sons, 1988.

[254] Jian Wang. Motion-based object segmentation from digital video. Master’s thesis,
School of Computing Science, Simon Fraser University, 1998.

[255] Lynn Ward. Exploring the power of the internet gopher. UIUCnet, Dec. 1992 - Jan.
1993, 6(1), 1993. ftp://ftp.cso.uiuc.edu/doc/net/uiucnet/vol6no1.txt.

[256] J. Wei, M.S. Drew, and Z.N. Li. Illumination invariant video segmentation by hi-
erarchical robust thresholding. In Proc. IS&T/SPIE Symp. on Electronic Imaging
’98, Storage & Retrieval for Image and Video Databases VI, SPIE Vol. 3312, pages
188–201, 1998.

[257] Jie Wei. Foveate Wavelet Transform and its Applications in Digital Video Processing,
Acquisition, and Indexing. PhD thesis, School of Computing Science, Simon Fraser
University, November 1998.

[258] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin core metadata
for resource discovery. Request for Comments rfc2413, September 1998.
http://info.internet.isi.edu/in-notes/rfc/files/rfc2413.txt.

[259] Stuart Weibel, Jean Godly, Eric Miller, and Ron Daniel. OCLC/NCSA metadata
workshop report (the essential element of network object description), March 1995.
http://www.oclc.org:5046/conferences/metadata/dublin core report.html.

BIBLIOGRAPHY 287

[260] Daniel Weld and Oren Etzioni. The first law of robotics (a call to arms). In Proc.
AAAI 94 Conf., 1994.

[261] William F. Williams. Principles of Automated Information Retrieval. The Business
Press, 1965.

[262] W.A. Woods. Important issues in knowledge representation. Proc. of the IEEE, 74(10),
October 1986.

[263] WordNet - a lexical database for english. http://www.cogsci.princeton.edu/~wn/,
1998.

[264] G. Wyszecki and W.S. Stiles. Color Science: Concepts and Methods, Quantitative
Data and Formulas, 2nd ed. Wiley, New York, 1982.

[265] Bing Yan. Content based search in multimedia databases. Master’s thesis, School of
Computing Science, Simon Fraser University, 1997.

[266] Tak W. Yan and Hector Garcia-Molina. The electronic library of the future: Accessing
worldwide information.

[267] T.W. Yan and H. Garcia-Molina. SIFT - a tool for wide-area information dissemina-
tion. In Proc. of the 1995 USENIX Technical Conference, pages 177–186, 1995.

[268] Budi Yuwono, Savio L.Y. Lam, Jerry H. Ying, and Dik L. Lee. A world wide web
resource discovery system. In Fourth International World Wide Web Conference,
pages 145–158, Boston, 1995.

[269] C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Trans. on Computers, 20(1):68–86, January 1971.

[270] Osmar R. Zäıane. From resource discovery to knowledge discovery on the internet.
Technical Report TR1998-13, School of Computing Science, Simon Fraser University,
August 1998.

[271] Osmar R. Zäıane. From resource discovery to knowledge discovery on the internet.
ACM Computing Surveys, 1998. submitted for publication.

[272] Osmar R. Zäıane, Andrew Fall, Stephen Rochefort, Veronica Dahl, and Paul Ta-
rau. Concept-based retrieval using controlled natural language. In Proc. Workshop
on Applications of Natural Language to Information Systems (NLDB97), Vancouver,
Canada, June 1997.

[273] Osmar R. Zäıane, Andrew Fall, Stephen Rochefort, Veronica Dahl, and Paul Tarau.
On-line resource discovery using natural language. In Proc., RIAO’97:Computer-
Assisted Searching on the Internet, Montreal, Canada, june 1997.

288 BIBLIOGRAPHY

[274] Osmar R. Zäıane, Eli Hagen, and Jiawei Han. Data cleaning and hierarchy building
for data mining and information retrieval from the internet. publication in progress,
1999.

[275] Osmar R. Zäıane, Eli Hagen, and Jiawei Han. Word taxonomy for on-line visual asset
management and mining. In Fourth International Workshop on Application of Natural
Language to Information Systems (NLDB99), Klagenfurt, Austria, June 1999.

[276] Osmar R. Zäıane and Jiawei Han. Resource and knowledge discovery in global infor-
mation systems: A preliminary design and experiment. In Proc. First Int. Conf. On
Knowledge Discovery and Data Mining, Montreal, Canada, 1995.

[277] Osmar R. Zäıane and Jiawei Han. Webml: Querying the world-wide web for resources
and knowledge. In Proc. ACM CIKM’98 Workshop on Web Information and Data
Management (WIDM’98), pages 9–12, Washington DC, November 1998.

[278] Osmar R. Zäıane and Jiawei Han. Mediating virtual web views. In Fourth IFCIS
Conference on Cooperative Information Systems (CoopIS’99), Edinburgh, Scotland,
September 1999. submitted for review.

[279] Osmar R. Zäıane, Jiawei Han, Ze-Nian Li, Jenny Y. Chiang, and Sonny Chee.
Multimedia-miner: A system prototype for multimedia data mining. In Proc. 1998
ACM-SIGMOD Conf. on Management of Data, pages 581–583, Seattle, Washington,
June 1998.

[280] Osmar R. Zäıane, Jiawei Han, Ze-Nian Li, and Jean Hou. Mining multimedia data.
In CASCON’98: Meeting of Minds, Toronto, Canada, November 1998.

[281] Osmar R. Zäıane, Jiawei Han, and Hua Zhu. Association rules with recurrent items
for multimedia artifacts. In Int. Conf. on Knowledge Discovery and Data Mining
(SIGKDD’99), San Diego, CA, August 1999. submitted for review.

[282] Osmar R. Zäıane, Man Xin, and Jiawei Han. Discovering web access patterns and
trends by applying OLAP and data mining technology on web logs. In Proc. Advances
in Digital Libraries ADL’98, pages 19–29, Santa Barbara, CA, USA, April 1998.

[283] Robert H’obbes’ Zakon. Hobbes’ internet timeline. available http://www-
personal.umd.umich.edu/~nhughes/htmldocs/timeline.html.

[284] Oren Zamir and Oren Etzioni. Web document clustering: A feasibility demonstration.
In Proc. ACM SIGIR’98, 1998.

[285] Oren Zamir, Oren Etzioni, Omid Madani, and Richard M. Karp. Fast and intuitive
clustering of web documents.

[286] Hua Zhu. On-line analytical mining of association rules. Master’s thesis, School of
Computing Science, Simon Fraser University, December 1998.

