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Abstract
Relational learning exploits relationships among instances
manifested in a network to improve the predictive perfor-
mance of many network mining tasks. Due to its empiri-
cal success, it has been widely applied in myriad domains.
In many cases, individuals in a network are highly idiosyn-
cratic. They not only connect to each other with a compos-
ite of factors but also are often described by some content
information of high dimensionality specific to each individ-
ual. For example in social media, as user interests are quite
diverse and personal; posts by different users could differ sig-
nificantly. Moreover, social content of users is often of high
dimensionality which may negatively degrade the learning
performance. Therefore, it would be more appealing to tai-
lor the prediction for each individual while alleviating the
issue related to the curse of dimensionality. In this paper, we
study a novel problem of Personalized Relational Learning
and propose a principled framework PRL to personalize the
prediction for each individual in a network. Specifically, we
perform personalized feature selection and employ a small
subset of discriminative features customized for each individ-
ual and some common features shared by all to build a pre-
dictive model. On this account, the proposed personalized
model is more human interpretable. Experiments on real-
world datasets show the superiority of the proposed PRL
framework over traditional relational learning methods.

1 Introduction

With the widespread availability and upsurge of various
information systems, networks are becoming increas-
ingly important to our day-to-day life; examples include
social networks, communication networks, academic
networks and financial transaction networks. Conven-
tional data mining and machine learning techniques can-
not be easily applied to networks as they assume data
instances are independently and identically distributed
(i.i.d.). In reality, instances in a network are explicitly or
implicitly correlated, with complex dependencies [4, 27],
making the enduring and deeply buried data i.i.d. as-
sumption invalid. On top of that, in many cases, nodes
in a network are associated with labels that character-
ize their behaviors or preferences. For example, the
label information could indicate user interests or po-
litical polarizations in social media; research interests
of scholars in academic networks; and functionalities
of genes in protein-protein interaction (PPI) networks.
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Hence, inferring missing labels of nodes in a network
could advance many real-world applications such as
recommendation, personalized search and crowdsourc-
ing [11, 32, 38, 33]. However, label information is rather
limited on networks as the labeling process requires hu-
man attention and maybe very expensive; or itself is
naturally unavailable due to some privacy issues. The
limited access to label information necessities the usage
of relational learning [31, 34, 35], which leverages the
network structure that is readily available and a small
subset of labeled nodes to assign unlabeled nodes to
some predefined groups.

Most, if not all, individuals in a network are highly
idiosyncratic. First, they show dependencies to each
other due to a composite of complex reasons. As in the
case of social networks, users build connections because
they are relatives, colleagues, classmates or share some
common interests. Second, nodes in many networks
often have rich personalized accompanying attributes of
high dimensionality. To give a palpable understanding,
we can observe that in social media, content information
(e.g., blogs, posts, images) by different users could
be quite diverse and personal, with a variety of foci.
Also, user-generated content is often high-dimensional
with irrelevant, redundant and noisy features; it may
jeopardize the prediction performance on unseen nodes
due to the curse of dimensionality [17, 21]. Therefore,
it is desired to tailor the prediction for each node in the
network with only a small subset of relevant features.
In other words, for each instance, we would like to
use a subset of discriminative personalized features in
conjunction with some shared features for prediction,
while these personalized features could vary for different
nodes. Consequently, the model is interpretable as we
can explain why we make such a prediction.

In this paper, we study a novel problem of person-
alized relational learning on networks. This problem
has not been previously studied, mainly because of the
following challenges: (1) As per the fact that labeled
nodes are scarce while network structure is readily ob-
served, it is indispensable to design a relational model
such that nodes could borrow strength from its neigh-
bors in building a more accurate predictive model. (2)
Social identity theory [28] suggests that individuals in



a network often exhibit different personalized patterns,
but also, they more or less share some common behav-
iors to some extent. Relational learning should be able
to seize these natures. (3) Traditional relational learn-
ing approaches often use a global pattern for the predic-
tion purpose. Thus it is still not clear how to customize
the prediction for each individual node. To tackle these
challenges, we propose a novel relational learning frame-
work PRL. The main contributions are as follows:

• We formally define the problem of personalized
relational learning for networked data.

• We provide a principled relational model such that
nodes in the network could borrow strength from
its neighbors in fortifying the predictive model.

• We propose an effective way to capture common
and personalized behaviors of individuals by select-
ing a small subset of discriminative features and a
subset of shared features.

• We present an effective alternating algorithm to
solve the optimization problem of the proposed
PRL framework.

• We perform experiments on real-world datasets to
corroborate the superiority of the PRL framework.

