
Parallel Association Rule Mining with Minimum Inter-Processor
Communication∗

Mohammad El-Hajj
Department of Computing Science

University of Alberta Edmonton, AB, Canada
mohammad@cs.ualberta.ca

Osmar R. Za¨ıane
Department of Computing Science

University of Alberta Edmonton, AB, Canada
zaiane@cs.ualberta.ca

Abstract

Existing parallel association rule mining algorithms suf-
fer from many problems when mining massive transactional
datasets. One major problem is that most of the parallel
algorithms for a shared nothing environment are Apriori-
based algorithms. Apriori-based algorithms are proven to
be not scalable due to many reasons, mainly: (1) the repet-
itive I/O disk scans, (2) the huge computation and commu-
nication involved during the candidacy generation.

This paper proposes a new disk-based parallel associ-
ation rule mining algorithm called Inverted Matrix, which
achieves its efficiency by applying three new ideas. First,
transactional data is converted into a new database lay-
out called Inverted Matrix that prevents multiple scanning
of the database during the mining phase, in which finding
globally frequent patterns could be achieved in less than a
full scan with random access. This data structure is repli-
cated among the parallel nodes. Second, for each frequent
item assigned to a parallel node, a relatively small indepen-
dent tree is built summarizing co-occurrences. Finally, a
simple and non-recursive mining process reduces the mem-
ory requirements as minimum candidacy generation and
counting is needed, and no communication between nodes
is required to generate all globally frequent patterns.

1 Introduction

Recent days have witnessed an explosive growth in gen-
erating data in all fields of science, business, medicine, mil-
itary, etc. The same rate of growth in the processing power
of evaluating and analyzing the data did not follow this mas-
sive growth. Due to this phenomenon, a tremendous volume
of data is still kept without being studied. Data mining, a re-
search field that tries to ease this problem, proposes some

∗This research is partially supported by a Research Grant from NSERC,
Canada.

solutions for the extraction of significant and potentially
useful patterns from these large collections of data. One of
the canonical tasks in data mining is the discovery of asso-
ciation rules. Discovering association rules, considered as
one of the most important tasks, has been the focus of many
studies in the last few years. Many solutions have been pro-
posed using a sequential or parallel paradigm. However, the
existing algorithms depend heavily on massive computation
that might cause high dependency on the memory size or
repeated I/O scans of the datasets. The published parallel
implementations of association rule mining inherited most
of these problems in addition to the new costly communica-
tion cost most of them need. Parallel association rule min-
ing algorithms currently proposed in the literature are not
sufficient for extremely large datasets, and new solutions,
that do not heavily depend on repeated I/O scan, less reliant
on memory size, and do not require a lot of communication
costs between nodes, still have to be found.
In this paper we are introducing a new parallel association
rule mining disk-based algorithm that is based on the COFI-
trees concept discussed in detail in this paper. This algo-
rithm is divided into two main phases. The first one, con-
sidered pre-processing, requires only two full I/O scans of
the dataset and generates a special disk-based data structure
called Inverted Matrix. In the second phase, the Inverted
Matrix is replicated among nodes and mined in parallel us-
ing different support levels to generate association rules us-
ing the Inverted Matrix algorithm explained later in this pa-
per. The mining process might take, in some cases, less
than one-full I/O scan of the data structure in which only
frequent items based on the support given by the user are
scanned and participate in generating the frequent patterns.
The remainder of this paper is organized as follows: Section
2 illustrates the transactional layout and the motivations of
the Inverted Matrix approach. Section 3 describes the de-
sign and constructions of the parallel Co-Occurrence Fre-
quent Item trees. Section 4 concludes by discussing some
issues and highlights our future work.

2 Transaction Layout

Frequent itemset mining algorithms mine the database
on a given fixed support threshold. If the support threshold
changes, the mining process is repeated and the previous
accumulated knowledge is not taken into account. For in-
stance, in the simple transactional database of Figure 1A,
where each line represents a transaction (called horizontal
layout), we can observe that when changing support one can
avoid reading some entries. If the support level is greater
than 4, then Figure 1B highlights all frequent items that
need to be scanned and computed. Non-circled items in
Figure 1B are not included in the generation of the frequent
items, and reading them becomes useless. It is known that
all of the existing algorithms scan the whole database, fre-
quent and non-frequent items more than once, generating a
huge amount of useless work [2]. We call this superfluous
processing. Figure 1C represents what we actually need to
read and compute from the transactional database based on
a support greater than 4. Obviously, this may not be possible
with this horizontal layout, but with a vertical layout avoid-
ing these useless reads is possible. The transaction layout is

