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Abstract

The sharing of data has been proven beneficial in data mining applications. However,

privacy regulations and other privacy concerns may prevent data owners from sharing

information for data analysis. To resolve this challenging problem, data owners must

design a solution that meets privacy requirements and guarantees valid data clustering

results. To achieve this dual goal, we introduce a new method for privacy-preserving

clustering, called Dimensionality Reduction-Based Transformation (DRBT). This method

relies on the intuition behind random projection to protect the underlying attribute values

subjected to cluster analysis. The major features of this method are: a) it is independent

of distance-based clustering algorithms; b) it has a sound mathematical foundation; and c)

it does not require CPU-intensive operations. We show analytically and empirically that

transforming a dataset using DRBT, a data owner can achieve privacy preservation and

get accurate clustering with a little overhead of communication cost.

Keywords: Privacy-preserving data mining, privacy-preserving clustering, dimensionality re-

duction, random projection, privacy-preserving clustering over centralized data, and privacy-

preserving clustering over vertically partitioned data.

1 Introduction

In the business world, data clustering has been used extensively to find the optimal customer

targets, improve profitability, market more effectively, and maximize return on investment sup-

porting business collaboration (Lo, 2002; Berry & Linoff, 1997). Often combining different
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data sources provides better clustering analysis opportunities. For example, it does not suffice

to cluster customers based on their purchasing history, but combining purchasing history, vi-

tal statistics and other demographic and financial information for clustering purposes can lead

to better and more accurate customer behaviour analysis. However, this means sharing data

between parties.

Despite its benefits to support both modern business and social goals, clustering can also, in

the absence of adequate safeguards, jeopardize individuals’ privacy. The fundamental question

addressed in this paper is: how can data owners protect personal data shared for cluster analysis

and meet their needs to support decision making or to promote social benefits? To address

this problem, data owners must not only meet privacy requirements but also guarantee valid

clustering results.

Clearly, achieving privacy preservation when sharing data for clustering poses new challenges

for novel uses of data mining technology. Each application poses a new set of challenges. Let

us consider two real-life examples in which the sharing of data poses different constraints:

• Two organizations, an Internet marketing company and an on-line retail company, have

datasets with different attributes for a common set of individuals. These organizations

decide to share their data for clustering to find the optimal customer targets so as to

maximize return on investments. How can these organizations learn about their clusters

using each other’s data without learning anything about the attribute values of each other?

• Suppose that a hospital shares some data for research purposes (e.g., to group patients

who have a similar disease). The hospital’s security administrator may suppress some

identifiers (e.g., name, address, phone number, etc) from patient records to meet privacy

requirements. However, the released data may not be fully protected. A patient record may

contain other information that can be linked with other datasets to re-identify individuals

or entities (Samarati, 2001; Sweeney, 2002). How can we identify groups of patients

with a similar pathology or characteristics without revealing the values of the attributes

associated with them?
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The above scenarios describe two different problems of privacy-preserving clustering (PPC).

We refer to the former as PPC over centralized data and the latter as PPC over vertically parti-

tioned data. To address these scenarios, we introduce a new PPC method called Dimensionality

Reduction-Based Transformation (DRBT). This method allows data owners to find a trade-off

between privacy, accuracy, and communication cost. Communication cost is the cost (typically

in size) of the data exchanged between parties in order to achieve secure clustering.

Dimensionality reduction techniques have been studied in the context of pattern recognition

(Fukunaga, 1990), information retrieval (Bingham & Mannila, 2001; Faloutsos & Lin, 1995;

Jagadish, 1991), and data mining (Fern & Brodley, 2003; Faloutsos & Lin, 1995). To the best

of our knowledge, dimensionality reduction has not been used in the context of data privacy in

any detail, except in (Oliveira & Zäıane, 2004).

Although there exists a number of methods for reducing the dimensionality of data, such as

feature extraction methods (Kaski, 1999), multidimensional scaling (Young, 1987) and principal

component analysis (PCA) (Fukunaga, 1990), this paper focuses on random projection, a pow-

erful method for dimensionality reduction. The accuracy obtained after the dimensionality has

been reduced, using random projection, is almost as good as the original accuracy (Kaski, 1999;

Achlioptas, 2001; Bingham & Mannila, 2001). More formally, when a vector in d-dimensional

space is projected onto a random k dimensional subspace, the distances between any pair of

points are not distorted by more than a factor of (1 ± ε), for any 0 < ε < 1, with probability

O(1/n2), where n is the number of objects under analysis (Johnson & Lindenstrauss, 1984).

The motivation for exploring random projection is based on the following aspects. First, it

is a general data reduction technique. In contrast to the other methods, such as PCA, random

projection does not use any defined interestingness criterion to optimize the projection. Second,

random projection has shown to have promising theoretical properties for high dimensional data

clustering (Fern & Brodley, 2003; Bingham & Mannila, 2001). Third, despite its computational

simplicity, random projection does not introduce a significant distortion in the data. Finally, the

dimensions found by random projection are not a subset of the original dimensions but rather
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a transformation, which is relevant for privacy preservation.

In this work, random projection is used to mask the underlying attribute values subjected

to clustering, protecting them from being revealed. In tandem with the benefit of privacy

preservation, the method DRBT benefits from the fact that random projection preserves the

distances (or similarities) between data objects quite nicely, which is desirable in cluster analysis.

We show analytically and experimentally that using DRBT, a data owner can meet privacy

requirements without losing the benefit of clustering.

The major features of our method DRBT are: a) it is independent of distance-based clus-

tering algorithms; b) it has a sound mathematical foundation; and c) it does not require CPU-

intensive operations.

This paper is organized as follows. In Section 2, we provide the basic concepts that are

necessary to understand the issues addressed in this paper. In Section 3, we describe the research

problem employed in our study. In Section 4, we introduce our method DRBT to address PPC

over centralized data and over vertically partitioned data. The experimental results are presented

in Section 5. Related work is reviewed in Section 6. Finally, Section 7 presents our conclusions.