2 Problem Statement

We first summarize some notations used in this paper.
Following commonly adopted notations, we use bold
uppercase characters for matrices (e.g., A), bold low-
ercase characters for vectors (e.g., a). Also, we rep-
resent the i-th row of matrix A ∈ Rn×d as Ai∗, the
j-th column as A∗j , the (i, j)-th entry as Aij , trans-
pose of matrix A as AT , its Frobenius norm is de-

fined as ∥A∥F =
√∑n

i=1

∑d
j=1 A

2
ij , its ℓ2,1-norm is

∥A∥2,1 =
∑n

i=1

√∑d
j=1 A

2
ij . The vectorization of a

n×d matrix A is a column vector of size nd, denoted as
v(A) = [A11, ...,An1, ...,A1d, ...,And]

T . A⊗B denotes
the Kronecker product between matrices A and B. Id
denotes the identity matrix of size d× d.

Let U = {u1, u2, ..., uN} be the set of N nodes in the
network. Assume that UL = {u1, u2, ..., un} is the set of
n labeled nodes where n < N and UU = U\UL is the set
of N −n unlabeled nodes. We use the adjacency matrix
A ∈ RN×N to denote the dependencies among nodes in
the network such that Aij = 1 if there is a link from
node ui to node uj ; otherwise Aij = 0. In addition, we
use X = [x1;x2; ...;xn] ∈ Rn×d to denote the feature
representation these n labeled nodes, where each node
is associated with a d-dimensional features. We also use
Y = {c1, c2, ..., ck} to denote label set of these nodes
and Y = [y1; ...;yn] ∈ {0, 1}n×k is the corresponding
one-hot label matrix for labeled nodes UL, where the j-

th element in yi is 1 if the i-th node is associated with
class label cj , otherwise 0;

With the aforementioned notations, we now for-
mally define the problem of personalized relational
learning as follows. Given a network G with network
structure A, feature representation X and labels Y for
nodes in UL, the task is to train a classifier to predict
the missing labels for nodes in UU . In particular, during
the learning phase, we would like to (1) leverage both
network structure and feature information; and (2) tai-
lor the prediction for each node by employing a subset
of features locally associated with the node itself and a
small subset of features relevant to all nodes.

3 The Proposed Framework

In this section, we show how to build a personalized
relation learning model in details. We first formulate the
problem as an optimization problem and then present
an effective optimization algorithm to solve it.

The workflow of the proposed framework is illus-
trated in Figure 1. From the figure, we can see that
in the training phase, we have three sources of infor-
mation, i.e., the network structure A, feature matrix X
and labels Y for nodes in UL. We first show how the
proposed PRL framework finds some relevant features
shared by all nodes (e.g., feature f1) and also, a small
subset of discriminative features that are locally asso-
ciated with each specific node (e.g., features f3 and f5
for u1) to build a personalized predictive model, i.e., a
classifier. Second, as label information is rather limited
in real-world networks, we show how PRL makes use of
rich network structure to make nodes borrow strength
from each other to improve the prediction performance.
At last, we will provide an alternating optimization al-
gorithm for the proposed PRL.

3.1 Modeling Node Features for Personalized
Relational Learning In order to infer the missing la-
bels of unlabeled nodes, one simple and straightforward
way is to build a global model for all nodes on the
node features. However, one drawback is that it as-
sumes that all nodes share the exactly same patterns.
In other words, it conjectures that all nodes share the
same feature weights, and the feature weights derived
from labeled nodes could be directly shifted to unlabeled
nodes. Despite the fact that nodes in a network share
some common patterns to some extent, they are often
regarded as being highly idiosyncratic, showing distinct
behaviors. The idiosyncrasy of nodes has been heavily
observed in reality and also is supported by social iden-
tity theory [8] in sociology. It motivates us to build a
predictive model to capture both global and personal-
ized behaviors of nodes in the network. Next, we first
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Figure 1: An illustration of the personalized relational
learning framework (PRL). During the training phase,
PRL leverages the network structure and content infor-
mation of labeled nodes to build a classifier. For each la-
beled node, a subset of shared features and some unique
personalized features are employed. For example, f1 is
a shared feature for all nodes, while for node u1 and u2,
their personalized feature set are {f3, f5} and {f2, f6},
respectively. Afterwards, we make use of the built clas-
sifier to make predictions on unlabeled nodes.

introduce the framework to model the common node
patterns and then extend it to model the personalized
nature of each individual.