T# T# T#

T1 A G D C B T1 A G D C B T1 A D C B
T2 B C H E D T2 B C H E D T2 B C E D
T3 B D E A M T3 B D E A M T3 B D E A
T4 C E F A N T4 C E F A N T4 C E F A
T5 A B N O P T5 A B N O P T5 A B
T6 A C Q R G T6 A C Q R G T6 A C
T7 A C H I G T7 A C H I G T7 A C
T8 L E F K B T8 L E F K B T8 E F B
T9 A F M N O T9 A F M N O T9 A F
T10 C F P J R T10 C F P J R T10 C F
T11 A D B H I T11 A D B H I T11 A D B
T12 D E B K L T12 D E B K L T12 D E B
T13 M D C G O T13 M D C G O T13 D C
T14 C F P Q J T14 C F P Q J T14 C F
T15 B D E F I T15 B D E F I T15 B D E F
T16 J E B A D T16 J E B A D T16 E B A D
T17 A K E F C T17 A K E F C T17 A E F C
T18 C D L B A T18 C D L B A T18 C D B A

Items

(C)

Items

(A)

Items

(B)

Figure 1. A: Transactional database (B):
Frequent items circled (C): Needed Items to
be scanned, σ > 4.

the method in which items in transactions are formatted in
the database. Currently, there are two approaches: the hor-
izontal approach and the vertical approach. In this section
these approaches are discussed and a new transactional lay-

out called Inverted Matrix is presented and compared with
the existing two methods.

2.1 Horizontal vs. Vertical layout

The format of storing transactions in the database plays
an important role in determining the efficiency of the as-
sociation rule-mining algorithm used. Existing algorithms
use one of the two layouts, namely horizontal and vertical.
The first one, which is the most commonly used, relates all
items on the same transaction together. In this approach
the ID of the transaction plays the role of the key for the
transactional table. Figure 1A represents a sample of 18
transactions made of 18 items. The vertical layout relates
all transactions that share the same items together. In this
approach the key of each record is the item. Each record
in this approach has an item with all transaction numbers
in which this item occurs. The horizontal layout has a very
important advantage, which is combining all items in one
transaction together. In this layout and by using some clever
techniques, such as the one used in [4], the candidacy gen-
eration step can be eliminated. On the other hand, this lay-
out suffers from limitations such as the problem mentioned
above that we called superfluous processing since there is
no index on the items. The vertical layout, however, is an
index on the items in itself and reduces the effect of large
data sizes as there is no need to always re-scan the whole
database. On the other hand, this vertical layout still needs
the expensive candidacy generation phase. Also comput-
ing the frequencies of itemsets becomes the tedious task of
intersecting records of different items of the candidate pat-
terns.

2.2 Inverted Matrix Layout

The Inverted Matrix layout combines the two previously
mentioned layouts with the purpose of making use of the
best of the two approaches and reducing their drawbacks as
much as possible. The idea of this approach is to associate
each item with all transactions in which it occurs (i.e. an
inverted index), and to associate each transaction with all
its items using pointers. Similar to the vertical layout, the
item is the key of each record in this layout. The difference
between this layout and the vertical layout is that each
attribute on the Inverted Matrix is not the transaction ID,
but a pointer that points to the location of the next item on
the same transaction. The transaction ID could be preserved
in our layout, but since it is not needed for the purpose of
frequent itemset mining, it is discarded. The pointer is a
pair where the first element indicates the address of a line in
the matrix and the second element indicates the address of a
column. Each line in the matrix has an address (sequential
number in our illustrative example) and is prefixed by the

item it represents with its frequency in the database. The
lines are ordered in ascending order of the frequency of
the item they represent. Figure 2 represents the Inverted
Matrix corresponding to the transactional database from
Figure 1A. Building this Inverted Matrix is done in two

loc Index
1 2 3 4 5 6 7 8 9 10 11

1 R,2 2,1 3,2
2 Q,2 12,2 3,3
3 P,3 4,1 9,1 9,2
4 O,3 5,2 5,3 6,3
5 N,3 13,1 17,4 6,2
6 M,3 14,2 13,3 12,4
7 L,3 8,1 8,2 15,9
8 K,3 13,2 14,5 13,7
9 J,3 13,4 13,5 14,7
10 I,3 11,2 11,3 13,6
11 H,3 14,1 12,3 15,4
12 G,4 15,1 16,4 16,5 16,5
13 F,7 14,3 14,4 18,7 16,6 16,8 14,6 14,8
14 E,8 15,2 15,3 16,3 17,5 15,5 15,7 15,8 16,9
15 D,9 16,1 16,2 17,3 17,6 17,7 16,7 17,8 17,9 16,10

