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ABSTRACT

In this paper, our focus in data mining is concerned with the discovery of spatial associations within images. Our work
concentrates on the problem of finding associations between visual content in large image databases. Discovering
association rules has been the focus of many studies in the last few years. However, for multimedia data such as
images or video frames, the algorithms proposed in the literature are not sufficient since they miss relevant frequent
item-sets due to the peculiarity of visual data, like repetion of features, resolution levels, etc. We present in this paper
an approach for mining spatial relationships from large visual data repositories. The approach proceeds in three steps:
feature localization, spatial relationship abstraction, and spatial association discovery. The mining process considers
the issue of scalability and contemplates various feature localization abstactions at different resolution levels.
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1. INTRODUCTION AND MOTIVATION

Knowledge discovery from data, or data mining, is a very popular and active research field. Many approaches and
algorithms have been proposed for descriptive as well as predictive data mining.!*> However, most of the research
is typically applied on alphanumeric data, whether on transactional flat files or on structured relational databases.
Very little in comparison has been done for mining multimedia data such as image and or video collections, although,
visual information is collected in many applications, such as medical imaging, satellite picture analysis, weather
understanding, geological and astronomical examination, etc. Mining these large collections of images can yield
interesting knowledge that can improve these applications and probably help the understanding of some of these
studied phenomena. While successful data mining applications involving visual data have been reported in the early
days of the data mining field, such as labeling volcanoes in pictures from the surface of Venus® , there is a new trend in
data mining towards non traditional data such as images and sound*® . However, these applications often necessitate
new domain specific approaches. The conventional data mining algorithms are not sufficient for the acquisition of
knowledge from multimedia data. Current database mining technologies are still not capable of extracting knowledge
from images and videos, although some researchers are starting to investigate how to determine interesting patterns
in multimedia. For example, describes the CONQUEST system that combines satellite data with geophysical data
to discover patterns in global climate change. The SKICAT system described in® integrates techniques for image
processing and data classification in order to identify “sky objects” (i.e., patterns) captured in a very large satellite
picture set. Tucakov and Ng in? used a method for outlier detection to identify suspicious behaviour from videos
taken by surveillance cameras.

The motivation for our recent research is inspired by the existence of large collections of medical images, such
as Positron Emission Tomography (PET scans) to produce internal images of physiological activity of the human
body, and Magnetic Resonance Imaging (MRI) to produce internal images of soft tissue of the human body, and the
potential of multimedia data mining in medical applications. Medical images are usually accompanied by medical
records containing diagnoses etc. The possible correlations between the content of the medical records and visual
features in the medical images for a large collection of images is very appealing. For instance, we want to study the
spatial relationship between lesioned structures in brain scans and pathological characteristics found in the patient
records. A similar association has been studied in® where the automatic discovery of associations between structures
and functions of the human brain has been examined. In our study, in addition to the presence of lesions, we want
to take into account their relative positions and spatial relationships.

Mining from visual data can either solely focus on knowledge discovery from the image collection, or combine
the mining from images with mining of traditional alphanumeric data. After integrating image processing with
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database mining techniques, we have implemented a multimedia data mining system prototype, MultiMediaMiner® ,
which uses a data cube structure for mining characteristic, association, and classification rules. The early version
uses descriptors of images but does not exploit image content. In'® , in addition to the presence of colours and
textures in images, we have also used localization of visual features, their spatial relationships, their motion in time
(for video), etc. to discover interesting patterns within and between images. In this paper we discuss an algorithm
that combines the visual data extracted from images and conventional data associated with the images to discover
interesting associations between spatial relationships and alphanumeric data related to individual images. We also
discuss various feature localization abstractions at different resolution levels, and present an algorithm for counting
occurrences of objects in image transactions.