Features of nodes in real-world networks are often
high-dimensional with noisy, irrelevant and redundant
information. Hence, the illusion that all node features
are dovetailed with labels is not true. To uncover
common behaviors shared by all nodes, we embed
feature selection into a linear multi-class classification
model, resulting in the following objective function:

(3.1) min
W̃

n∑
i=1

∥xiW̃ − yi∥22 + γ∥W̃∥2,1,

where W̃ ∈ Rd×k is the global feature weight shared by
all nodes, and the term γ∥W̃∥2,1 is imposed to achieve
joint feature sparsity across k different classes.

To apprehend personalized behaviors of each single
node, we also assume that each node is also associated
with a local variable Wi. In this way, the class labels of
each node in UL can be approximated by a conjunction
of global model parameter W̃ and a localized variable
Wi. In this way, Eq. (3.1) can be reformulated as:

(3.2) min
W̃,Wi

n∑
i=1

∥xi(W̃ +Wi)− yi∥22 + γ∥W̃∥2,1.

Similar to the modeling of global behaviors, per-
sonalized behavior is also encoded in a small subset of
features that is locally associated with each individual.
To put it in another way, we would like to achieve fea-
ture sparsity within each localized model parameterWi.

It can be mathematically formulated by solving a exclu-
sive group lasso problem [14, 15, 39]. In particular, each
Wi is regarded as a group, exclusive group lasso encour-
ages intra-group level competition but discourages inter-
group level competition. As a result, a small subset
of discriminative personalized features can be obtained
within each Wi. Therefore, we first impose a ℓ2,1-norm
sparse regularization on Wi for intra-group level fea-
ture sparsity across k different class labels. Afterwards,
we put ℓ2 norm at the inter-group level for non-sparsity.
With the intra-level sparsity and inter-level non-sparsity
regularization term

∑n
i=1 ∥Wi∥22,1, the node features X

for personalized relational learning can be formally for-
mulated as:
(3.3)

min
W̃,Wi

n∑
i=1

∥xi(W̃+Wi)− yi∥22 + β

n∑
i=1

∥Wi∥22,1 + γ∥W̃∥2,1,

where parameters β and γ are used to balance the spar-
sity of personalized and shared features, respectively.

3.2 Modeling Network Information for Person-
alized Relational Learning The objective function
in Eq. (3.3) builds a predictive learning model with the
supervision of node labels Y. However, as mentioned
above that in many cases, the portion of labeled nodes
is very limited, either because of the labor and time con-
suming labeling process or labels themselves are just un-
available due to some privacy issues. Fortunately, a rich
source of network structure are readily observable and
could be potentially helpful to build a more informative
predictive model.

Even though individuals in a highly connected net-
work exhibit some unique behaviors, as indicated by
social categorization theory [29], these personalized in-
dividual behaviors is well organized and can be cate-
gorized into various groups. For example, groups can
indicate different foci of user interests, such as sports,
literature, and arts. Here the challenges center around
inferring of personalized patterns and obtaining their
group structures simultaneously. In this work, we take
advantage of the network structure to cluster the per-
sonalized patterns based on the node connectivity. In
particular, we force linked nodes to borrow strength
from each other in learning personalized patterns to for-
tify the prediction model by the network lasso regular-
ization term [7]:

(3.4) min
W

n∑
i,j=1

Ai,j∥Wi −Wj∥F .

The advantages of the network lasso regularization term
are two folds. First, the Frobenius norm of the differ-
ence between Wi and Wj not only makes them close



to each other if they are connected, i.e., Aij = 1, but
also incentivizes them to be the same. In this way, since
many localized feature weights Wi are made to be the
same, they are automatically grouped into several clus-
ters. Second, when the label information cannot pro-
vide us enough guide to learn the localized parameter,
Eq. (3.4) provides us a way to borrow strength from
neighbors for the model parameter learning.

3.3 Personalized Relational Learning By comb-
ing the objective function in Eq. (3.3) and Eq. (3.4), the
final objective function of the proposed Personalized Re-
lational Learning (PRL) model can be formulated as:

min
W̃,Wi

J(W̃,Wi) =

n∑
i=1

∥xi(W̃ +Wi)− yi∥22

+α

n∑
i,j=1

A(i, j)∥Wi −Wj∥F + β

n∑
i=1

∥Wi∥22,1 + γ∥W̃∥2,1,

(3.5)

where α is a model parameter to control the contri-
bution of network structure in helping personalized re-
lational learning. Also, it controls how the nodes are
clustered according to their localized feature parame-
ters Wi. By solving the above optimization problem,
we can obtain W̃ that captures the global feature pat-
tern and a set of Wi (i = 1, ..., n) that capture the
personalized feature pattern for each node in UL.