2 Background

In this section, we briefly review the basic concepts that are necessary to understand the issues

addressed in this paper.

2.1 Data Matrix

Objects (e.g., individuals, observations, events) are usually represented as points (vectors) in a

multi-dimensional space. Each dimension represents a distinct attribute describing the object.

Thus, objects are represented as an m × n matrix D, where there are m rows, one for each

object, and n columns, one for each attribute. This matrix may contain binary, categorical, or

numerical attributes. It is referred to as a data matrix, as can be seen in Figure 1.

The attributes in a data matrix are sometimes transformed before being used. The main
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D =











a11 . . . a1k . . . a1n

a21 . . . a2k . . . a2n
...

...
. . .

...
am1 . . . amk . . . amn











Figure 1: The data matrix structure.

DM =













0
d(2, 1) 0
d(3, 1) d(3, 2) 0

. . . . . . . . .
d(m, 1) d(m, 2) . . . . . . 0













Figure 2: The dissimilarity matrix structure.

reason is that different attributes may be measured on different scales (e.g., centimeters and

kilograms). When the range of values differs widely from attribute to attribute, attributes with

large range can influence the results of the cluster analysis. For this reason, it is common to

standardize the data so that all attributes are on the same scale. There are many methods

for data normalization (Han & Kamber, 2001). We review only two of them in this section:

min-max normalization and z-score normalization.

Min-max normalization performs a linear transformation on the original data. Each attribute

is normalized by scaling its values so that they fall within a specific range, such as 0.0 and 1.0.

When the actual minimum and maximum of an attribute are unknown, or when there are

outliers that dominate the min-max normalization, z-score normalization (also called zero-mean

normalization) should be used. In this case, the normalization is performed by subtracting the

mean from each attribute value and then dividing the result by the standard deviation of this

attribute.

2.2 Dissimilarity Matrix

A dissimilarity matrix stores a collection of proximities that are available for all pairs of objects.

This matrix is often represented by an m × m table. In Figure 2, we can see the dissimilarity

matrix DM corresponding to the data matrix D in Figure 1, where each element d(i, j) represents

the difference or dissimilarity between objects i and j.

In general, d(i, j) is a non-negative number that is close to zero when the objects i and j are

very similar to each other, and becomes larger the more they differ.

Several distance measures could be used to calculate the dissimilarity matrix of a set of
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points in d-dimensional space (Han & Kamber, 2001). The Euclidean distance is the most

popular distance measure. If i = (xi1, xi2, ..., xin) and j = (xj1, xj2, ..., xjn) are n-dimensional

data objects, the Euclidean distance between i and j is given by:

d(i, j) =

[

∑n
k=1

|xik − xjk|2
]1/2

(1)

The Euclidean distance satisfies the following constraints:

• d(i, j) ≥ 0: distance is a non-negative number.

• d(i, i) = 0: the distance of an object to itself.

• d(i, j) = d(j, i): distance is a symmetric function.

• d(i, j) ≤ d(i, k) + d(k, j): distance satisfies the triangular inequality.

2.3 Random Projection

In many applications of data mining, the high dimensionality of the data restricts the choice

of data processing methods. Examples of such applications include market basket data, text

classification, and clustering. In these cases, the dimensionality is large due to either a wealth

of alternative products, a large vocabulary, or an excessive number of attributes to be analyzed

in Euclidean space, respectively.

When data vectors are defined in a high-dimensional space, it is computationally intractable

to use data analysis or pattern recognition algorithms that repeatedly compute similarities or

distances in the original data space. It is therefore necessary to reduce the dimensionality before,

for instance, clustering the data (Kaski, 1999; Fern & Brodley, 2003).

The goal of the methods designed for dimensionality reduction is to map d-dimensional

objects into k-dimensional objects, where k � d (Kruskal & Wish, 1978). These methods map

each object to a point in a k-dimensional space minimizing the stress function:

stress2 = (
∑

i,j

(d̂ij − dij)
2)/(

∑

i,j

dij
2) (2)
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where dij is the dissimilarity measure between objects i and j in a d-dimensional space, and

d̂ij is the dissimilarity measure between objects i and j in a k-dimensional space. The function

stress gives the relative error that the distances in k-d space suffer from, on the average.

One of the methods designed for dimensionality reduction is random projection. This method

has been shown to have promising theoretical properties since the accuracy obtained after the

dimensionality has been reduced, using random projection, is almost as good as the original

accuracy. Most importantly, the rank order of the distances between data points is meaningful

(Kaski, 1999; Achlioptas, 2001; Bingham & Mannila, 2001). The key idea of random projection

arises from the Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984): “if points in a

vector space are projected onto a randomly selected subspace of suitably high dimension, then

the distances between the points are approximately preserved.”

Lemma 1 ((Johnson & Lindenstrauss, 1984)). Given ε > 0 and an integer n, let k be a

positive integer such that k ≥ k0 = O(ε−2log n). For every set P of n points in <d there exists

f : <d → <k such that for all u, v ∈ P

(1 − ε) ‖ u − v ‖2≤‖ f(u) − f(v) ‖2≤ (1 + ε) ‖ u − v ‖2.

The classic result of Johnson and Lindenstrauss (Johnson & Lindenstrauss, 1984) asserts

that any set of n points in d-dimensional Euclidean space can be embedded into k-dimensional

space, where k is logarithmic in n and independent of d. Thus to get the most of random

projection, the following constraint must be satisfied: k ≥ k0 = O(ε−2log n).

A random projection from d dimensions to k dimensions is a linear transformation repre-

sented by a d × k matrix R, which is generated by first setting each entry of the matrix to a

value drawn from an i.i.d. ∼N(0,1) distribution (i.e., zero mean and unit variance) and then

normalizing the columns to unit length. Given a d-dimensional dataset represented as an n× d

matrix D, the mapping D × R results in a reduced-dimension dataset D′, i.e.,

D′

n×k = Dn×dRd×k (3)

7



Random projection is computationally very simple. Given the random matrix R and pro-

jecting the n×d matrix D into k dimensions is of the order O(ndk), and if the matrix D is sparse

with about c nonzero entries per column, the complexity is of the order O(cnk) (Papadimitriou,

Tamaki, Raghavan, & Vempala, 1998).

