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Abstract. Role-playing is essential for leveraging large language models
as it enhances user interactions, making the models more relatable and
engaging. This is typically achieved through carefully crafted prompts
for closed-source models or fine-tuning open-source models with specific
style instructions. We propose a novel method called the Style Weight
Language Model (SWLM), which extracts stylistic features from target
roles and expresses styles through dialogue. Specifically, we first fine-tune
the language model using a widely available instruction dataset. Next,
we extract the desired role features using a mixed corruption strategy
and store them in specific Style Weight Increments, which are injected
into non-style models as representations of the desired style. To balance
instructions and style, we also group and train Task Weight Increments
for instructions. Experimental results demonstrate that SWLM reduces
input token length and API consumption compared to prompt meth-
ods. Additionally, SWLM decouples instructions from style, reducing re-
liance on high-quality datasets. Remarkably, using only unsupervised
role datasets, SWLM performs comparably to methods fine-tuned with
style instruction sets while offering greater scalability. By enhancing the
fluidity of interactions and minimizing resource consumption, SWLM
represents a significant advancement in role-playing applications.
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1 Introduction

Large language models (LLMs) such as Llama-2 [23] and ChatGPT-4 [14] are
widely recognized as marked advancements in artificial intelligence develop-
ment. These models have significantly transformed natural language processing
(NLP), shifting the focus away from conventional tasks like summarization and
translation towards more sophisticated and interactive functions, such as role-
playing [24]. Specifically, role-playing is designed to allow LLMs to adopt and
mimic different characters or personas with unique characteristics and styles of
⋆ Corresponding Author. Email: caopeng@mail.neu.edu.cn.
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conversation [20,6,29]. This capability enhances user interactions, making the
models seem more relatable, friendly, and engaging.

Currently, there are two main approaches to implementing role-playing: 1.
Utilizing detailed prompts with closed-source model interfaces [24,8]. This method
relies on extensive pre-training data and large-scale parameters to achieve opti-
mal results. However, lengthy prompts increase costs and limit input sequence
length [28]. 2. Fine-tuning open-source models with style-specific instructions [24].
This approach reduces the context window load but incurs additional costs due
to the need for customized datasets. Additionally, the quality of these datasets
may be influenced by subjective factors, and some studies attempt to construct
personal profiles, which poses privacy risks [28].

This work introduces a novel approach called Style Weight Language Model
(SWLM). The core idea of SWLM is to extract the stylistic features of the
target role and inject them into the model aligned with the instruction. Our
approach offers three main advantages: 1) Decoupling instruction and style
training reduces the difficulty of acquiring customized datasets. 2) Extracting
style features as a scalable incremental weight preserves input window space. 3)
Directly injecting style features avoids the subjectivity of style instructions and
the privacy risk of using personal profiles as the information retrieval source.

SWLM first conducts full-parameter fine-tuning of the model using a widely
available instruction set (e.g., Alpaca [15]). Then, we extract style features from
an unsupervised corpus with a specific role style. Employing a mixed corruption
strategy, such as randomly masking parts of sentences or adding extra noise.
During training, we freeze the model parameters and require the model to re-
construct sentences by updating weight increments. These increments are called
Style Weight Increments and contain the style features learned for a given
role in the latent space. Preliminary experiments reveal that despite minimal
changes to parameters, the embedded increments still lead to instruction forget-
ting [10]. We introduce a specially designed module named task vector space and
train Task Weight Increments to address this. During extracting style, we
employ Key-Value retrieval to derive interpolated task increments adaptively,
enhancing the adaptability of style increments across various scenarios.

Experiments showed that SWLM can autonomously learn the style of de-
sired roles from unsupervised datasets and effectively engage in role-playing.
Compared to style instruction fine-tuning methods, we achieved superior out-
comes, with a smoother training process and easier dataset acquisition. While a
slight performance gap exists compared to methods based on closed-source mod-
els like ChatGPT-4 [14] with diverse and complex agents, SWLM offers greater
scalability and a more extended input sequence.