16 C,10 17,1 17,2 18,3 18,5 18,6 φ,φ φ,φ φ,φ 18,10 17,10

17 B,10 18,1 φ,φ 18,2 18,4 φ,φ 18,8 φ,φ φ,φ 18,9 18,11

18 A,11 φ,φ φ,φ φ,φ φ,φ φ,φ φ,φ φ,φ φ,φ φ,φ φ,φ φ,φ

Transactional Array

Figure 2. Inverted Matrix

phases, in which phase one scans the database once to find
the frequency of each item and orders them into ascending
order, The second phase scans the database again once
to sort each transaction into ascending order according to
the frequency of each item, and then fills in the matrix
appropriately. To illustrate the process, let us consider the
construction of the matrix in Figure 2. The first transaction
in Figure 1A has items (A, G, D, C, B). This transaction is
sorted into (G, D, C, B, A) based on the item frequencies.
process. Item G has the physical location line 12 in the
Inverted Matrix in Figure 2, D has the location line 15, the
location of C is line 16, B is in line 17 and finally A is in
line 18. This is according to the vertical approach. Item G
has a link to the first empty slot in the transactional array
of item D that is 1. Consequently, (15,1) entry is added in
the first slot of item G to point to the first empty location
in the transactional array of D. At the First empty location
of D (15,1) an entry is added to point to the first empty
location of the next item C that is (16,1). The same process
occurs for all items in the transaction. The last item of
the transaction, item A produces an entry with pointer null
(φ,φ). The same is performed for every transaction.

3 Parallel Co-Occurrence Frequent Item-
trees: Design and Construction

The generation of frequencies is considered a costly op-
eration for association rule discovery. InApriori-based al-
gorithms this step might become a complex problem in
cases of high dimensionality due to the sheer size of the can-
didacy generation [2]. In methods such as FP-Growth [4],

the candidacy generation is replaced by a recursive routine
that builds a very large number of sub-trees, called condi-
tional FP-trees, that are on the same order of magnitude as
number of the frequent patterns.

Our approach for computing frequencies relies first on
replicating the Inverted Matrix among all parallel nodes.
By doing so a full set of transactional database would be
available to each processor to generate all globally frequent
patterns with minimum communication cost at parallel node
level. This replication is executed from a designated master
node. Second, this approach relies on distributing frequent
items among the parallel nodes. Our strategy for evenly dis-
tributing the frequent items to the different processors such
that the load is as balanced as possible, is explained later.
Each parallel node is responsible for generating all frequent
patterns related to the frequent items associated to that node.
To do so each node reads sub-transactions for frequent items
directly from the Inverted Matrix, then builds independent
and relatively small trees for each frequent item in the trans-
actional database. Each parallel node mines separately each
one of these trees as soon as they are built, with minimizing
the candidacy generation and without recursively building
conditional sub-trees. The trees are discarded as soon as
mined. Finally, all globally frequent patterns generated at
each parallel node are gathered into the master node to pro-
duce the full set of frequent patterns.

The small trees we build (Co-Occurrence Frequent Item-
tree, or COFI-tree for short) are similar to the conditional
FP-Tree [3] in general in the sense that they have a header
with ordered frequent items and horizontal pointers point-
ing to a succession of nodes containing the same frequent
item, a counter that computes the occurrences of this item
in the tree and the prefix tree per-se with paths represent-
ing sub-transactions. However, the COFI-trees have bidi-
rectional links in the tree allowing bottom-up scanning as
well, and the nodes contain not only the item label and a
frequency counter, but also a participation counter as ex-
plained later in this section. Another difference, is that a
COFI-tree for a given frequent itemx contains only nodes
labeled with items that are more frequent or as frequent as
x.

In our example, if we need to mine the Inverted Matrix
in Figure 2 using a two-processors machine withσ > 4,
the starting line for each parallel node would be location
13, as it is the location of the first frequent item. Processor
1 finds all frequent patterns related to items at locations 13,
15, and 17 which are items (F, D, and B). Processor 2 would
generate all frequent patterns related to items at locations
14, and 16 which are for items E and C.