Now we discuss how to make a prediction for unla-
beled nodes by the built classifier which is a conjunction
of W̃ and Wi. During the prediction phase, we first
find the linked neighbors for a new unlabeled node ut in
the network G; then if we successfully find some neigh-
bors, we take the averaged feature parameters (conjunc-
tion of global and personalized) of its neighbors as the

new feature weight W
t
; otherwise, we use the averaged

feature parameters (conjunction of global and person-
alized) of all nodes in UL as the new feature weight

W
t
. After we obtain the feature weight for the new

unlabeled node ut, its class labels can be predicted by

c∗ = argmaxcj∈C(|xtW
t|j).

3.4 Optimization Solution The objective function
of PRL in Eq. (3.5) involves two sets of variables:
(1) the global variable W̃ that captures the global
patterns of nodes in the network; and (2) the localized
variableWi that encodes personalized behaviors of each
individual node. The objective function is not convex
w.r.t. W̃ and Wi (i = 1, ..., n) simultaneously. In
addition to that, the objective function is also not
smooth. Motivated by [36], we present an effective
alternating algorithm to solve it, thus in each iteration,
the model parameters could be updated with a closed-

form solution.
First, we denote Z ∈ Rn×nd as follow:

Z =

X11 . . . X1d

. . . . . .
. . .

Xn1 . . . Xnd

 .

Also, we represent the set of all n localized variables Wi

in a concatenated format as W = [W1;W2; ...;Wn]. In
this regard, we only two blocks of variables, i.e., W̃ and
W for the objective function in Eq. (3.5). We iteratively
update these two blocks of variables as follows:

3.4.1 Update W̃ When W is fixed, we remove the
terms that are irrelevant to W̃ and obtain the following
optimization problem:

(3.6) min
W̃

J(W̃) = ∥XW̃ + ZW −Y∥2F + γ∥W̃∥2,1.

Since the objective function in Eq. (3.6) is convex, we
take the derivative of J(W̃) w.r.t. W̃ to be zero, then
we have the following:

(3.7) XT (XW̃ + ZW −Y) + γDW̃ = 0,

where D ∈ Rd×d is a diagonal matrix with its i-th
diagonal element formulated as1:

(3.8) Dii =
1

2∥W̃i∗∥2
.

XTX+γD is positive semidefinite sinceXTX is positive
semidefinite and γD is a positive diagonal matrix. As a
result, we obtain a closed-form solution of W̃ as:

(3.9) W̃ = −(XTX+ γD)−1XT (ZW −Y)

3.4.2 Update W Next, we show how to update W
when W̃ is fixed. Similarly, by removing the terms
that are not relevant to W, we obtain the following
optimization problem:

min
W

J(W) = ∥ZW +XW̃ −Y∥2F

+α

n∑
i,j=1

Aij∥Wi −Wj∥F + β

n∑
i=1

∥Wi∥22,1.
(3.10)

We can reformulate the first term in Eq. (3.10) as:

(3.11) J1(W) = ∥ZW +XW̃ −Y∥2F .

The derivative of J1(W) w.r.t. W is as follows:

(3.12)
∂J1(W)

∂W
= 2ZT (ZW +XW̃ −Y).

1It should be noted that in practice, ∥W̃i,:∥2 could be very

close to zero. Hence, we define Dii = 1
2∥W̃i,:∥2+ϵ

, where ϵ is a

very small constant.



The second term J2(W) in Eq. (3.10) is the network
lasso penalty term. Its derivative w.r.t. Wk, i.e.,
∂J2(W)
∂Wk can be represented as follows:

n∑
i=1

Aik(W
k −Wi)

∥Wi −Wk∥F
+

n∑
j=1

Akj(W
k −Wj)

∥Wk −Wj∥F

=Wk
n∑

i=1

2Aik

∥Wi −Wk∥F
−

n∑
i=1

2AikWi

∥Wi −Wk∥F
.

(3.13)

By concatenating all ∂J2(W)
∂Wk (k = 1, ..., n) together, we

can get the representation of ∂J2(W)
∂W as follows2:

(3.14)
∂J2(W)

∂W
= 2(C⊗ Id)W,

where the matrix C ∈ Rn×n is as follows:

Cij =

{ ∑n
l=1

Ail

∥v(Wi)−v(Wl)∥2
− Aij

∥v(Wi)−v(Wj)∥ 2
(i = j)

−Aij

∥v(Wi)−v(Wj)∥ 2
(i ̸= j).