The main contributions can be summarized as follows: (1) We propose a
new role-playing idea that eliminates the dependence on prompt words or style
instructions, thereby achieving more flexible text processing. (2) The proposed
method is scalable, and the incremental weights can be reused. (3) Extensive
experiments demonstrate that SWLM exhibits performance comparable to the
SOTA performance level.
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2 Preliminary

2.1 Incremental Learning and Weight Increments

Incremental learning [16] supports the progressive acquisition of knowledge through
a sequence of tasks while addressing the problem of catastrophic forgetting. In
this context, a language model sequentially encounters T distinct tasks, repre-
sented as T = {T , . . . , TT }. Each Tt includes a training set {(xti , yti)}

NT
i=1, where

xti is input and yti is corresponding label. NT is the number of training pair.
The parameter fθ of the model aims to minimize the generalization error across
all tasks. This objective is formulated as:

argmin
θ

T∑
t=1

∑
(xt,yt)∈Tt

LTt(fθ(xt), yt) (1)

where LTt represents the loss function specific to task Tt. Further, previous
research [4,12,5] has demonstrated that fine-tuning minimal trainable parameters
can significantly enhance the adaptability to specific tasks. Inspired by the above
methods, we propose a Weight Increment strategy to extract features effectively.
The following objective guides this adaptation:

argmin
θ′

∑
LT (fθ′(x), y) (2)

where θ′ = θ0 +∆θ, and ∆θ represents weight increments and θ0 is the frozen
full-parameter. From an implementation standpoint, attention layers contain
a wealth of potential information. By adjusting a portion of the parameters,
the data centroids can be further optimized. In this work, we apply low-rank
adaptation techniques [5] to further minimize computational costs. The update
process of the attention layer is:

Y = W ′x+ bias ≈ (W0 +∆W )x = (W0 +BA)x (3)

let W0 ∈ Rd×k be a frozen matrix, while B ∈ Rd×r and A ∈ Rr×k are trainable
parameters, with r ≪ min(d, k). Here, d and k denote the input and output
feature dimensions, respectively, and bias refers to the bias term associated with
the linear transformation.

2.2 Our Problem Formulation

Based on the above works, we propose a novel role-playing objective that decou-
ples instruction execution from role style and conducts training separately:

argmin
θ̃

∑
(x,y)∈T

LT (fθ̃(x), y), θ̃ = θ0 +∆θT +∆θS (4)

where θ0 is frozen, LT and ∆θT respectively represent the loss function and task
increment weight specific to task T . For ∆θS , we will allocate the corresponding
weight increment from memory to inject the style.
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The key motivation is to treat style learning as a sub-task within incremental
learning. The main challenge is establishing a beneficial connection between the
parameter changes ∆θS and ∆θT to balance their mutual forgetting.
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Fig. 1: Framework of SWLM. ∆θT and ∆θS represent task and style weight
increments. ˜∆θT is the interpolated weight increment derived from task vector
space based on q, and k denotes the key vector associated with each ∆θT .

3 Methodology

As is shown in Figure 1, our method can be divided into two main stages. In
stage 1, we use an extensively acquired instruction dataset to align the LLMs
with instructions. Then, we categorize the instruction set according to different
task types and extract weight increments that contain task features. These task
weight increments are then stored in the specific vector space. In stage 2, we
introduce the Style Extractor module, which consists of two parts: first, we
adopt a mixed corruption strategy for style extraction; second, we dynamically
export interpolation task increments to adjust the latent space, helping learned
style features that can adapt to complex dialogue scenes.

3.1 Instruction Alignment

Instruction tuning involves training models to better carry out specific instruc-
tions, improving their ability to align with expectations. In role-playing, the
capability of a model to execute instructions is crucial. To this end, we utilized
the Alpaca dataset [15] to enhance the performance of large models. Given the
complex dialogue environments, we opted for full-parameter tuning to obtain θ0,
which offers excellent stability and effectiveness.
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3.2 Construction of Task Vector Space

Grouping of Instructions. To simulate complex and variable environments,
we propose diverse Task Weight Increments. This requires delineating bound-
aries within the instruction dataset to reduce interdependencies between sets
of instructions. Firstly, we categorize the instructions based on the types of
downstream tasks they address. Following the approach suggested by [13], we
perform content-based clustering for each downstream task and apply a min-max
strategy to segment these clusters. Finally, We define T distinct group tasks as
{T1, . . . , TT }. For each supervised instruction group Ti, we train to obtain the
corresponding model by updating ∆θTi .

Task Vector Space. We constructed a Task Vector Space to store task weight
increments based on key-value (KV) queries. In this section, we describe the
methods to build Key and Query vectors and how to derive the required task
weight increments. During construction, the key may be optimized, while it will
be frozen later when setting up the style extraction environment.