After applying random projection to a dataset, the distance between two d-dimensional

vectors i and j is approximated by the scaled Euclidean distance of these vectors in the reduced

space as follows:

√

d/k ‖ Ri − Rj ‖ (4)

where d is the original and k the reduced dimensionality of the dataset. The scaling term
√

d/k

takes into account the decrease in the dimensionality of the data.

To satisfy Lemma 1, the random matrix R must hold the follow constraints:

• The columns of the random matrix R are composed of orthonormal vectors, i.e, they have

unit length and are orthogonal.

• The elements rij of R have zero mean and unit variance.

Clearly, the choice of the random matrix R is one of the key points of interest. The elements

rij of R are often Gaussian distributed, but this need not to be the case. Achlioptas (Achlioptas,

2001) showed that the Gaussian distribution can be replaced by a much simpler distribution, as

follows:

rij =
√

3 ×























+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

(5)

In fact, practically all zero mean, unit variance distributions of rij would give a mapping

that still satisfies the Johnson-Lindenstrauss lemma. Achlioptas’ result means further compu-
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tational savings in database applications since the computations can be performed using integer

arithmetic.

3 Privacy-Preserving Clustering: Problem Definition

The goal of privacy-preserving clustering is to protect the underlying attribute values of objects

subjected to clustering analysis. In doing so, the privacy of individuals would be protected.

The problem of privacy preservation in clustering can be stated as follows: Let D be a

relational database and C a set of clusters generated from D. The goal is to transform D into

D′ so that the following restrictions hold:

• A transformation T when applied to D must preserve the privacy of individual records, so

that the released database D′ conceals the values of confidential attributes, such as salary,

disease diagnosis, credit rating, and others.

• The similarity between objects in D′ must be the same as that one in D, or just slightly

altered by the transformation process. Although the transformed database D′ looks very

different from D, the clusters in D and D′ should be as close as possible since the distances

between objects are preserved or marginally changed.

We will approach the problem of PPC by first dividing it into two sub-problems: PPC over

centralized data and PPC over vertically partitioned data. In the centralized data approach,

different entities are described with the same schema in a unique centralized data repository,

while in a vertical partition, the attributes of the same entities are split across the partitions.

We do not address the case of horizontally partitioned data.

3.1 PPC over Centralized Data

In this scenario, two parties, A and B, are involved, party A owning a dataset D and party B

wanting to mine it for clustering. In this context, the data are assumed to be a matrix Dm×n,
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where each of the m rows represents an object, and each object contains values for each of the

n attributes.

Before sharing the dataset D with party B, party A must transform D to preserve the

privacy of individual data records. After transformation, the attribute values of an object in

D would look very different from the original. However, the transformation applied to D must

not jeopardize the similarity between objects. Therefore, miners would rely on the transformed

data to build valid results, i.e., clusters. Our second real-life motivating example, in Section 1,

is a particular case of PPC over centralized data.

3.2 PPC over Vertically Partitioned Data

Consider a scenario wherein k parties, such that k ≥ 2, have different attributes for a common

set of objects, as mentioned in the first real-life example, in Section 1. Here, the goal is to do a

join over the k parties and cluster the common objects. The data matrix for this case is given

as follows:

` Party 1 a` Party 2 a` . . . a` Party k a













a11 . . . a1i a1i+1 . . . a1j a1p+1 . . . a1n

...
... . . .

...

am1 . . . ami ami+1 . . . amj amp+1 . . . amn













(6)

Note that, after doing a join over the k parties, the problem of PPC over vertically partitioned

data becomes a problem of PPC over centralized data. For simplicity, we do not consider

communication cost here since this issue is addressed later.

In our model for PPC over vertically partitioned data, one of the parties is the central one

which is in charge of merging the data and finding the clusters in the merged data. After finding

the clusters, the central party would share the clustering results with the other parties. The

challenge here is how to move the data from each party to a central party concealing the values
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of the attributes of each party. However, before moving the data to a central party, each party

must transform its data to protect the privacy of the attribute values. We assume that the

existence of an object (ID) should be revealed for the purpose of the join operation, but the

values of the associated attributes are private.

3.3 The Communication Protocol

To address the problem of PPC over vertically partitioned data, we need to design a commu-

nication protocol. This protocol is used between two parties: the first party is the central one

and the other represents any of the k − 1 parties, assuming that we have k parties. We refer

to the central party as partyc and any of the other parties as partyk. There are two threads on

the partyk side, one for selecting the attributes to be shared, as can be seen in Table 1, and the

other for selecting the objects before the sharing data, as can be seen in Table 2.

Steps to select the attributes for clustering on the partyk side:

1. Negotiate the attributes for clustering before the sharing of data.
2. Wait for the list of attributes available in partyc.
3. Upon receiving the list of attributes from partyc:

a) Select the attributes of the objects to be shared.

Table 1: Thread of selecting the attributes on the partyk side.

Steps to select the list of objects on the partyk side:

1. Negotiate the list of m objects before the sharing of data.
2. Wait for the list of m object IDs.
3. Upon receiving the list of m object IDs from partyc:

a) Select the m objects to be shared;
b) Transform the attribute values of the m objects;
c) Send the transformed m objects to partyc.

Table 2: Thread of selecting the objects on the partyk side.
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4 The Dimensionality Reduction-Based Transformation

In this section, we show that the triple-goal of achieving privacy preservation and valid clustering

results at a reduced communication cost in PPC can be accomplished by random projection.By

reducing the dimensionality of a dataset to a sufficiently small value, one can find a trade-off

between privacy, accuracy, and communication cost. We refer to this solution as the Dimen-

sionality Reduction-Based Transformation (DRBT).