(3.15)

The third term
∑n

i=1 ∥Wi∥22,1 is the exclusive group
lasso penalty term that enables personalized feature
selection among each node in the network. Its derivative
w.r.t. W can be represented as follows:

(3.16)
J3(W)

∂v(W)
= 2FW,

where F ∈ Rnd×nd is a diagonal matrix with
F11,F22, ...,Fnd,nd on the diagonal. The diagonal el-
ement Fmm in F can be represented as2:

Fmm =
n∑

i=1

Im,i∥Wi∥2,1
∥Vm,:∥2

,

V = [W1;W2, ...,Wn],

(3.17)

where Im,i is an indicator function such that Im,i is 1 if
Vm,: belongs to Wi; otherwise Im,i is 0.

Putting the derivative of J1(W), J2(W) and J3(W)
w.r.t. W together, we can obtain the closed-form
solution of v(W) as follows:
(3.18)

W = −(ZTZ+ α(C⊗ Id) + βF)−1ZT (XW̃ −Y).

The pseudo code of obtaining the optimal solution
of W̃ and W can be summarized in Algorithm 1.

2The derivative of J2(W) and J3(W) w.r.t. W are
not smooth at some certain points. To make them deriva-
tive at any points, we approximate them C and F as

Cij =


∑n

l=1
Ail

∥v(Wi)−v(Wl)+ϵ∥2
−

Aij

∥v(Wi)−v(Wj)+ϵ∥ 2
(i = j)

−Aij

∥v(Wi)−v(Wj)+ϵ∥ 2
(i ̸= j),

and Fmm =
∑n

i=1
Im,i∥Wi∥2,1
∥Vm,:+ϵ∥2

, where ϵ is a very small constant.

Algorithm 1 Optimization algorithm for the proposed
Personalized Relational Learning (PRL)

Input: X ∈ Rn×d, Z ∈ Rn×nd, Y ∈ Rn×k, α, β, γ.
Output: W̃ ∈ Rd×k, Wi ∈ Rd×k (i = 1, ..., n).

1: Initialize W̃, Wi (i = 1, ..., n);
2: while objective function in Eq. (3.5) not converge do
3: Update D by Eq. (3.8);

4: Update W̃ by Eq. (3.9);
5: Update C as Eq. (3.15);
6: Update F as Eq. (3.17);
7: Update W by Eq. (3.18);
8: Obtain Wi (i = 1, .., n) from W;
9: end while

4 Experimental Results

In this section, we conduct experiments to evaluate
the effectiveness of the proposed personalized relational
learning framework (PRL). We first introduce the used
datasets, compared methods, and experimental settings
before presenting detailed results of the experiments.
At last, we investigate the parameter sensitivity of the
proposed PRL framework.

4.1 Datasets We use three real-world networks for
evaluation, and all of them are publicly available. Cora
and Citeseer are real-world academic networks3 while
BlogCatalog is a social media network4.

Cora: The Cora dataset is a citation network with
2708 publications and 5429 citations. Each publication
is described by a set of 1433 words which are considered
as features. All these features are 0/1-valued. All
publications are categorized into 7 classes according to
their subjects.

Citeseer: The Citeseer dataset is another citation
network with 3312 publications and 4732 links. They
are grouped into 6 classes. Similar to Cora, each
publication is associated with a total of 3703 0/1-valued
features.

BlogCatalog: The BlogCatalog dataset is a social
blogging dataset with 5196 users. The tag information
of blogs by users are regarded as features; the feature
number is 1,638. A total number of 171,743 links are
observed. The ground truth is the major category
(among 6 categories) of blogs posted by users.

4.2 Comparison Methods We select several repre-
sentative relational learning methods for a fair compar-
ison. Among them, NMF only considers node features
while wvRN and SocDim only exploit network struc-
ture. On the other hand, GNMF, FsNet, and the pro-
posed PRL framework can be regarded as approaches

3http://linqs.umiacs.umd.edu/projects/projects/lbc/
4http://dmml.asu.edu/users/xufei/datasets.html



that make use of both sources of information.

• NMF: Non-negative Matrix Factorization
(NMF) [16] has proven to be effective in many
real-world applications by reducing the feature
dimensionality. We consider it as a baseline
method to first obtain the low-rank node feature
representation and then apply discriminative
learning methods.

• wvRN: Weighted-Vote Relational Neighbor Clas-
sifier (wvRN) [22] is a local neighborhood based
classifier. It makes the prediction for unlabeled
nodes by a weighted vote score of its labeled neigh-
bors.

• SocDim: Social Dimensions (SocDim) [31] is
one of the state-of-the-art relational learning ap-
proaches with only network information. It first
adopts modularity maximization [25] to extract la-
tent representations and then utilize them as fea-
tures for discriminative learning.