Initially, we set up a collection of parameters using a semi-orthogonal matrix
to ensure that the initial keys are orthogonal to one another. Next, for the
input x, we use a frozen BERT model [3], represented as f bert(·), to transform
input x ∈ Rl×c into a hidden feature space. Then we obtain a query vector
q ∈ Rc, where l and c indicate the sequence and feature dimension. During the
optimization stage, we begin by computing the cosine similarity between the
query q and each key k. Then we employ the KNN to identify the top−Kclosest
vectors, represented as Kq = {k1, . . . , kK} where K ≤ T . These selected keys Kq

will be optimized to better match the distribution of the instance. The updated
expression for the selected keys is as follows:

k′ ← k + γ∇k cos(q,k), for k ∈ Kq, (5)

where γ represents stride, and ∇k cos(q,k) denotes the gradient of the cosine
similarity function concerning k.

After optimization in the vector space, all keys k are frozen and can only be
derived through querying the relevant values, i.e., the task weight increments.
Especially for any input x, we compute the correlation between the query and
the key to obtain the Retrieval Score St, which is calculated as follows:

St = softmax(q⊤ · kt) (6)

Finally, the adaptive incremental weights are computed as follows: ˜∆θT =∑T
t=1 St ·∆θtT . Then, the interpolated ˜∆θT will be dynamically embedded into

the model parameters when extracting style features.

Discussion. The task vector space based on key-value retrieval ensures that
the style features learned are adaptable in a variable environment. Specifically,
xT used to optimize the vector space (xT ∼ PT ) are sourced from the target
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dataset. During retrieval, each input xS originates from the style dataset (i.e.,
xS ∼ PS). The distributional differences between the target and style datasets
may lead to performance degradation or forgetting issues. We aim to fine-tune
the parameters fθ to fit the style dataset, thereby transforming it from fθ to
fθ+∆θS . The internal optimization objective of the task vector space is to identify
the optimal centroid to fit the distribution of the style dataset best.

3.3 Style Extractor

Taking inspiration from [17], we introduce the Style Extractor module, which
implements style transfer by adding or subtracting noise.

Corruption Strategies. Our objective is to explore different types of data
corruption through an unsupervised learning approach similar to style transfer
for feature extraction. We design two reconstruction tasks, each associated with
a specific loss function. In these tasks, each sentence si in the dataset is altered
by a specific function ℧, producing a new sentence s̃i = ℧(si). The choices of
functions include Noise (℧N ) and Back-Translation (℧BT ).

Noise. ℧N manipulates input data in three ways to introduce randomness:
dropping, replacing, and shuffling tokens. Following is a detailed breakdown:
Drop Noise: Each token in a sequence is independently dropped with a prob-
ability p, where p is a noise probability sampled from a uniform distribution for
each instance. Replace Noise: For each token in a sequence si, another sequence
sj is randomly chosen. Each token sik in si is replaced by the corresponding to-
ken sjk in sj with the same probability p. If sj has fewer tokens than the position
k being replaced in si, no replacement occurs for that token. Shuffle Noise:
Tokens in a sequence si are selected with a probability p, and those selected
tokens are shuffled among themselves. The above noise mechanisms enhance the
ability to interpret and generate text in various styles.

Back-Translation. To enhance the coherence control in text generation,
we adopt the corruption function method proposed by [11]. ℧BT involves set-
ting the model to inference mode and transforming a sentence si into another
style, thus generating a corrupted version of the sentence s̃i. In previous studies,
specifying a different target style was straightforward when labels were available.
However, in our current scenario without labels, we achieve style transformation
by randomly selecting another sentence sj as the context.

During training, si serves as the target, s̃i serves as the input, and the pre-
ceding sentence si−1 serves as the context for calculating the cross-entropy loss.
The total loss for training is as follows:

Ltotal(θ̃) = −
∑
℧∈F

E
s∼S

log Pr(si | ℧(si), si−1; θ̃), θ̃ = θ0 + ˜∆θT +∆θS (7)

where F = {℧N ,℧BT } is the set of corruption functions. θ0 is frozen, ˜∆θT is
updated with query vector , and ∆θS is optimized through gradient descent.
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Fig. 2: The illustration demonstrates the selection of parameter segments desig-
nated for storing weight increments.