The first Co-Occurrence Frequent Item-tree is built for
item F. In this tree for F, all frequent items which are more
frequent than F and share transactions with F participate in
building the tree. The tree starts with the root node contain-

ing the item in question, F. For each sub-transaction con-
taining item F with other frequent items that are more fre-
quent than F, a branch is formed starting from the root node
F. If multiple frequent items share the same prefix, they are
merged into one branch and a counter for each node of the
tree is adjusted accordingly. Figure 3 illustrates COFI-trees
for frequent items F and E. In Figure 3, the rectangle nodes

F (7 0)

E 4 E (4 0) A (1 0) C (2 0)
D 2
C 4
B 2 C (2 0) B (1 0) D (1 0)
A 3

A (2 0) B (1 0)

E (8 0)

D 5 D (5 0) C (2 0) B (1 0)
C 3
B 6
A 4 C (1 0) B (4 0) A (2 0)

B (1 0) A (2 0)

(A) - F-COFI-tree

(B) - E-COFI-tree

Figure 3. F and E COFI-trees

are nodes from the tree with an item label and two coun-
ters. The first counter is a support for that node while the
second counter, calledparticipation-count, is initialized to
0 and is used by the mining algorithm discussed later. The
nodes have also pointers: a horizontal link which points to
the next node that has the sameitem-namein the tree, and
a bi-directional vertical link that links a child node with its
parent and a parent with its child. The bi-directional point-
ers facilitate the mining process by making the traversal of
the tree easier. The squares in the figures are actually cells
from the header table as with the FP-Tree. This is a list
made of all frequent items that participate in building the
tree structure sorted in ascending order of their global sup-
port. Each entry in this list contains theitem-name, item-
counter, and apointer to the first node in the tree that has
the same item-name.

To explain the COFI-tree building process, we will high-
light the building steps for the F-COFI-tree in Figure 3. Fre-
quent item F is assigned to processor 1 that reads from the
Inverted Matrix in Figure 2 all sub-transactions that starts
with item F. The first sub-transaction has items FECA, and
consequently 4 nodes are created, as FECA: 1 forms one
branch with support = 1 for each node in the branch. The
second sub-transaction has FEB. Nodes for F and E already
exist and only new node for B is created as a another child

for E. The support for all these nodes are incremented by 1.
B becomes 1, E and F become 2. FA is read then, and a new
node for A is created with support = 1, and the F support is
incremented by 1 to become 3. FC is read twice, and a new
node for item C is created with support =2, and F support
becomes 5. FEDB is read after that, FE branch already ex-
ists and a new child branch for DB is created as a child for
E with support = 1. The support for E nodes becomes 3, F
becomes 6. Finally the last sub-transaction FECA is read,
its branch already exist, and only the counters for all nodes
are incremented by 1. The participation count for each node
is initialized to 0. The header in the F-COFI-tree, like with
FP-Trees, constitutes a list of all frequent items to maintain
the location of first entry for each item in the COFI-Tree. A
link is also made for each node in the tree that points to the
next location of the same item in the tree if it exists.

The COFI-tree for a frequent itemx contains only nodes
labeled with items that are more frequent or as frequent as
x, and share at least one transaction withx. Based on this
definition, ifA has support greater thanB then theB COFI-
tree is most likely larger than the COFI-tree for itemA as
more items would participate in building theB COFI-tree.
In other words, the higher the support of a frequent item,
the smaller its COFI-tree is. We use this observation to im-
prove the load balance between processors. We need to dis-
tribute the creation and mining of these COFI-trees among
the available processors in a away that the load is distributed
normally and no processor has to build large trees while oth-
ers build small ones. Our strategy in distributing this load is
simple: After ordering the frequent items by their support,
starting from the least frequent, each processor successively
receives one item. The process is repeated until all items
are distributed. In other words, if we havem processors,
andn COFI-trees need to be built, assumingm < n then
processor 1 builds the COFI-tree for the least frequent item,
processor 2 builds the COFI-tree for the next least frequent
item, and so on up to processorm. After that processor 1
takes itemm+1 and so on until alln items are distributed.

3.1 Mining the COFI-trees

The mining process is done for each tree independently
with the purpose of finding all frequentk-itemset patterns
that the item on the root of the tree participates in. Steps to
produce frequent patterns related to the E item for example,
are illustrated in Figure 4. From each branch of the tree, us-
ing the support count and the participation count, candidate
frequent patterns are identified and stored temporarily in a
list. The non-frequent ones are discarded at the end when all
branches are processed. Figure 4 shows the frequent item-
sets containing E discovered assuming a support threshold
greater than 4. Mining the “COFI-tree of item E” starts by
identifying all non-frequent items with respect to the E item.