• GNMF: Graph Regularized NMF (GNMF) [2] is
based on the assumption that latent representa-
tions of connected nodes are also similar to each
other. After getting the low-rank feature represen-
tation, we take them as input to a typical learning
method.

• FsNet: FsNet [6] aims to select a subset of rele-
vant features on the node feature space. In particu-
lar, it exploits a linear regression model to capture
the node features and adopt graph regularization to
make use of the network structure. We employ dis-
criminative learning methods to build a predictive
model based on the selected features.

4.3 Experimental Settings The vast majority of
relational learning methods heavily depend on the ex-
tracted feature representations. Among these compar-
ison methods, NMF, SocDim, GNMF, and FsNet are
typical feature-based relational learning methods. They
first extract latent features and then employ typical dis-
criminative methods to build a classifier to enable the
prediction on unlabeled nodes. In the experiments, we
follow a commonly adopted setting [31] to use linear
SVM for discriminative learning.

For each method, we randomly choose p% of nodes
for training and the rest 1 − p% for testing. As we
often have limited access to labeled nodes in practice,
we choose a relatively small value for p by varying
it in the range of {1, 2, ..., 9, 10}. For each p, we
run the experiments 10 times and report the average
classification performance. Two widely used evaluation
criteria based on F1-measure, i.e., Micro-F1 and Macro-
F1 are used to measure the multi-class and multi-label

classification problems [13].

4.4 Classification Performance Comparison In
this subsection, we evaluate the performance of the pro-
posed PRL relational learning framework by compar-
ing its classification performance with other methods
on the three above mentioned datasets. The compari-
son results are shown in Table 1, Table 2 and Table 3.
The model parameters of the proposed PRL framework
could be determined by cross-validation, and a detailed
sensitivity study will be investigated in the following
subsection. We make the following observations from
these three tables:

• In most cases, when we gradually increase the
number of labeled nodes from 1% to 10%, the
classification performance increases for all methods
in the table.

• Our proposed personalized relational learning
framework PRL outperforms all baseline meth-
ods in almost all cases. We also perform a pair-
wise Wilcoxon signed-rank test [5] between PRL
and these baseline methods, the comparison results
show that PRL is significantly better, with a sig-
nificance level in both 0.01 and 0.05.

• Both wvRN and SocDim are relational learning
methods with only network information; their clas-
sification performance is inferior to relational learn-
ing approaches incorporating node features such as
GNMF, FsNet, and PRL. The results support the
importance of leveraging both sources of informa-
tion for relational learning.

• GNMF is an extension of NMF that uses graph
regularization to make the latent representation
consistent with the network topological structure.
It obtains higher Micro-F1 and Macro-F1 than
NMF in most cases, suggesting that exploration
of rich network information is helpful and could
improve relational learning.

• FsNet selects a common set of relevant features,
while our proposed method could be regarded as
a personalized feature selection framework. The
improvement of PRL over FsNet validates the
necessity of employing personalized features for
relational learning, which has an added value over
a set of shared features.

4.5 Parameter Study PRL has three important pa-
rameters. The first parameter α balances the contribu-
tion of node features and network structure for rela-
tional learning. The second parameter β and the third
parameter γ controls the sparsity of personalized fea-
tures of each individual and the common feature in the



Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1

NMF 0.3914 0.4531 0.4748 0.4980 0.5229 0.5342 0.5402 0.5460 0.5639 0.5494
wvRN 0.3230 0.3402 0.3626 0.3751 0.3929 0.4109 0.4221 0.4399 0.4502 0.4643
SocDim 0.3322 0.3942 0.4414 0.4797 0.4996 0.5315 0.5467 0.5636 0.5872 0.5945
GNMF 0.3936 0.4510 0.4798 0.5137 0.5216 0.5415 0.5477 0.5586 0.5726 0.5740
FsNet 0.3880 0.4516 0.4829 0.5079 0.5231 0.5274 0.5384 0.5413 0.5444 0.5399
PRL 0.4254 0.4908 0.5324 0.5506 0.5688 0.5811 0.5989 0.6170 0.6266 0.6315

Macro-F1

NMF 0.3133 0.3874 0.4178 0.4409 0.4829 0.4960 0.5041 0.5053 0.5262 0.5038
wvRN 0.1198 0.1617 0.2064 0.2374 0.2721 0.3045 0.3273 0.3556 0.3755 0.3979
SocDim 0.3077 0.3808 0.4256 0.4628 0.4814 0.5123 0.5311 0.5469 0.5688 0.5769
GNMF 0.3173 0.3906 0.4300 0.4674 0.4793 0.4999 0.5061 0.5212 0.5340 0.5404
FsNet 0.3074 0.3905 0.4269 0.4626 0.4836 0.4892 0.5040 0.5074 0.5133 0.5109
PRL 0.3833 0.4098 0.4881 0.4968 0.5324 0.5539 0.5637 0.5791 0.5906 0.6039

Table 1: Classification performance comparison on Cora dataset with different portions of training data.