Application of Weight Increments. In the previous section, we discussed re-
parameterizing pre-trained models using two weight increments: task weight
increments and style weight increments. Initial studies have found that
optimizing the attention layers can effectively store instruction-level knowledge
while optimizing feedforward layers enhances expressive capabilities.

In Figure 2, we specifically focus on optimizing the weight matrices in the
value layers of the attention modules to extract task-related incremental weights.
Additionally, we have added an extra bypass structure in the feedforward layers
to capture Style Weight Increments.

Summary. To fully present our workflow, the algorithm of SWLM is shown
in Algorithm 1.

4 Experiments

4.1 Experimental Settings

Datasets. The renowned Alpaca Instruction [15] set was selected as train-
ing data to enhance the backbone model’s ability to understand and execute
instructions. The Alpaca instruction set is a widely used instruction-aligned
dataset that effectively trains models to perform in complex environments. We
chose a dataset containing original dialogue statements from 48 characters of
Genshin [27] for style extraction. Specifically, we selected 50 unsupervised di-
alogues for each sub-dataset: Xiangling, Hutao, Mona, Diluc, Venti, and Noelle.
Additionally, we introduced the Shakespeare [31] dataset, which includes 2,000
selected sentences. These sentences are derived from various Shakespearean dra-
mas and poems and have been rigorously filtered to ensure their representatives
and authenticity of styles.

Backbones. LLaMA2-7B, 13B, and 33B are our backbone networks [23]. It is
important to note that the LLaMA2 series is only a pre-trained model, and they
require fine-tuning through instruction sets to enhance their command following
and dialogue capabilities. For a fair comparison, we selected LLaMA2-7B as the
backbone of the main experiments.
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Algorithm 1: Style Weight Language Model
Input: Instruction T and correspond training sets (xj , yj)

N
j=1 ∼ DT ;

Target style S and sentence set (si)
M
i=1 ∼ DS

Output: Target style weight increment ∆θS
Align instructions with full-parameter tuning to obtain θ0
Cluster instructions via task categories to obtain {T1, . . . , TT }
for t = 1, . . . , T do

Reset k and correspond weight increments ∆θtT
for (xj , yj)

N
j=1 ∼ DT

T do
Use efficient method to train task weight increments ∆θTT via Eq. 2
Use frozen BERT to calculate query via q = f bert(xj)
Use KNN to identify the most similar keys Kq = {k1, . . . , kK}
Upgrade key k ∈ kq via k′ ← k + γ∇k cos(q,k) as Eq. 5

end
Store aligned key-value pair [kt;∆θTT ] in task vector space

end
for (si)

M
i=1 ∼ DS do

Use Noise and Back-Translation to obtain ℧N (si) and ℧BT (si)
Calculate query via q = f bert(si)
Calculate Retrieval Score for each task St = softmax(q⊤ · kt) as Eq. 6
Obtain target weight increments via ˜∆θT =

∑T
t=1 St ·∆θtT

Update ∆θS via Ltotal(θ̃) = −
∑

℧∈F E
s∼S

log Pr(si | ℧(si), si−1; θ̃)as Eq. 7

end

Configuration. In our experiments with the LLaMA2 backbone, we employed
2 NVIDIA A100 GPUs. The learning rate was adjusted to 2 × 10−4, with a
weight decay of 0.01 and a batch size of 2. These experiments were conducted
over 3 epochs with 0.03 warmup steps. The key optimization learning rate was
1× 10−3. All experiments used AdamW as the optimizer.