The remainder of the paper is organized as follows. In Section 2, we discuss our three-step approach for mining
spatial relationships in images and introduce the feature localization step. Section 3 introduces the concept of
multimedia association rules and discusses the spatial relationship abstraction, the second step of our algorithm. A
method for mining association rules with spatial relationships is presented in Section 4. Finally, in Section 5, we
briefly describe our performance analysis and conclude our study.

2. STARTING WITH FEATURE LOCALIZATION

In this study, we investigate efficient methods for mining associations in image databases between visual features in
the images, as well as associations between visual features and descriptors relevant to the images. Finding association
rules in databases is one of the typical and most studied data mining problems. The classic example of association
rules is usually given in a retail transactional database in which the mining problem consists of discovering rules that
state that, based on all available transactions, if a customer purchases a certain product A, that same customer in
the same transaction might also purchase another product B with a given certitude. In order to discover associations
in images, we want to express images in transactional form with visual features as well as descriptors attached to
the images (e.g. medical diagnosis attached to medical images). However, it is necessary to first extract the visual
features. Given the large collections of images, this visual feature extraction must be done automatically.

To discover spatial associations in images we propose a three-step approach as defined in Figure 1. The first step
segments images by feature localization and retains only the interesting regions. This is the extraction of distinctive
areas in the image based on colours and textures. The second step consists of identifying spatial relationships between
the extracted areas in the images, such as disjoint, inside, contains, equal, meets, covered by, covers and overlaps
as defined in'"'? | and generates transactions representing the images. The final step processes the transactions to
discover association rules in the images.

Instead of image segmentation such as the segmentation of lesions in MRI brain images for surgery planning
presented in'® , we have selected to segment images by feature localization. Feature localization is a new concept of
rough image segmentation introduced in'# . Image segmentation is a process which segments an image into disjoint
regions. A region consists of a set of pixels that share certain properties, e.g., similar colour (or gray-level intensity),
similar texture, etc. The traditional segmentation algorithms assume (1) regions are mostly connected; (2) regions are
disjoint (R;NR; =0, for i # j); and (3) segmentation is complete in that any pixel will be assigned to some region,
and the union of all regions is the entire image (Uj*, Ry = I). Although regions do not have to be connected, most
available region-based and/or edge-based segmentation methods would yield connected regions, and it is error-prone
to merge some of them into non-connected regions. Such a segmentation algorithm applied on an MRI of a human
tissue may yield more disjoint regions than necessary. A web of vessels in a region with an abnormal texture may
create a 2-dimensional separator that can be interpreted as borders between different segments, unless some really
effective algorithm can identify these areas as belonging to a non-connected region. This is like a letter ‘B’ on a white
label. The two white spots inside the letter ‘B’ are indeed part of the white label and not two separate segments.
The above simple example indicates that the traditional image segmentation does not yield useful grouping and
representation for object recognition or lesion detection. A more useful and attainable process is feature localization
that identifies features by their locality and proximity.

As defined in'*%1? | a locale L, is a local enclosure (or locality) of feature z. £, has an envelope L, which is a
set of tiles to represent the locality of £,, and some geometric parameters: mass M (L), centroid C(L;), variance
02(L,), and shape parameters for the locale, etc. A tile is a square area in an image. Its size is arbitrarily chosen as
16 x 16, but could be bigger or smaller such as 2 x 2 for a finer resolution. The tile is the building-unit for envelopes.
A tile is ‘red’ if a sufficient number of pixels within the tile are red. It follows that a tile can be both ‘red’ and



INPUT: Set of images with associated alphamumeric descriptors
OUTPUT: Association rules with spafial relatonships

BEGIN
[* Step 1 Feature Localization */
For eachimage do
Exiractlocales by image tiling and envelope Growing based on colours and textures
Eeep set of dominant locales
Endfor

/¥ Btep 2 Spatial Reladonship Abstracton */
For eachimage do
For each pairs of locales do
Cormpare centroid coordinates and locale envelopes to determine spatial relationships
{disjoint, inside, contains, equal, meets, covered by, covers, overlaps)
Endfor
Eeep set of spatial relationships
Create fransacton with image associated alphanumeric descriptors, set of spatial
relationships and visual features.
Endfor

J* Step 3 Spafial Association Discovery */
Apply associabon rile mining with recurrent items on fransacton set,

END

Figure 1. A three-step algorithm for discovering associations with spatial relationships in images.