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1

NMF 0.4236 0.4704 0.4749 0.4926 0.4978 0.5062 0.5264 0.5329 0.5363 0.5412
wvRN 0.2264 0.2412 0.2548 0.2655 0.2779 0.2884 0.3003 0.3118 0.3206 0.3313
SocDim 0.2701 0.2996 0.3254 0.3447 0.3523 0.3682 0.3750 0.3855 0.3934 0.4044
GNMF 0.4296 0.4768 0.4981 0.5124 0.5235 0.5243 0.5253 0.5357 0.5435 0.5535
FsNet 0.4301 0.4657 0.5125 0.5142 0.5202 0.5301 0.5344 0.5417 0.5524 0.5576
PRL 0.4356 0.4851 0.5296 0.5307 0.5505 0.5535 0.5568 0.5691 0.5725 0.5762

Macro-F1

NMF 0.3732 0.4271 0.4347 0.4548 0.4589 0.4671 0.4881 0.4961 0.4977 0.5021
wvRN 0.0887 0.1172 0.1421 0.1626 0.1843 0.2023 0.2221 0.2393 0.2532 0.2700
SocDim 0.2453 0.2815 0.3056 0.3264 0.3333 0.3476 0.3544 0.3644 0.3712 0.3821
GNMF 0.3820 0.4346 0.4565 0.4723 0.4837 0.4862 0.4865 0.4967 0.5061 0.5141
FsNet 0.3677 0.4183 0.4683 0.4714 0.4797 0.4835 0.4949 0.5030 0.5089 0.5167
PRL 0.3993 0.4356 0.4751 0.4862 0.5103 0.5142 0.5220 0.5231 0.5287 0.5295

Table 2: Classification performance comparison on Citeseer dataset with different portions of training data.

Training Ratio 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1

NMF 0.5342 0.5938 0.6235 0.6531 0.6570 0.6617 0.6739 0.6787 0.6854 0.6938
wvRN 0.2516 0.3181 0.3511 0.3928 0.4204 0.4372 0.4598 0.4727 0.4849 0.5026
SocDim 0.3697 0.4419 0.4741 0.5078 0.5340 0.5502 0.5680 0.5831 0.5947 0.5952
GNMF 0.5632 0.6063 0.6504 0.6587 0.6634 0.6743 0.6771 0.6873 0.6880 0.6927
FsNet 0.5363 0.6096 0.6240 0.6308 0.6467 0.6359 0.6422 0.6444 0.6408 0.6433
PRL 0.6009 0.6127 0.6341 0.6622 0.6767 0.6939 0.7117 0.7184 0.7235 0.7365

Macro-F1

NMF 0.5279 0.5856 0.6184 0.6479 0.6529 0.6579 0.6693 0.6748 0.6804 0.6885
wvRN 0.2276 0.3043 0.3416 0.3836 0.4123 0.4299 0.4495 0.4607 0.4722 0.4902
SocDim 0.3651 0.4372 0.4690 0.5023 0.5293 0.5429 0.5599 0.5754 0.5863 0.5869
GNMF 0.5533 0.6006 0.6236 0.6544 0.6571 0.6689 0.6733 0.6819 0.6925 0.6963
FsNet 0.5189 0.6010 0.6175 0.6306 0.6452 0.6338 0.6417 0.6436 0.6398 0.6426
PRL 0.5720 0.6153 0.6447 0.6697 0.6661 0.6923 0.7143 0.7153 0.7228 0.7335

Table 3: Classification performance comparison on Blogcatalog dataset with different portions of training data.
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Figure 2: Parameter study on Citeseer dataset.

model learning phase. To investigate the effects of these
three parameters, we fix one parameter each time and
vary the other two to see how it affects the classification

performance. We only show the parameter study results
on Citeseer dataset to save space as we have the similar
observations on the other two datasets. The portion of



training data in the study is set to be 5%. First, we
fix the parameters β as 1 and γ as 0.1 and vary the
value of α among {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.
As can be observed from Figure 2(a), when we gradu-
ally increase α, the classification performance first in-
creases and reaches its peak and then gradually de-
creases. The best performance is achieved when α is
between 1 and 5, which is consistent with the sugges-
tions from [7, 36]. Next, we fix α = 1 and γ = 0.1
and vary β as {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}. The
study results are shown in Figure 2(b). We observe that
when β is small, the classification performance is rela-
tively lower. The reason is that when β is small, the
contribution of the personalized feature selection is lim-
ited; on the other hand, a large β enables us to find bet-
ter localized features customized for each node, which in
turn benefit the prediction performance. At last, we fix
α = 1 and β = 1, and vary the third variable γ. In par-
ticular, when γ is small, personalized features will domi-
nate the objective function, the performance is high. As
we continuously increase γ, the performance gradually
decreases, but the change is small. In a nutshell, PRL
is not very sensitive to these three parameters, and we
can tune them in a wide range in practice.