Baselines. We selected closed-source model baselines and open-source model
baselines as follows: RoleGPT [24] relies on the ChatGPT-4 and is driven by
specific prompts for role-playing. It use zero-shot and few-shot Prompt Engineer-
ing to control ChatGPT-4 [14]; The character. ai [21] is a platform dedicated
to role-playing, and we consider it a proprietary one. Given that character.ai
does not provide a public API or an interface for free extension, we had to col-
lect data manually for evaluation. RoleLLaMA [24] and RoleGLM [24] are
role-playing methods based on LLaMA2-7B and ChatGLM2-6B, respectively,
fine-tuned with style instruction generating via ChatGPT-3.5 [2] to integrate
role-specific knowledge into the model weights. Alpaca [15] is a variant based
on LLaMA2-7B, trained on the Alpaca instruction set, and we used prompts to
enable it to perform role-playing. Additionally, we examined LAMP-T5 [18], a
model that employs a style-based retrieval augmented generation approach.
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Table 1: Presentation of Main Results. R1, R2, RL represent ROUGE-1,
ROUGE-2, ROUGE-L; B1, B2 represent BLEU-1, BLEU-2; D1, D2 represent
Distinct-1, Distinct-2. " +Task Increments" means we retrieved and embedded
Task Weight Increments during inference.
Task Summarization Dialog cost
Metrics R1 R2 RL ACC B1 B2 D1 D2 ACC AS TOKEN
Zero-shot RoleGPT 34.2 21.6 30.0 66.2 42.7 23.1 6.1 29.2 70.8 187.4 0
Few-shot RoleGPT 30.7 18.6 29.2 70.8 40.2 19.8 6.8 29.6 73.5 273.5 0
character.ai 25.1 12.1 19.2 52.8 28.2 16.2 3.3 17.8 50.2 - -
RoleLLaMA 30.3 17.9 25.4 61.0 37.7 22.8 4.9 19.7 63.2 0 6,451,470
RoleGLM 29.1 15.2 22.8 59.3 38.9 24.1 4.2 17.2 61.8 0 6,451,470
LAMP-T5 25.3 12.5 20.4 52.7 36.7 23.7 3.5 14.9 54.0 0 1,552,120
Zero-shot Alpaca 34.7 20.1 31.2 53.6 40.2 23.1 2.8 16.5 55.1 187.4 0
Few-shot Alpaca 33.9 20.0 30.7 56.1 40.1 22.5 4.5 19.8 56.4 273.5 0
Ours 36.8 22.7 32.9 62.7 41.7 26.5 5.6 22.5 63.4 0 0
+Task Increments 38.1 24.2 34.0 58.3 41.5 29.2 4.9 19.7 59.1 0 0

4.2 Evaluation Protocol

Since role-playing is still an emerging field, existing evaluation benchmarks are
not sufficiently robust [24]. To address this, we have integrated commonly used
metrics from model evaluations with those from the style transfer domain to
establish our evaluation criteria. Our approach includes standard generation
benchmarks such as summarization tasks like CNN/DM and Xsum [19], as
well as dialog tasks like PersonaChat and DailyDialog [7]. The former is a
preliminary test of the generalization ability, and the latter tests the conversa-
tional ability in a role-playing scenario. We assess the overlap between the ground
truth and the predicted responses to evaluate the general performance. These
tasks are conducted in a five-shot manner to ensure optimal model performance.

Subsequently, we use a style classifier developed by [27] based on ChatGPT-
4 [14] to evaluate the Style Accuracy (ACC). This solution has proven effective
and relies on powerful LLMs that adapt to complex environments [27]. We also
assessed the additional input sequence length (AS) per conversation and evalu-
ated the number of input and output tokens (TOKEN) consumed in generating
style instruction sets.

5 Results

5.1 Weight Increments vs. Prompt Engineer

Table 1 compares the SWLM method and Prompt Engineering. We first tested
each baseline method with a summarization task in a role-playing setting. The
results show that our method and the prompting approach effectively generate
statements with distinctive character styles, maintaining high ROUGE scores
while demonstrating considerable style consistency (ACC). Although our method
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slightly lacks style by 11.4%, it slightly outperforms the Few-shot RoleGPT
in overall content quality. Maintaining the same role-playing setup, we fur-
ther tested dialogue generation capabilities. The experiments indicate that our
method surpasses human-like responses in terms of overlap by 13.7%, showing
more vital response consistency. However, it still lags in diversity and style con-
sistency by 13.6%. It’s important to note that the shortfall in style consistency
might be less than this figure due to self-bias. In addition, the Prompt method
has high requirements for the model’s capabilities. There is a significant gap
between Alpaca and RoleGPT using the same prompt.

Most importantly, our method does not occupy additional input sequences
compared to Prompt Engineering. Statistical data reveal that the Few-shot
RoleGPT requires 273.5 tokens per conversation to describe character traits
and role-playing guidelines. From a cost-effectiveness standpoint, if GPT-4.0 is
used as an interface, the additional cost of $0.01 per conversation could burden
long-term users.