4.1 General Assumptions

The solution to the problem of PPC draws the following assumptions:

• The data matrix D subjected to clustering contains only numerical attributes that must

be transformed to protect individuals’ data values before the data sharing for clustering

occurs.

• In PPC over centralized data, the identity of an object (ID) must be replaced by a fictitious

identifier. In PPC over vertically partitioned data, the IDs of the objects are used for the

join purposes between the parties involved in the solution, and the existence of an object

at a site is not considered private.

One interesting characteristic of the solution based on random projection is that, once the

dimensionality of a database is reduced, the attribute names in the released database are irrel-

evant. We refer to the released database as a disguised database, which is shared for clustering.

4.2 PPC over Centralized Data

To address PPC over centralized data, the DRBT performs three major steps before sharing the

data for clustering:

• Step 1 - Suppressing identifiers: Attributes that are not subjected to clustering (e.g.,

address, phone number, etc.) are suppressed.
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• Step 2 - Reducing the dimension of the original dataset: After pre-processing the data

according to Step 1, an original dataset D is then transformed into the disguised dataset

D′ using random projection.

• Step 3 - Computing the stress function: This function is used to determine that the ac-

curacy of the transformed data is marginally modified, which guarantees the usefulness of

the data for clustering. A data owner can compute the stress function using Equation (2).

To illustrate how this solution works, let us consider the sample relational database in Table 3.

This sample contains real data from the Cardiac Arrhythmia Database available at the UCI

Repository of Machine Learning Databases (Blake & Merz, 1998). The attributes for this

example are: age, weight, h rate (number of heart beats per minute), int def (number of intrinsic

deflections), QRS (average of QRS duration in msec.), and PR int (average duration between

onset of P and Q waves in msec.).

ID age weight h rate int def QRS PR int

123 75 80 63 32 91 193
342 56 64 53 24 81 174
254 40 52 70 24 77 129
446 28 58 76 40 83 251
286 44 90 68 44 109 128

Table 3: A cardiac arrhythmia database.

We are going to reduce the dimension of this dataset from 6 to 3, one at a time, and compute

the error (stress function). To reduce the dimension of this dataset, we apply Equation (3). In

this example, the original dataset corresponds to the matrix D. We compute a random matrix

R1 by setting each entry of the matrix to a value drawn from an independent and identically

distributed (i.i.d.) N(0,1) distribution and then normalizing the columns to unit length. We

also compute a random matrix R2 where each element rij is computed using Equation (5). We

transform D into D′ using both R1 and R2. The random transformation RP1 refers to the

random projection using R1, and RP2 refers to the random projection using R2.
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The relative error that the distances in 6-3 space suffer from, on the average, is computed

using Equation (2). Table 4 shows the values of the error using RP1 and RP2. In this Table, k

represents the number of dimensions in the disguised database D′.

Transformation k = 6 k = 5 k = 4 k = 3

RP1 0.0000 0.0223 0.0490 0.2425
RP2 0.0000 0.0281 0.0375 0.1120

Table 4: The relative error that the distances in 6-3 space suffer from.

In this case, we have reduced the dimension of D from 6 to 3, i.e, the transformed dataset

has only 50% of the dimensions in the original dataset. Note that the error is relatively small

for both RP1 and RP2, especially for RP2. However, this error is minimized when the random

projection is applied to high dimensional datasets, as can be seen in Figure 4, in Section 5.4.

After applying random projection to a dataset, the attribute values of the transformed

dataset are completely disguised to preserve the privacy of individuals. Table 5 shows the

attribute values of the transformed database with 3 dimensions, using both RP1 and RP2. In

this table, we have the attributes labeled Att1, Att2, and Att3 since we do not know the labels

for the disguised dataset. Using random projection, one cannot select the attributes to be

reduced beforehand. The attributes are reduced randomly. More formally, ∀i if Attri ∈ D′,

then Attri 6∈ D.

ID D′ using RP1 D′ using RP2

Att1 Att2 Att3 Att1 Att2 Att3

123 -50.40 17.33 12.31 -55.50 -95.26 -107.96
342 -37.08 6.27 12.22 -51.00 -84.29 -83.13
254 -55.86 20.69 -0.66 -65.50 -70.43 -66.97
446 -37.61 -31.66 -17.58 -85.50 -140.87 -72.74
286 -62.72 37.64 18.16 -88.50 -50.22 -102.76

Table 5: Disguised dataset D′ using RP1 and RP2.

As can be seen in Table 5, the attribute values are entirely different from those in Table 3.
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4.3 PPC over Vertically Partitioned Data

The solution for PPC over vertically partitioned data is a generalization of the solution for PPC

over centralized data. In particular, if we have k parties involved in this case, each party must

apply the random projection over its dataset and then send the reduced data matrix to a central

party. Note that any of the k parties can be the central one.

When k parties (k ≥ 2) share some data for PPC over vertically partitioned data, these

parties must satisfy the following constraints:

• Agreement: The k parties must follow the communication protocol described in Section 3.3.

• Mutual exclusivity: We assume that the attribute split across the k parties are mutually

exclusive. More formally, if A(D1), A(D2)..., A(Dk) are a set of attributes of the k parties,

∀i 6= j A(Di)∩A(Dj) = ∅. The only exception is that IDs are shared for the join purpose.

The solution based on random projection for PPC over vertically partitioned data is per-

formed as follows:

• Step 1 - Individual transformation: If k parties, k ≥ 2, share their data in a collaborative

project for clustering, each party ki must transform its data according to the steps in

Section 4.2.

• Step 2 - Data exchanging or sharing: Once the data are disguised by using random projec-

tion, the k parties are able to exchange the data among themselves. However, one party

could be the central one to aggregate and cluster the data.

• Step 3 - Sharing clustering results: After the data have been aggregated and mined in a

central party ki, the results could be shared with the other parties.