‘blue’ if some of its pixels are red and some are blue. While a pixel is the unit for image segmentation, a tile is the
unit for feature localization. Thus, feature localization is a kind of rough segmentation where overlap is possible
and completeness is not necessary. The notion of overlap is important because it allows us to express the idea of
containment and overlap. Because a tile can have more than one value of a visual feature (i.e. more than one colour,
more than one edge orientation, or more than one edge density), it is possible to have a locale containing another
locale, or a locale intersecting another locale. This is not possible with traditional segmentation.

Tiles, if they are geometrically close, are grouped into an envelope. The tiles inside the envelope form the locale
with the envelope growing by pyramidal linking procedure presented in'* . M (£,) is the number of pixels in L, that
actually have feature . M (L,) is usually less than the area of L,, although it could be equal to it. C'(L,) is simply
the centroid of the mass. 02(£;) is the variance of the Cartesian distance from pixels in L, to the centroid, and it
measures the eccentricity of £,. Note, M, C, 0%, etc. are measured in unit of pixels, not in tiles. This guarantees
the granularity. Hence the feature localization is not merely a low-resolution variation of image segmentation.

The first step of our mining process is completed by selecting dominant locales from each image in the database.
Dominant locales are locales that have a mass M (L, ) larger that a given threshold. In other words, they are large
enough to be considered interesting. Common locales, locales that have a large support in the database are also
ignored. These locales, identified as being similar based on their centroid coodinates and their envelope, appear in
most images and are concidered normal phenomenon, thus ignored in the mining process.

Figure 2 shows an example of feature localization in an MRI brain image. Figure 2(a) is the original MRI. Figure
2(b) is an example of some locales retained from the MRI. Some locales smaller than a given threshold or common
locales are eliminated. Figure 2(c) shows examples of locales that are not retained, such as the eyes and the nasal
cavity.

3. SPATIAL RELATIONSHIP ABSTRACTION

Spatial relationships are essential components in query languages for geographic information systems and spatial
databases, and describe topology of areas or regions in maps. In'!!® Max Egenhofer presents a formal derivation
for eight spatial relationships namely disjoint, inside, contains, equals, meets, covered by, covers, and overlap. The
first row in the tables of Figure 6 illustrates these relationships. The relationships are formulated for areas based



Figure 2. Lesion localisation on an MRI with a 2 x 2 pixel tile locales: (a) original MRI. (b) Locales to consider.
(c) Examples of locales to be ignored.

on intersections of the boundary of an area A denoted JA, the interior of the area denoted A° , and the exterior
of the area denoted A~. It is proven by using the intersections of all combinations of 9A, A~ and A° that the
eight spatial relationships named above suffice to describe all topological combinations. However, since we are
mining homogeneous images (i.e. images from the same application domain), and we can impose a direction to the
images, we can add lower level concepts of spatial relationships. Indeed, an MRI of a human brain, for example,
can easily be oriented (i.e. face towards the top). This allows us to enhance the set of spatial relationships with
new, more specific, relationships subsumed by the previously enumerated spatial relationships. For instance, the
spatial relationship disjoint, given some threshold, subsumes relationships such as far-from and next-to, which in turn
subsumes relationships such as vertical-next-to and horizontal-next-to. The same concept of subsumption of directional
spatial relationships applies to most of the eight high-level spatial relationships. For example, meets encompasses
right-meets, left-meets, top-meets and bottom-meets, with right and left belonging to the horizontal direction, and top
and bottom belonging to the vertical direction. Covers and covered-by also have the notion of direction right, left, top
and bottom. These new spatial relationships give more details about the topology of the regions obtained.