Step 1 E (8,1) E(8 5)

E (8 0) E (8 1)

D(5 1)

D(5 5)

D 5 D (5 0) C (2 0) B (1 0) C(1 1) D 5 D (5 1) C (2 0) B (1 0)

C 3 C 3

B 6 B(1 1) B 6 B(4 4)

A 3 C (1 0) B (4 0) A (2 0) EDB:1 A 3 C (1 1) B (4 0) A (2 0) EDB:4

ED:1
EB:1 ED:5

B (1 0) A (2 0) EDB:1 B (1 1) A (2 0) EB:5

EDB:5

Step 3 E (8 6) E(8 6)

E (8 5) E (8 6)

B(1 1) D(5 5)

D 5 D (5 5) C (2 0) B (1 0) D 5 D (5 5) C (2 0) B (1 1)

C 3 EB:1 C 3

B 6 ED:5 B 6 No change

A 3 C (1 1) B (4 4) A (2 0) EB:6 A 3 C (1 1) B (4 4) A (2 0)
EDB:5 ED:5

EB:6
B (1 1) A (2 0) B (1 1) A (2 0) EDB:5

Step 2

Step 4

Figure 4. Steps needed to generate frequent patterns related to item E

Items A, and C occur 3 times with item E, and consequently
they cannot form a frequent pattern with item E. All nodes
with labels A, and C will be discarded during the mining
process. After eliminating non-frequent items in this tree
the mining process starts from the most frequent item in the
tree, which is item B. Item B exists in three branches in
the E COFI-tree which are (B: 1, C: 1, D:5 and E:8), (B:4,
D:5, and E:8) and (B:1, and E:8). The frequency of each
branch is the frequency of the first item in the branch minus
the participation value of the same node. Item B in the first
branch has a frequency value of 1 and participation value
of 0 which makes the first pattern EDB frequency equal to
1. The participation values for all nodes in this branch are
incremented by 1, which is the frequency of this pattern. In
the first pattern EDB: 1, we need to generate all sub-patterns
that item E participates in which are ED:1 EB:1 and EDB:1.
The second branch that has B generates the pattern EDB: 4,
as the frequency of B on this branch is 4 and its partici-
pation value equals to 0. All participation values on these
nodes are incremented by 4. Sub-patterns are also generated
from the EDB pattern which are ED: 4 , EB: 4, and EDB:
4. All patterns already exist with support value equals to
1, and only updating their support value is needed to make
it equal to 5. The last branch EB:1 will generate only one
pattern which is EB:1, and consequently its value will be
updated to become 6. The second frequent item in this tree,
“D” exists in one branch (D: 5 and E: 8) with participation
value of 5 for the D node. Since the participation value for
this node is equal to its support value, then no patterns can
be generated from this node. Finally all non-frequent pat-
terns are omitted leaving us with only frequent patterns that
item E participates in which are ED:5, EB:6 and EBD:5.
The COFI-tree of Item E can be removed at this time and
another tree can be generated and tested to produce all the
frequent patterns related to the root node. The same pro-
cess is executed by all processors to generate all frequent
patterns.

4 Discussion and Future Work

In our research we have implemented these algorithms
sequentially, and promising results were achieved[1] as we
have outperformed, by more than one order of magnitude,
some of the well known algorithms such asApriori and FP-
growth. As we have recently acquired a cluster of 8 nodes
made of 16 processors, we are currently working on the
parallel implementations of these algorithms as described
in this paper. Our research reinforces the following: (1) In
mining extremely large transactions; we should not work on
algorithms that build huge memory data structures, nor on
algorithms that scan the massive transactions many times.
What we need is a disk-based-algorithm that can store the
massive size and allow random access, and small mem-
ory structures that can be independently created and mined
based on the available absolute memory size. (2) building
embarrassingly parallel algorithms, which are algorithms
that almost eliminate any need for communications, is the
way to go. Especially for mining extremely large data sets,
only communicating the frequent patterns can be consid-
ered a costly task that consumes most of the mining time.
Our proposed algoritms are embarrassingly parallel.

References

[1] M. El-Hajj and O. R. Za¨ıane. Inverted matrix: Efficient dis-
covery of frequent items in large datasets in the context of in-
teractive mining, university of alberta, technical report 08-03,
March 2003.

[2] J. Han and M. Kamber.Data Mining: Concepts and Tech-
niques. Morgan Kaufman, San Francisco, CA, 2001.

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. InACM-SIGMOD, Dallas, 2000.

[4] O. R. Zaiane, M. El-Hajj, and P. Lu. Fast parallel associa-
tion rule mining without candidacy generation. Inin Proc.
of the IEEE 2001 International Conference on Data Mining
(ICDM01), San Jos, CA, USA, December 2001.