4.4 How Secure is the DRBT?

In the previous sections, we showed that transforming a database using random projection is

a promising solution for PPC over centralized data and consequently for PPC over vertically
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partitioned data since the similarities between objects are marginally changed. Now we show

that random projection also has promising theoretical properties for privacy preservation. In

particular, we demonstrate that a random projection from d dimensions to k, where k � d, is

a non-invertible transformation.

Lemma 2 A random projection from d dimensions to k dimensions, where k � d, is a non-

invertible linear transformation.

Proof: A classic result from Linear Algebra asserts that there is no invertible linear trans-

formation between Euclidean spaces of different dimensions (Auer, 1991). Thus, if there is an

invertible linear transformations from <m to <n, then the constraint m = n must hold. A

random projection is a linear transformation from <d to <k, where k � d. Hence, a ran-

dom projection from d dimensions to k dimensions is a non-invertible linear transformation.

�

Even when sufficient care is taken, a solution that adheres to DRBT can be still vulnerable

to disclosure. For instance, if an adversary knows the positions of d + 1 points (where d is

the number of dimensions), and the distances between these points, then one can make some

estimates of the coordinates of all points. In (Caetano, 2004), Caetano shows that if an adversary

knows the dissimilarity matrix of a set of points and the coordinates of d + 1 points, where d

is the number of dimensions of the data points, it is possible to disclose the entire dataset.

However, this result holds if and only if the d + 1 points do not lie in a (d − 1)-dimensional

vector subspace.

To illustrate Caetano’s lemma, let us consider a particular case in <2, as can be seen in

Figure 3. In this example, suppose that three points (d + 1) objects (d = 2) and their distances

are known. If the center of the dashed circle does not lie in the same straight line, the (d − 1)-

dimensional vector subspace, defined by the centers of the other two circles, the intersection

set has at most one point (the one pointed to by the arrow). Thus, if one adversary has the

distances of other p points to these three points in Figure 3, s/he can determine the coordinates

of the p points.
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Figure 3: An example of Caetano’s lemma in <2.

It is important to note that the violation of the solution that adheres to DRBT becomes

progressively harder as the number of attributes (dimensions) in a database increases since an

adversary would need to know d + 1 points to disclose the original data. On the other hand,

when the number of dimensions grows, the accuracy regarding the distances between points is

improved.

4.5 The Complexity of the DRBT

One of the major benefits of a solution that adheres to the DRBT is the communication cost to

send a disguised dataset from one party to a central one. In general, a disguised data matrix is

of size m× k, where m is the number of objects and k is the number of attributes (dimensions).

The complexity of DRBT is of the order O(m × k), however k � m.

To quantify the communication cost of one solution, we consider the number of bits or words

required to transmit a dataset from one party to a central or third party. Using DRBT, the

bit communication cost to transmit a dataset from one party to another is O(mlk), where l

represents the size (in bits) of one element of the m × k disguised data matrix.
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5 Experimental Results

In this section, we empirically validate our method DRBT. We start by describing the real

datasets used in our experiments. We then describe the methodology and the evaluation ap-

proach used to validate our method. Subsequently, we study the effectiveness of our method to

address PPC over centralized data and PPC over vertically partitioned data. We conclude this

section discussing the main lessons learned from our experiments.

5.1 Datasets

We validated our method DRBT for privacy-preserving clustering using five real datasets. These

datasets are described as follows:

1. Accidents: This dataset concerning traffic accidents was obtained from the National Insti-

tute of Statistics (NIS) for the region of Flanders in Belgium. There are 340,183 traffic

accident records included in the dataset. We used 18 columns of this dataset after removing

missing values.

2. Mushroom: This dataset is available at the UCI Repository of Machine Learning Databases

(Blake & Merz, 1998). Mushroom contains records drawn from The Audubon Society

Field Guide to North American Mushrooms. There are 8,124 records and 23 numerical

attributes.

3. Chess: The format for instances in this database is a sequence of 37 attribute values. Each

instance is a board-descriptions of a chess endgame. The first 36 attributes describe the

board. The last (37th) attribute is the classification: “win” or “nowin”. Chess is available

at the UCI Repository of Machine Learning Databases (Blake & Merz, 1998) and contains

3,196 records. There is no missing value in this dataset.

4. Connect: This database contains all legal 8-ply positions in the game of connect-4 in which

neither player has won yet, and in which the next move is not forced. Connect is composed
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of 67,557 records and 43 attributes without missing values. This dataset is also available

at the UCI Repository of Machine Learning Databases (Blake & Merz, 1998).

5. Pumsb: The Pumsb dataset contains census data for population and housing. This dataset

is available at http://www.almaden.ibm.com/software/quest. There are 49,046 records

and 74 attribute values without missing values.

Table 6 shows the summary of the datasets used in our experiments. The columns represent,

respectively, the database name, the total number of records, and the number of attributes in

each dataset.

Dataset #records # attributes

Accidents 340,183 18
Mushroom 8,124 23
Chess 3,196 37
Connect 67,557 43
Pumsb 49,046 74

Table 6: A summary of the datasets used in our experiments

5.2 Methodology

We performed two series of experiments to evaluate the effectiveness of DRBT when addressing

PPC over centralized data and PPC over vertically partitioned data. Our evaluation approach

focused on the overall quality of generated clusters after dimensionality reduction. One question

that we wanted to answer was:

What is the quality of the clustering results mined from the transformed data when

the data are both sparse and dense?

Our performance evaluation was carried out through the following steps:

• Step 1: we normalized the attribute values of the five real datasets using the z-score

normalization. Normalization gives to all attributes the same weight.
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• Step 2: we considered random projection based on two different approaches. First, the

traditional way to compute random projection, by setting each entry of the random matrix

R1 to a value drawn from an i.i.d. N(0,1) distribution and then normalizing the columns

to unit length. Second, we used the random matrix R2 where each element rij is computed

using Equation (5). We refer to the former random projection as RP1 and the latter as

RP2. We repeated each experiment (for random projection) 5 times. In the next section,

we present results by showing only the average value.