Disjoint

Boundary

Interior

Meet

Figure 3. Locale envelope with boundary tiles.

Figure 3 shows a locale with boundary and interior. The intersection between boundaries and interiors of locales
is based on shared tiles. For two locales A and B, 0A is intersecting OB if there exists a tile belonging to the
boundary of A and the boundary of B. A° is intersecting B° if there exists a tile belonging at the same time to the
interior of A and the interior of B. The same applies to 0ANB° and A°NOB. Neighbouring tiles are not intersecting
(See Figure 3).

To extract the spatial relationships from the images, once the relevant locales are determined, we only iterate
through the set of locales associated to each image and compare for each pair of locales the coordinates of their
centroids as well as their boundaries. The coordinates of the centroides reveal their horizontal-proximity or vertical-
proximity, while the boundaries hint at the overlap, containment, closeness, etc. To improve the efficiency of this
phase of the algorithms we define a minimum bounding circle around a locale to approximate the locale when
evaluating topological relationships. With the bounding circle model, locales are first roughly estimated by a circle
that comprises the totality of the locale. A minimum bounding circle is the smallest circle that could contain the



Figure 4. Progressive tile shrinking.
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Figure 5. Relativity of visual feature and topology concepts at different resolution levels.

Coarse

whole locale. The centroid of the locale is taken as the centre of the circle and the longest distance across the locale
is the diameter of the minimum bounding circle. While there could be many different minimum bounding rectangles
for a polygon, there is only one unique minimum bounding circle. The definition of the spatial relationships is then
based on the perimeters formed by the minimum bounding circles and may differ from the original definition using
the locale tiles like in Figure 3. Disjoint and meet are solely based on the boundary of the minimum bounding
circles. The approximation of a locale by a minimum bounding circle can speed up the process, however, it is prone
to errors if it is not alleviated in a second stage. Figure 5 illustrates an example depicting the relativity of some
spatial relationships, like overlap, based on the resolution used for defining locales. While two locales may appear
overlapping because their minimum bounding circles intersect, considered at the locale envelope level, they do not.
Notice also that depending upon the size of the tiles in the locale resolution, different spatial relationships can be
obtained with the same lesions or abnormal structures retained in the feature localization step. Figure 4 illustrates
the progressive refinement in the case of shrinking tiles. The roughest resolution level uses a 8 x 8 tile size. Each finer
resolution level divides the tile size by four. Since the child tiles of peripheral tiles may lose colour, the boundary of a
locale may “retreat” inward which may result in a topological change from rough resolution to finer. The diagram in
the left of Figure 5 shows an example where locales may appear to meet but with a smaller tile size they are disjoint.
This clearly indicates that a revision stage is necessary to verify the knowledge discovered from one resolution level
to the other. For instance, the minimum bounding circles are removed from the images relevant to selected spatial
associations discovered, and the topology amended. The approximation with minimum bounding circles substantially
improves the performance of the mining process, and the revision of the spatial relationships is done only for a subset
of the association rules discovered in the final stage.

By eliminating the minimum bounding circles or reducing the tile size, the preservation or change in topological
features is well defined and limited. The tables in Figure 6 graphically summarize the possible topological changes
when minimum bounding circles are eliminated for resolution refinement, and the possible topological changes when
the tile size is reduced for resolution refinement. The preservation and changes in topological features presented in
Figure 6 are exact and complete. The proofs are given in'? . In a progressive resolution refinement approach for
mining association rules from images, these tables can be used to guide the filtering of candidate frequent sets during
the mining, and avoid eliminating occurrences of topologies which may be relevant to the final association rules to
discover!? .