5.2 Weight Increments vs. Instruct Tuning

As shown in Table 1, our method outperforms the fine-tuning approach with
style-specific instructions, especially in content overlap, where we lead by 23.4%.
Our method shows a slight advantage in character style consistency with a per-
formance increase of 2.7%.

Additionally, we have calculated the extra Token consumption for the com-
pared methods when customizing style instruction sets. With just two thousand
instructions generated per character, the additional Token consumption exceeds
6,000,000. Using ChatGPT-3.5 [2] to generate these instructions would cost $10;
using ChatGPT-4 [14] would increase the cost to over $200. This indicates signif-
icant cost limitations on the scalability of the traditional instruction fine-tuning
method. In contrast, our method only requires a few hundred unsupervised style
datasets, significantly reducing costs.

7 B 1 3 B 3 3 B2 0

3 0

4 0

5 0

6 0

7 0

7 B 1 3 B 3 3 B0

1 5

3 0

4 5

6 0

 R O U G E - 1
 R O U G E - 2
 R O U G E - L
 A C C

S c a l e s  o f  L L a M A S c a l e s  o f  L L a M A

Sc
ore

 B L U E - 1
 B L U E - 2
 D i s t i n c t - 1
 D i s t i n c t - 2
 A C C

Sc
ore

Fig. 3: Power of Scale.
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Fig. 4: Influence of Group Number.

Table 2: Ablation study.
Task Summarization Dialog
Metrics R1 R2 RL ACC B1 B2 D1 D2 ACC
w/o Instruction Alignment 22.5 14.7 20.5 47.2 27.7 29.5 7.6 28.5 45.8
w/o Task Vector Space 35.7 21.3 30.8 53.7 42.7 22.5 4.2 20.0 54.1
w/o KV retrial 35.9 22.1 32.3 54.9 40.2 21.3 4.8 23.1 56.5
w/o Task Style Extractor 35.9 24.1 35.3 52.9 41.5 24.4 4.3 25.2 51.5
w/o Noise 34.7 20.1 31.7 58.1 40.6 25.4 5.2 21.5 57.0
w/o Back-Translation 34.5 19.7 30.9 61.2 40.4 25.7 5.3 22.3 60.9
Ours 36.8 22.7 32.9 62.7 41.7 26.5 5.6 22.5 63.4

5.3 Analysis

Power of Scale. As shown in Figure 3, we analyze the various model scales in
LLaMA-2 across different model sizes (7B, 13B, 33B). Our results show that per-
formance improves with increasing model size. This indicates that larger models
enhance the ability to handle complex contexts and generate more accurate re-
sponses. Therefore, we believe using larger open-source models can reduce the
performance gap with ChatGPT-4.

Effect of Instruction Tuning. In the first row of Table 2, an instruction-
aligned model is essential for role-playing tasks. Therefore, our approach requires

Table 3: Different Task Weight Parts.
Task Weight (♡) Style Weight (♠) Summarization Dialog
Parts Key Query Value FFN R1 R2 RL ACC B1 B2 D1 D2 ACC

i ♡ ♠ 35.1 22.4 31.7 61.5 40.5 25.9 5.7 22.2 62.9
ii ♡ ♠ 35.2 22.3 32.5 62.2 40.3 26.3 5.2 22.1 63.1
iii ♡ ♠ 36.8 22.7 32.9 62.7 41.7 26.5 5.6 22.5 63.4
iv ♠ ♡ 36.2 22.1 31.9 61.7 40.2 25.5 5.5 22.3 62.4
v ♠ ♡ 36.0 22.3 32.7 61.2 40.4 26.2 5.6 22.4 62.5
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a foundation based on an instruction-aligned model; otherwise, conversational
abilities and role style will significantly deteriorate.

Effect of Task Vector Space. We introduced a task vector space that dynam-
ically adjusts the model parameters based on stylistic inputs, enabling the style
to adapt to various environments effectively. In the second row of Table 2, we
conducted an ablation study by freezing the model parameters and removing the
task vector space. The results demonstrate a significant decline in style consis-
tency. Additionally, the third row of Table 2 details another ablation where the
weight increment interpolation of KV retrieval was replaced with static linear
interpolation. Although this modification had a less severe impact than removing
the entire vector space, it still significantly affected the outcomes.