• Step 3: we computed the relative error that the distances in d-k space suffer from, on

the average, by using the stress function given in Equation (2). The stress function was

computed for each dataset.

• Step 4: we selected K-means to find the clusters in our performance evaluation. K-means

is one of the best known clustering algorithm and is scalable (Macqueen, 1967; Han &

Kamber, 2001).

• Step 5: we compared how closely each cluster in the transformed dataset matches its

corresponding cluster in the original dataset. We expressed the quality of the generated

clusters by computing the F-measure given in Equation (10). Considering that K-means

is not deterministic (due to its use of random seed selection), we repeated each experiment

10 times. We then computed the minimum, average, maximum, and standard deviation

for each measured value of the F-measure. We present the results by showing only the

average value.

We should point out that the steps described above were performed to evaluate the effec-

tiveness of the DRBT when addressing PPC over centralized and vertically partitioned data.

5.3 Evaluation Approach

When using random projection, a perfect reproduction of the Euclidean distances may not be

the best possible result. The clusters in the transformed datasets should be equal to those
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c′1 c′2 ... c′k
c1 freq1,1 freq1,2 ... freq1,k

c2 freq2,1 freq2,2 ... freq2,k
...

...
...

. . .
...

ck freqk,1 freqk,2 ... freqk,k

Table 7: The number of points in cluster ci that falls in cluster c′j in the transformed dataset.

in the original database. However, this is not always the case, and we have some potential

problems after dimensionality reduction: a) a noise data point ends up clustered; b) a point

from a cluster becomes a noise point; and c) a point from a cluster migrates to a different cluster.

In this research, we focus primarily on partitioning methods. In particular, we use K-means

(Macqueen, 1967), one the most used clustering algorithms. Since K-means is sensitive to noise

points and clusters all the points in a dataset, we have to deal with the third problem mentioned

above (a point from a cluster migrates to a different cluster).

Our evaluation approach focuses on the overall quality of generated clusters after dimen-

sionality reduction. We compare how closely each cluster in the transformed data matches its

corresponding cluster in the original dataset. To do so, we first identify the matching of clus-

ters by computing the matrix of frequencies showed in Table 7. We refer to such a matrix as

the clustering membership matrix (CMM), where the rows represent the clusters in the original

dataset, the columns represent the clusters in the transformed dataset, and freqi,j is the number

of points in cluster ci that falls in cluster c′j in the transformed dataset.

After computing the frequencies freqi,j, we scan the clustering membership matrix calculat-

ing precision, recall, and F-measure for each cluster c′j with respect to ci in the original dataset

(Larsen & Aone, 1999). These formulas are given by the following equations:

Precision (P ) =
freqi,j

|c′i|
(7)

Recall (R) =
freqi,j

|ci|
(8)
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F − measure (F ) =
2 × P × R

(P + R)
(9)

where |X| is the number of points in the cluster X.

For each cluster ci, we first find a cluster c′j that has the highest F-measure among all the c′l,

1 ≤ l ≤ k. Let F (ci) be the highest F-measure for cluster ci, we denote the overall F-measure

(OF) as the weighted average of F (ci), 1 ≤ i ≤ k, as follows:

OF =

∑k
i=1

|ci| × F (ci)
∑k

i=1
|ci|

(10)

In the next sections, we present the performance evaluation results for clustering based on

Equation (10).

5.4 Measuring the Effectiveness of the DRBT over Centralized Data

To measure the effectiveness of DRBT in PPC over centralized data, we started by computing

the relative error that the distances in d-k space suffer from, on the average. To do so, we used

the two random projection approaches (RP1 and RP2) mentioned in Step 3 of Section 5.2.

A word of notation: hereafter we denote the original dimension of a dataset as do and reduced

dimension of the transformed dataset as dr. This notation is to avoid confusion between the

reduced dimension of a dataset (k) and the number of clusters used as input of the algorithm

K-means.

An important feature of the DRBT is its versatility to trade privacy, accuracy, and commu-

nication cost. The privacy preservation is assured because random projection is a non-invertible

transformation, as discussed in Section 4.4. We here study the trade-off between accuracy and

communication cost. The accuracy is represented by the error that the distances in do-dr space

suffer from, while the communication cost is represented by the number of dimensions that we

reduce in the datasets. We selected two datasets: Pumsb and Chess with 74 and 37 dimensions,

respectively. We reduced the dimensions of these datasets and computed the error. Figure 4(a)
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shows the error produced by RP1 and RP2 on the dataset Pumsb and Figure 4(b) shows the

error produced by RP1 and RP2 on the dataset Chess. These results represent the average value

of five trials. The error produced by RP1 and RP2 on the five datasets can be seen in Figures 8,

9, 10, 11, and 12.

Chess dr = 37 dr = 34 dr = 31 dr = 28 dr = 25 dr = 22 dr = 16

RP1 0.000 0.015 0.024 0.033 0.045 0.072 0.141
RP2 0.000 0.014 0.019 0.032 0.041 0.067 0.131

Table 8: The error produced on the Chess dataset (do = 37).

Mushroom dr = 23 dr = 21 dr = 19 dr = 17 dr = 15 dr = 13 dr = 9

RP1 0.000 0.020 0.031 0.035 0.048 0.078 0.155
RP2 0.000 0.017 0.028 0.029 0.040 0.079 0.137

Table 9: The error produced on the Mushroom dataset (do = 23).

Pumsb dr = 74 dr = 69 dr = 64 dr = 59 dr = 49 dr = 39 dr = 29

RP1 0.000 0.006 0.022 0.029 0.049 0.078 0.157
RP2 0.000 0.007 0.030 0.030 0.032 0.060 0.108

Table 10: The error produced on the Pumsb dataset (do = 74).