After extracting the localized visual features (i.e. locales) and determining the spatial relationships, each locale
in an image is given an Object ID and spatial relationships between Object IDs are stored in a table with the Images
ID where they occur, along with the locale characteristcs such as the centroid, size, colour, structure, etc. The
information related to an image, such as the visual features automatically extracted (i.e. presence of colours and
textures), the locales, as well as the alphanumeric information (i.e. medical diagnosis for the case of MRI), form a
table of image descriptors. Both tables are denormalized to form a transactional database where each transaction
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Figure 6. Topology and resolution increase with minimum bounding circles (left) and with tile size shrinking (right).

represents an image and its content. This collection of transactions is used in the next step to discover associations.

4. SPATIAL ASSOCIATION DISCOVERY

Association rules have been extensively studied in the literature. The efficient discovery of such rules has been a
major focus in the data mining research community. Many algorithms and approaches have been proposed to deal
with the discovery of different types of association rules discovered from a variety of databases'®23 . The problem
of discovering association rules is to find relationships between the existence of an object (or characteristic) and the
existence of other objects (or characteristics) in a large repetitive collection. Such a repetitive collection can be a
set of transactions for example, also known as the market basket. Typically, association rules are found from sets of
transactions, each transaction being a different assortment of items. Association rules would give the probability that
some items appear with others based on the processed transactions. Essentially, the problem consists of finding items
that frequently appear together. However, in the context of images, the previous definitions and usage of association
rules are restrictive. For instance, binary association rules and quantitative association rules are concerned with the
presence of an item in a transaction or the presence in the transaction of a value defined in an interval. Images indeed
contain these characteristics, like the presence of a texture or a particular spatial relationship, and the presence of a
colour quantized in a given colour interval or space. However, visual data has other peculiarities proper to images
and videos. For example, some visual features can be repeated in an image, and the repetition of the feature can
carry more information than the existence of the feature itself. Thus, items in the antecedent of the rule repeating in
the consequent can be an interesting factor in image analysis applications. For example, in an MRI, the existence of
a localized abnormal texture may suggest the existence of another identical abnormal texture. Moreover, recurrent
objects or features in images are very frequent. Thus, the count of occurrences of the same visual feature is a relevant
attribute. Counting identical visual features occurring in the same image allows the discovery of spatial associations
between these identical objects, for example, two red locales horizontally close to each other.

4.1. Discovering association rules with recurrrent items.

A method for enumerating sufficiently strong multimedia association rules that are based on recurrent atomic visual
features was presented in'® . The idea is to apply the apriori algorithm®® but by replacing the filtering step and
the support calculation. In addition, the notion of maximum support is introduced to eliminate items that are
too common in the image collection. The algorithm (Algorithm 4.1) retains the information about the maximum
occurrence of a visual feature in an image and use the information to form candidate sets.

ALGORITHM 4.1. (MaxOccur) Find sufficiently frequent item-sets for enumerating content-based multimedia as-
sociation rules in image collections.

Input: (i) D; a set of transactions representing images, with items being the visual and non-visual descriptors of
the images; (ii) the minimum and maximum support thresholds o/ and ¥/ for each conceptual level.



Output: Sufficiently frequent item-sets with repetitions allowed.

Method: The pseudo-code for generating sufficiently frequent item-sets is as follows:

o

egin

[a—

C; « {Candidate 1 item-sets and their support}
Fy «+ {Suf ficiently frequent 1 item-sets and their support}
M + {Mazimum occurrence in an image of frequent 1 item-sets}
Count # of k-item-sets (total[l..k])
for (i < 2, F;_1 # 0;i + i+ 1) dof
Ci «— (Fi—l > Fi—l) U {y b X | X € Fi—l /\y € F1 A CO'U,'I'Lt(y,X) < (M[y] — 1)}
Ci < C;—{c|(i—1)item-set of c ¢ F;_1}
D, < FilterTable(D;—1, F;_1)
foreach image I in D; do {

L)
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= e = = = = O 00 N O O s W
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) foreach cin C; do {
) c.support < c.support + Count(c, I)
) }
;) t

) e {eel| et > o)

5 }

6) Result < |J;{c € Fi|i> 1A c.support < X1}

end O

Lines 1, 2, 3 and 4 are done doing the same initial scan. M contains the maximum number of times an object
appears in the same image. This counter is used later to generate potential k-item-sets. The total number of
k-item-sets is used for the calculation of the item-set support in line 14.