5 Related Work

In this section, we review some related work from two
perspectives: (1) traditional relational learning on plain
networks; and (2) relational learning with node features.

5.1 Traditional Relational Learning Relational
learning refers to the problem of learning on relational
data that can be naturally represented as a network.
Due to the prevalence of networks in many high impact
domains, relational learning has received considerable
attention in the past decade. Most of existing attempts
are mainly based on the Markov assumption that labels
of connected nodes show autocorrelation. Collective in-
ference [12, 24] is a typical example that first derives
relational features from labeled nodes, and then itera-
tively predicts the labels for unlabeled nodes. To enable
the prediction on each unlabeled node, Weighted-vote
relational neighbor (wvRN) [22] adopts a weighted vot-
ing score of the class probabilities from its labeled neigh-
bors. Above mentioned approaches focus on one hub au-
tocorrelation on networks and are therefore limited. La-
bel propagation [40], graph regularization [37], spectral
partitioning [23], and graphical model [35] based meth-
ods are developed to take advantage of long-distance au-
tocorrelation for the prediction task. As connections in
social networks are often multi-dimensional, Tang and
Liu [31] extract latent social dimensions from the net-
work first, with each dimension depicting a plausible

affiliation among social actors. Then they resort to so-
cial dimensions and fed them into a typical discrimina-
tive learning approach such as SVM. Another category
of methods that is related to relational learning is net-
work embedding [9, 10, 26], which aims to learn vec-
tor representation of nodes that can well preserve the
network topological structure. Discriminative learning
approaches are employed afterwards on the learned em-
beddings. Our proposed PRL framework differs from
these approaches as they overwhelmingly focus on plain
networks while our framework tackles a more complex
scenario with node features.

5.2 Relational Learning with Node Features As
node features are naturally observed in many real-world
networks, there is a surge of research on relational learn-
ing with node features. It is an interesting yet challeng-
ing topic, mainly because of the bewildering combina-
tion of heterogeneous contents and structures. Since
node features are often noisy and of high dimension-
ality, vast of existing methods try to learn a low-rank
representation on node attributes for relational learning.
GNMF [2] take advantages of NMF to reduce feature di-
mensionality and then employs graph regularization to
capture the network structure. Wu et al. [34] investigate
whether social status of nodes in the network could be
a complement to network structure and node features
to improve the relational learning performance. In the
proposed RESA framework, they also exploit the NMF
model to reduce the feature dimensionality of node fea-
tures. Another line of work is feature selection on net-
worked data [6, 18, 19, 20, 30]. However, these work
are also distinct from the proposed PRL framework as
we attempt to tailor the prediction for each node in the
network by finding a set of personalized features while
these methods perform relational learning with the same
set of feature representations.

6 Conclusions and Future Work

In addition to the readily observed network information,
nodes in many real-world networks are often described
by a rich set of features of high dimensionality. Recent
studies show that the exploration of node features could
advance a variety of learning tasks. Relational learning
is one among these learning tasks. It targets to use
network structure and node features of a small number
of labeled nodes to build a predictive learning model;
then employ the built model to infer missing labels for
unlabeled nodes. Existing methods on this line assume
that all nodes have a common pattern by sharing the
same feature weight. However, as nodes in networks
are highly idiosyncratic, their associated node features
are quite diverse and personalized. Hence, it would



be appealing to tailor the prediction by using a set of
personalized features tightly hinged with the node, and
a set of common features shared by all nodes. Toward
this goal, we propose a novel personalized relational
learning framework PRL. As we can customize the
prediction for each individual, the proposed model is
also human interpretable. Experiments on real-world
networks show the effectiveness of the proposed model.

Future work can be focused on two aspects. First,
we would like to investigate if we can further employ the
personalized model to other network mining tasks like
social recommendation, community detection, and link
prediction. Second, real-world networks are naturally
dynamic with network structure changes and content
drifts [1, 3, 18]. Therefore, we will study how to make
the proposed personalized relational learning framework
to handle dynamic networks.
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