We observed that, in general, RP2 yielded the best results in terms of the error produced

on the datasets (the lower the better). In the dataset Chess the difference between RP2 and

RP1 was not significant. These results confirm the same findings in (Bingham & Mannila, 2001)

and backup the theory of random projection (the choice of the random matrix) proposed in

(Achlioptas, 2001). We noticed from the figures that the DRBT trades off accuracy (error) for

communication cost (number of reduced dimensions) when the data are reduced up to 50% of the

dimensions. In this case, the trade-off between the error and the communication cost is linear.

However, reducing more than 50% of the dimensions, the communication cost is improved but

the accuracy is compromised since the error produced on the datasets grows faster. Therefore,

a data owner should consider carefully this trade-off before releasing some data for clustering.
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Connect dr = 43 dr = 37 dr = 31 dr = 25 dr = 19 dr = 16 dr = 13

RP1 0.000 0.016 0.037 0.063 0.141 0.159 0.219
RP2 0.000 0.016 0.028 0.062 0.122 0.149 0.212

Table 11: The error produced on the Connect dataset (do = 43).

Accidents dr = 18 dr = 16 dr = 14 dr = 12 dr = 10 dr = 8 dr = 6

RP1 0.000 0.033 0.034 0.044 0.094 0.144 0.273
RP2 0.000 0.018 0.023 0.036 0.057 0.108 0.209

Table 12: The error produced on the Accidents dataset (do = 18).
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Figure 4: (a) The error produced on the dataset Pumsb (do = 74); (b) The error produced on
the dataset Chess (do = 37).
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After evaluating the error produced on the datasets, we used the algorithm K-means to find

the clusters in the original and transformed datasets. We varied the number of clusters from 2

to 5 in the five datasets. Subsequently, we compared how closely each cluster in the transformed

dataset matches its corresponding cluster in the original dataset by computing the F-measure

given in Equation (10).

Table 13 shows the results of the F-measure for the Accidents dataset. We reduced the

original 18 dimensions to 12. We repeated each experiment 10 times and computed the minimum,

average, maximum, and standard deviation for each measured value of the F-measure. We

simplify the results by showing only one dataset (Accidents). The values of the F-measure for

the other datasets can be found in Tables 14, 15, 16, and 17. Note that we computed the values

of the F-measure only for the random projection RP2 since its results were slightly better than

those yielded by RP1.

Data k = 2 k = 3
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.931 0.952 0.941 0.014 0.903 0.921 0.912 0.009

Data k = 4 k = 5
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.870 0.891 0.881 0.010 0.878 0.898 0.885 0.006

Table 13: Average of the F-measure (10 trials) for the Accidents dataset (do = 18, dr = 12).

Data k = 2 k = 3
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.529 0.873 0.805 0.143 0.592 0.752 0.735 0.050

Data k = 4 k = 5
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.597 0.770 0.695 0.063 0.569 0.761 0.665 0.060

Table 14: Average of F-measure (10 trials) for the Chess dataset (do = 37, dr = 25).

We noticed that the values of the F-measure for the Chess and Connect datasets (see Ta-

bles 14 and 17) were relatively low when compared with the results of the F-measure for the

other datasets. The main reason is that the data points in these datasets are densely distributed.
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Data k = 2 k = 3
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.972 0.975 0.974 0.001 0.689 0.960 0.781 0.105

Data k = 4 k = 5
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.727 0.864 0.811 0.058 0.747 0.884 0.824 0.051

Table 15: Average of F-measure (10 trials) for the Mushroom dataset (do = 23, dr = 15).

Data k = 2 k = 3
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.611 0.994 0.909 0.140 0.735 0.991 0.965 0.081

Data k = 4 k = 5
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.846 0.925 0.891 0.028 0.765 0.992 0.838 0.041

Table 16: Average of F-measure (10 trials) for the Pumsb dataset (do = 74, dr = 38).

Data k = 2 k = 3
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.596 0.863 0.734 0.066 0.486 0.863 0.623 0.103

Data k = 4 k = 5
Transformation Min Max Avg Std Min Max Avg Std

RP2 0.618 0.819 0.687 0.069 0.572 0.763 0.669 0.069

Table 17: Average of F-measure (10 trials) for the Connect dataset (do = 43, dr = 28).
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Thus, applying a partitioning clustering algorithm (e.g., K-means) to datasets of this nature in-

creases the number of misclassified data points. On the other hand, when the attribute values

of the objects are sparsely distributed, the clustering results are much better (see Tables 13, 15,

and 16).

5.5 Measuring the Effectiveness of the DRBT over Vertically Parti-

tioned Data

Now we move on to measure the effectiveness of DRBT to address PPC over vertically partitioned

data. To do so, we split the Pumsb dataset (74 dimensions) from 1 up to 4 parties (partitions)

and fixed the number of dimensions to be reduced (38 dimensions). Table 18 shows the number

of parties, the number of attributes per party, and the number of attributes in the merged

dataset which is subjected to clustering. Recall that in a vertically partitioned data approach,

one of the parties will centralize the data before mining.

No. of parties No. of attributes per party No. of attributes
in the merged dataset

1 1 partition with 74 attributes 38
2 2 partitions with 37 attributes 38
3 2 partitions with 25 and 1 with 24 attributes 38
4 2 partitions with 18 and 2 with 19 attributes 38

Table 18: An example of partitioning for the Pumsb dataset.

In this example, each partition with 37, 25, 24, 19, and 18 attributes was reduced to 19,

13, 12, 10, and 9 attributes, respectively. We applied the random projections RP1 and RP2

to each partition and then merged the partitions in one central repository. Subsequently, we

computed the stress error on the merged dataset and compared the error with that one produced

on the original dataset (without partitioning). Figure 5 shows the error produced on the Pumsb

dataset in the vertically partitioned data approach. As we can see, the results yielded by RP2

were again slightly better than those yielded by RP1.

Note that we reduced approximately 50% of the dimensions of the dataset Pumsb and the
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Figure 5: The error produced on the dataset Pumsb over vertically partitioned data.

trade-off between accuracy and communication cost is still efficient for PPC over vertically

partitioned data.