In lines 6 and 7, the candidate item-sets are generated by joining (i-1) frequent item-sets and the use of M to
generate repetitive objects (M[y] > 1). The pruning process (line 7) eliminates infrequent item-sets based on the
apriori property.

Line 8 filters the transactions in D to minimize the data set scanning time.

In line 14, only the frequent item-sets that are higher than the minimum support o/ are kept. It is only at the
end of the loop (line 16) that maximum support ¥/ is used to eliminate item-sets that appear too frequently.

4.2. Counting occurrences.

The calculation of the support for one item-set is based on the occurrence of the item-set in the images. Line 11 of
Algorithm 4.1 cumulates this count. A particular precaution has to be taken when counting appearances of k-item-
sets in an image, especially that objects and features can be repeated. A simple k-permutation (Ck = #’_k), where
n =| t |) can lead to miscalculations. For example, let the transaction ¢ be composed of repeated four objects such
as t = {OMNMMOOKII}. CZ, = 45 while we have only 9 possible unique 2-item-sets as shown below. There are
also 14 possible 3-item-sets while C3, = 240.

{OMO} | 1| {Ond} | 1

oIt {OM} | 11 {0V} |1 {OUS} | 1| {AOK} | 2
(a3 {Od} | 1| {40} ] 2 {NAA} |1 {Shd} |1
)| 2 {A&} | 3| {O%} | 2 {ONM} | 1| {000} |1
(&) | 4 {a} 1 2] {hd} | 2 {Ohd} | 1| {ANO} |1
{Q0} | 2 {AAR} | 1| (A&} | 1

{Ohd} | 2 | {0V} | 2

Possible one, two and three item-sets and their occurrences in .

The correct calculation of the repetitions of these item-sets in the transaction requires caution in order not
to calculate occurrences more than necessary. The algorithm for enumerating the k-item-sets and counting their
occurrences in the images transaction is given in Algorithm 4.2.

ALcoRrITHM 4.2. Counting occurrences of k-item-sets in an image transaction.



Input: (i) Image transaction Z; (ii) item-set size k.
Output: Set of k-item-sets and number of times they appear in 7.

Method. Generate all combinations from the unique objects in 7 and verify if they can be replicated (Combination
and Replication); Generate item-sets with k times the same objects ( Twinning); Generate item-sets with com-
binations of repeated objects (Combination of twinned objects). The pseudo-code for generating and counting
the item-sets is as follows:

begin

[a—

U <« {unique 1-item-sets and their count in Z}

C < {k-combinations of u in U}

foreach ¢ in C do { /* counting combinations and replications */
c.count <1
do CountReplication(c)

L)

}
VU

foreach v in V do { /* Twinning */
while V{u].count > k do {
¢ < ®Qpu [* repeating u k times */
V{u].count < Vu].count — k
Add ¢ in C if not in set; c.count < c.count + 1

}
}

)

)

)

)

)

) foreach u in U do { /* Combination of twinned objects */

) for(n =2;n <k —1An < Ulu].count; n + +) do {

) d + ®@pu [* repeating u n times */

) B <+ {k-combinations of d and d/ | v € d/ A v # u A U[v].count > 0}
) foreach ¢ in B do {

)
)
)
)
)
)

Pt e e e e e e e = © 00 SN O O R WO
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2 c.count < 1

2 Addcto C

2 do CountReplication(c)
2 )

24 }

25) }

26) Result + C

end

begin CountReplication(c)

(1) VU

) foreach 1-item-set i in ¢ do {Vi].count « Vi].count — 1}

) while V[j].count > 1(V¥j in ¢) do {

) c.count  c.count + 1

) foreach 1-item-set i in ¢ do {V'[i].count + Vi].count — 1}
)