Table 4: Different Weight Types.
Task Summarization Dialog
Metrics R1 R2 RL ACC B1 B2 D1 D2 ACC
Finetune 26.1 17.5 23.1 57.3 32.7 18.3 5.4 20.5 52.1
Prompt 30.2 18.5 24.3 52.3 31.0 19.2 5.1 19.5 53.0
Adapter 32.5 20.2 25.7 56.7 35.3 20.5 5.3 21.8 57.4
Ours 36.8 22.7 32.9 62.7 41.7 26.5 5.6 22.5 63.4

Effect of Style Extractor. The accuracy of text style is a critical component
in role-playing tasks. To explore the effectiveness of style extraction, we con-
ducted an ablation study on style weight increments. As shown in the fourth
row of Table 2, the model’s ability to express style significantly declined when
it lacked style weight increments. Additionally, we conducted ablation studies
on different corruption strategies. As indicated in the fifth and sixth rows of
Table 2, removing Noise Strategy significantly negatively impacted the accuracy
of style modeling (ACC). At the same time, Back-translation primarily affected
the integrity of sentences (evidenced by a lower ROUGE or BLEU overlap).

Influence of Different Weight Parts. As shown in Table 3, we tested the
performance of task and style weight increments in different parts through per-
mutations and combinations. Our conclusions indicate that the attention layer
retains more instruction-related knowledge, while the feedforward layer focuses
more on the expression style. Placing the task increment weight in the Value
bypass yields more robust overall performance, whereas putting it in the feed-
forward layer bypass results in better consistency of character style.

Types of Weight Increments. We replaced the low-rank weight increments
with prompts and adapters and conducted a comparison using a two-stage indi-
vidual fine-tuning process. Table 4 shows that fine-tuning ensures style stability
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Table 5: Human Evaluation Metrics.
Method Style Content Fluency avg.Rank
RoleGPT 1.33 1.93 1.40 1.55
RoleLLaMA 2.83 2.70 2.06 2.53
Ours 1.83 1.36 1.86 1.68

but causes catastrophic instructions forgetting. Compared to the other two in-
cremental methods, the low-rank weight increments improve style accuracy by
10.5%, resulting in more stable overall performance.

Influence of Group Number. Figure 4 illustrates the model’s performance
when instructions are divided into different numbers of groups. Specifically, di-
viding instructions into 10-20 groups can achieve optimal performance, and the
accuracy of style recognition slightly improves as the number of groups increases.
However, having more groups also means the initial preparation will require more
computational resources.

Human Evaluation. We recruited 10 participants to evaluate 50 instances
from each style based on (1) Style transfer strength, (2) Content integrity, and
(3) sentence Fluency. The models were ranked from best to worst, from 1 to
3. Table 5 shows the average rankings of the five models based on participant
feedback. Our model outperforms two strong baselines in Content but is inferior
to RoleGPT in other aspects.

6 Related Work

Role-Playing. Recent advancements in LLMs have demonstrated promising
capabilities in customization and role-playing. Notably, developments in LLMs
such as GPT-4 [14] and LLaMA [23] showcase the potential to enhance user inter-
actions. However, there remains a significant gap between open-source LLMs and
their closed-source counterparts, such as ChatGPT-4 [24]. Open-source LLMs
often rely on additional input sequences to maintain role consistency and in-
teractivity [24,18,28], which can reduce the effective input window size. In con-
trast, closed-source models benefit from extensive access to high-quality, diverse
datasets that enhance their adaptability and personalization [8,9].

Vector Space Model (VSM). Unlike traditional keyword-based [1] or rule-
driven retrieval methods [22], VSM has emerged as a pivotal technique in the
field of information retrieval. It transforms queries into vectors within a latent
space, enabling the use of similarity measures like vector similarity to assess
the relevance of documents. Previous research has successfully integrated VSM
into various applications and contextual learning scenarios [25,26,30]. In our
work, VSM is utilized to facilitate model transfer and adaptation, addressing
the challenges of dynamic downstream tasks.
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7 Conclusion and Limitation

The SWLM eliminates the need for extensive prompts, offering flexible and
scalable text processing. It effectively learns character styles from unsupervised
datasets, achieving performance comparable to state-of-the-art models. We also
acknowledge that the additional retrieval framework increases computational and
memory storage costs. Nonetheless, this extra usage is minor compared to the
GPU memory usage of PLMs employed for word prediction. Another limitation
is it ignores psychological factors or background in character role-playing.
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