We also evaluated the quality of clusters generated by mining the merged dataset and com-

paring the clustering results with those mined from the original dataset. To do so, we computed

the F-measure for the merged dataset in each scenario, i.e., from 1 up to 4 parties. We varied the

number of clusters from 2 to 5. Table 19 shows values of the F-measure (average and standard

deviation) for the Pumsb dataset over vertically partitioned data. These values represent the

average of 10 trials considering the random projection RP2.

No. of k = 2 k = 3 k = 4 k = 5
parties Avg Std Avg Std Avg Std Avg Std

1 0.909 0.140 0.965 0.081 0.891 0.028 0.838 0.041
2 0.904 0.117 0.931 0.101 0.894 0.059 0.840 0.047
3 0.874 0.168 0.887 0.095 0.873 0.081 0.801 0.073
4 0.802 0.155 0.812 0.117 0.866 0.088 0.831 0.078

Table 19: Average of the F-measure (10 trials) for the Pumsb dataset over vertically partitioned
data.

We notice from Table 19 that the results of the F-measure slightly decrease when we increase

the number of parties in the scenario of PPC over vertically partitioned data. Despite this fact,

the DRBT is still effective to address PPC over vertically partitioned data in preserving the

quality of the clustering results as measured by F-measure.
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5.6 Discussion on the DRBT When Addressing PPC

The evaluation of the DRBT involves three important issues: security, communication cost, and

quality of the clustering results. We discussed the issues of security in Section 4.4 based on

Lemma 2, and the issues of communication cost and space requirements in Section 4.5. In this

Section, we have focused on the quality of the clustering results.

We have evaluated our proposed data transformation method (DRBT) to address PPC. We

have learned some lessons from this evaluation, as follows:

• The application domain of the DRBT: we observed that the DRBT does not present

acceptable clustering results in terms of accuracy when the data subjected to clustering are

dense. Slightly changing the distances between data points by random projection results

in misclassification, i.e., points will migrate from one cluster to another in the transformed

dataset. This problem is somehow understandable since partitioning clustering methods

are not effective to find clusters in dense data. The Connect dataset is one example which

confirms this finding. On the other hand, our experiments demonstrated that the quality

of the clustering results obtained from sparse data is promising.

• The versatility of the DRBT: using the DRBT, a data owner can tune the number of

dimensions to be reduced in a dataset trading privacy, accuracy, and communication costs

before sharing the dataset for clustering. Most importantly, the DRBT can be used to

address PPC over centralized and vertically partitioned data.

• The choice of the random matrix: from the performance evaluation of the DRBT we

noticed that the random projection RP2 yielded the best results for the error produced

on the datasets and the values of F-measure, in general. The random projection RP2 is

based on the random matrix proposed in Equation (5).
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6 Related Work

Some effort has been made to address the problem of privacy preservation in clustering. The class

of solutions for this problem has been restricted basically to data partition and data modification.

6.1 Data partitioning techniques

Data partitioning techniques have been applied to some scenarios in which the databases avail-

able for mining are distributed across a number of sites, with each site only willing to share data

mining results, not the source data. In these cases, the data are distributed either horizontally

or vertically. In a horizontal partition, different entities are described with the same schema in

all partitions, while in a vertical partition the attributes of the same entities are split across the

partitions. The existing solutions can be classified into Cryptography-Based Techniques (Vaidya

& Clifton, 2003) and Generative-Based Techniques (Meregu & Ghosh, 2003).

6.2 Data Modification Techniques

These techniques modify the original values of a database that needs to be shared, and in doing

so, privacy preservation is ensured. The transformed database is made available for mining

and must meet privacy requirements without losing the benefit of mining. In general, data

modification techniques aim at finding an appropriate balance between privacy preservation

and knowledge disclosure. Methods for data modification include noise addition techniques

(Oliveira & Zäıane, 2003) and space transformation techniques (Oliveira & Zäıane, 2004).

The approach presented in this paper falls in the space transformation category. In this

solution, the attributes of a database are reduced to a smaller number. The idea behind this

data transformation is that by reducing the dimensionality of a database to a sufficiently small

value, one can find a trade-off between privacy and accuracy. Once the dimensionality of a

database is reduced, the released database preserves (or slightly modifies) the distances between

data points. In addition, this solution protects individuals’ privacy since the underlying data
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values of the objects subjected to clustering are completely different from the original ones.

7 Conclusions

In this paper, we have showed analytically and experimentally that Privacy-Preserving Cluster-

ing (PPC) is to some extent possible. To support our claim, we introduced a new method to

address PPC over centralized data and over vertically partitioned data, called the Dimension-

ality Reduction-Based Transformation (DRBT). Our method was designed to support business

collaboration considering privacy regulations, without losing the benefit of data analysis. The

DRBT relies on the idea behind random projection to protect the underlying attribute values

subjected to clustering. Random projection has recently emerged as a powerful method for

dimensionality reduction. It preserves distances between data objects quite nicely, which is

desirable in cluster analysis.

We evaluated the DRBT taking into account three important issues: security, communication

cost, and accuracy (quality of the clustering results). Our experiments revealed that using

DRBT, a data owner can meet privacy requirements without losing the benefit of clustering since

the similarity between data points is preserved or marginally changed. From the performance

evaluation, we suggested guidance on which scenario a data owner can achieve the best quality

of the clustering when using the DRBT. In addition, we suggested guidance on the choice of the

random matrix to obtain the best results in terms of the error produced on the datasets and

the values of F-measure.

The highlights of the DRBT are as follows: a) it is independent of distance-based clustering

algorithms; b) it has a sound mathematical foundation; c) it does not require CPU-intensive

operations; and d) it can be applied to address PPC over centralized data and PPC over vertically

partitioned data.
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Oliveira, S. R. M., & Zäıane, O. R. (2003). Privacy Preserving Clustering By Data Transformation.
In Proc. of the 18th Brazilian Symposium on Databases (p. 304-318). Manaus, Brazil.
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