4.3. Adding spatial relationships in the picture.

Algorithm 4.1 discovers sufficiently frequent itemsets from transactions that exclusively use visual atomic features.
Spatial relationships are binary relationships between two visual features (i.e.locales). For a spatial relationship to
be frequent, it has to be between two frequent locales. In other words, a frequent spatial relationship is associated
with a frequent pair of frequent locales in the images database. A method for finding sufficiently frequent spatial
relationships consists of using the set of frequent pairs using Algorithm 4.1, and associating these pairs with all
potential spatial predicates (i.e. horizontal-next-to, top-meets, etc.). The frequent spatial relationships formed this
way are used as input with Algorithm 4.1 to discover association rules with topology information. The association
rules per se are generated from the frequent itemsets'® .



5. CONCLUSION

We have presented in this paper a method for discovering spatial associations in image collections. The method
consists of three steps for extracting visual features from the images, for determining spatial relationships, and
finally for discovering association rules. The same technique is appropriate for a variety of application domains such
as medical imaging, solar surface activity understanding, global weather analysis like tornado movements, etc.

The advantage of our approach is that it does not need any domain knowledge to perform the mining of spatial
association from the images. The only knowledge necessary in order to choose a common orientation for all images
and take advantage of lower lever spatial relationships is a simple template for systematic common direction. This is
not indispensable since we can still use the high-level spatial relationships. However, orienting all images the same
way brings a new meaning to the association rules discovered. In other words, they are easier to interpret. Another
benefit of our approach is the possibility to apply both first steps as a pre-processing phase while the images are
received. The mining step can then become an interactive process where the user refines the knowledge discovered
interactively or adjusts and restricts the meta-rules describing the type of knowledge to be discovered?® . In addition,
a progressive resolution refinement approach!® can be used to iterate along the three steps to discover knowledge
from visual media at different resolution levels.

Many improvements could still be forthcoming, such as the addition of shape enumeration from images and the
categorization of locales based on some visual features such colour (i.e. gray scale), texture and position. The shape
can be a important attribute in some application domains such as medical imaging. Categorizing locales is a step
towards object recognition. This could increase the meta-rule expressive power and significantly reduce the number
of association rules discovered, and thus, help the user pin-point interesting and relevant rules.

Our main goal is to apply the algorithm on a huge collection of MRI brain scans with real patient records.
However, accessing large collections of real MRI scans is a difficult problem due to privacy issues. Communication
is ongoing with the University Hospital at the University of Alberta to access a large compilation of medical images
for our experiments. Experimenting on a small set of images is not significant enough to test the scalability of
our approach. We have generated large sets of synthetic images with simulated visual features and have tested our
algorithms on the data set to demonstrate the scalability of the algorithms. Although our preliminary experiments
were done on synthetic images, the results were very promissing and the algorithms scaled linearly. The association
rules are discovered at different resolution levels for the visual features (i.e. locales) as well as spatial relationships
at different conceptual levels.

ACKNOWLEDGMENTS

The research is supported in part by the Natural Sciences and Engineering Research Council of Canada, and the
Canadian Networks of Centres of Excellence IRIS-3.

REFERENCES

. G. Piatetsky-Shapiro and W. J. Frawley, Knowledge Discovery in Databases, AAAT/MIT Press, 1991.

2. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. U. (eds.), Advances in Knowledge Discovery and Data
Mining, AAAT/MIT Press, 1996.

3. J. Smyth, U. Fayyad, M. Burl, and P. Perona, “Modeling subjective uncertainty in image annotation,” in
Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, eds., pp. 517-539, AAAI/MIT Press, 1996.

4. P. Stolorz, H. Nakamura, E. Mesrobian, R. Muntz, E. Shek, J. Santos, J. Yi, K. Ng, S. Chien, C. Mechoso,
and J. Farrara, “Fast spatio-temporal data mining of large geophysical datasets,” in Proc. First Int. Conf. On
Knowledge Discovery and Data Mining, pp. 300-305, August 1995.

5. U. M. Fayyad, S. G. Djorgovski, and N. Weir, “Automating the analysis and cataloging of sky surveys,” in
Advances in Knowledge Discovery and Data Mining, U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, eds., pp. 471-493, AAAT/MIT Press, 1996.

6. A. Czyzewski, “Mining knowledge in noisy audio data,” in Proc. Second Int. Conf. on Knowledge Discovery and

Data Mining, pp. 220-225, 1996.

—



10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

9

V. Tucakov and R. Ng, “Identifying unusual spatio-temporal trajectories from surveillance videos,” in Proc. of
1998 SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD’98), (Seattle,
Washington), June 1998.

K. Megalooikonomou, C. Davatzikos, and E. Herskovits, “Mining lesion-deficit associations in a brain image
database,” in Proc. Int. Conf. Knowledge Discovery and Data Mining (KDD’99), pp. 347-351, (San Diego,
California), August 1999.

O. R. Zaiane, J. Han, Z.-N. Li, and J. Hou, “Mining multimedia data,” in CASCON’98: Meeting of Minds,
(Toronto, Canada), November 1998.

O. R. Zaiane, J. Han, and H. Zhu, “Mining recurrent items in multimedia with progressive resolution refinement,”
in Proc. 2000 Int. Conf. Data Engineering (ICDE’2000), February 2000.

M. J. Egenhofer, Spatial Query Languages. PhD thesis, University of Maine, 1989.

O. R. Zaiane, Resource and Knowledge Discovery from the Internet and Multimedia Repositories. PhD thesis,
School of Computing Science, Simon Fraser University, March 1999.

Y. Tao, W. Grosky, L. Zamorano, Z. Jiang, and J. Gong, “Segmentation and representation of lesions in the
MRI brain images,” in Proc. SPIE Medical Imaging, (San Diego, CA), 1999.

Z.-N. Li, O. R. Zaiane, and Z. Tauber, “Illumination invariance and object model in content-based image and
video retrieval,” Journal of Visual Communication and Image Representation 10(3), pp. 219-244, 1999.

M. J. Egenhofer and J. Sharma, “Topological relations between regions in 72 and 22,” in Advances in Spatial
Databases (SSD’93), (Singapore), 1993.

R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of items in large databases,”
in Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data, pp. 207-216, (Washington, D.C.), May 1993.
H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient algorithms for discovering association rules,” in Proc.
AAAI94 Workshop Knowledge Discovery in Databases (KDD’94), pp. 181-192, (Seattle, WA), July 1994.

R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Proc. 199/ Int. Conf. Very Large
Data Bases, pp. 487-499, (Santiago, Chile), September 1994.

J. Han and Y. Fu, “Discovery of multiple-level association rules from large databases,” in Proc. 1995 Int. Conf.
Very Large Data Bases, pp. 420-431, (Zurich, Switzerland), Sept. 1995.

Y. Fu and J. Han, “Meta-rule-guided mining of association rules in relational databases,” in Proc. 1st Int.
Workshop Integration of Knowledge Discovery with Deductive and Object-Oriented Databases (KDOOD’95),
pp. 3946, (Singapore), Dec. 1995.

S. Brin, R. Motwani, and C. Silverstein, “Beyond market basket: Generalizing association rules to correlations,”
in Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, pp. 265-276, (Tucson, Arizona), May 1997.

R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang, “Exploratory mining and pruning optimizations of con-
strained associations rules,” in Proc. 1998 ACM-SIGMOD Int. Conf. Management of Data, pp. 13-24, (Seattle,
Washington), June 1998.

S. Ramaswamy, S. Mahajan, and A. Silberschatz, “On the discovery of interesting patterns in association rules,”
in Proc. 1998 Int. Conf. Very Large Data Bases, pp. 368-379, (New York, NY), August 1998.



