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Abstract. Speech has been adopted as a bioinformatic for detecting
depression. Current speech-based depression detection (SDD) methods
rely on raw signal and Mel-scale features as input. However, utilizing
raw signal as input leads to high model complexity, while using Mel-scale
features reduces model performance due to insufficient domain-specific
adaptation. To solve these issues, we present a depression speech analysis
(DSPA4) network, which contains a task-oriented learnable frequency-
domain filterbanks (LFB) module for optimizing spectral feature gener-
ation via end-to-end tuning of filter parameters, and a spectro-temporal
representation extraction (STE) module for identifying depression rep-
resentations in the LFB learned features, while guiding filter parameters
optimization. Furthermore, due to LFB exhibiting sensitivity to param-
eter initialization, a speech representation disentanglement strategy is
designed to guide filters to focus on the emotional representations, where
pre-trained parameters are used for initializing LFB. Our method yields
F1-scores of 0.792, 0.927 and 0.702 on the DAIC-woz, CMDC and EATD-
corpus datasets, respectively, with an average improvement of 8.9%, 1.2%
and 8.7% over compared state-of-the-art methods. The results show that
DSPA is effective in extracting depression-related features.

Keywords: Speech · Depression · Learnable filterbanks · Self-supervised
learning · Disentangle representation.

1 Introduction

Depression is a prevalent psychiatric disorder and a primary contributor to the
global burden of disease among young people, significantly increasing their risk of
suicide and profoundly impacting their emotional well-being [3]. Recently, speech
analysis offers a promising solution for depression diagnosis, since depressive
speech is characterized by different acoustic features, such as lower pitch, slower
4 https://github.com/IntelliDAL/Speech/tree/master/FD-learnableFilters

https://github.com/IntelliDAL/Speech/tree/master/FD-learnableFilters


2 Y. Wenju et al.

pitch change, slurring, long pauses and monotonous [8]. Developing an effective
speech-based depression detection (SDD) method that holds the potential to
advance depression screening is highly desirable.

Currently, deep learning methods [12] perform well in SDD tasks by using
low-level spectral features as input or modeling directly on the raw signal [22].
For example, vowel -CNNs [9] and Wav2Vec [4] utilized multiple convolutional
layers to reduce the signal dimensionality. It is worth noting that utilizing un-
constrained large kernel convolutions for speech signal modeling will yield a
large number of parameters [18]; Additionally, universal features such as Mel-
filterbanks (MFbanks) and Mel-frequency cepstral coefficients (MFCCs) have
been used as inputs to models like DepAudioNet [16] and Mfcc-LSTM [18]. How-
ever, these features are not tailored for SDD tasks, thereby failing to exhibit op-
timal domain adaptation [17,24]. Recently, several learnable time-domain (TD)
filterbanks [22] with few parameters have been employed to extract spectral fea-
tures by convolving the speech signal with the learnable filters (e.g., Gabor [23],
Sinc [17] and Gammton [15] filters). These filters tune their shape and parame-
ters in an end-to-end manner and achieve good domain adaptation. For example,
Gabor filterbanks was used to mine differential pronunciation frequencies in de-
pressed speech. [22]. Similarly, customized triangular and bell-shaped learnable
filters were optimized for processing speech in speaker verification tasks [14].

Despite the advances in generating features with learnable TD filterbanks,
two major challenges remain: 1) Although the learnable TD filters have few pa-
rameters, a wide time-window is necessary to achieve fine frequency resolution
as required by the Heisenberg uncertainty principle5. Therefore, to retain the
time information, these methods use a large convolution kernel with a smaller
stride in the wavelet transform, typically setting the stride to 1. This operation
significantly increases the computational effort. 2) DL-based SDD methods de-
pend heavily on extensive and well-annotated datasets, as the data annotation
requires significant effort from psychiatrists. As shown in Fig.1, the lack of an-
notated data poses an issue: how to effectively initialize these learnable filters?

Driven by these issues, an end-to-end Depression SPeech Analysis (DSPA)
network is designed to learn useful features and representations for speech data.
DSPA assumes that variations in pronunciation are independent of the textual
content in SDD tasks. These variations are localized within specific frequency
bands during certain time frames in the spectral features. Therefore, an effi-
cient Learnable Frequency-domain filterBanks (LFB) is first used for learning
depression features. It comprises a bank of learnable frequency-domain (FD) fil-
ters that adaptively identify key frequency bands from the speech signal with
low computation cost and few parameters. In addition, a spectro-temporal rep-
resentation extraction (STE) module is employed to extract key pronunciation
frequency bands within certain time frames of the learned features (i.e., spec-

5 It states that the product of signal’s time window and frequency bandwidth must
exceed a constant (1/4π).
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Fig. 1. Effect of different center frequency initial weights in our experiments, where U-
Hz denotes uniform sampling in Hertz. An important observation is that classification
results are influenced by variations in the initialization manner.

trogram patches). The combination of LFB and STE enables learnable filters to
flexibly tune their frequency responses in an end-to-end manner.

Furthermore, a Contrastive Learning-based Speech representations Disentan-
glement strategy, named SDCL, is introduced to disentangle useful representa-
tions from data internals via a self-supervised learning. Importantly, SDCL can
guide LFB to obtain better initial weights from unlabeled data. SDCL ignores
the different textual contents in speech segments and relies on two assumptions:
(i) speech representations comprise both speaker representations (SRs) and emo-
tional representations (ERs). SRs aim to identify speakers identity information,
such as sex and age. ERs indicate instantaneous emotional variations in specific
spectrum regions, such as changes in pitch, rhythm and energy; (ii) segments
extracted from the same speech exhibit consistent emotional states over short
intervals. Based on these assumptions, ERs and SRs from different segments are
recombined to achieve the interaction and reconstruction of speech representa-
tions. SDCL exploits the potential general information in speech and captures
the discriminative patterns in phoneme pronunciation beyond language textual
contents. In the downstream task, the ERs-focused filter parameters of LFB will
be extracted separately for weight initialization.

Our major contributions are summarized as follows:

1. The LFB module is proposed to automatically modulate the useful frequency
feature in the speech for SDD tasks;

2. The SDCL strategy is introduced to learn better initial weights for learnable
filterbanks by exploring emotional representation;

3. Our method is evaluated on three publicly available datasets, demonstrating
promising performance over state-of-the-art methods.

2 Method

As shown in Fig. 2, DSPA is a joint optimization framework designed for SDD
tasks. It involves two-stage: filterbank feature generation and depression rep-
resentation extraction. First, to acquire depression-related features, a learnable
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Fig. 2. Overall schematic of the DSPA model for the SDD tasks.

frequency-domain filterbank module (LFB) is designed to recalibrate the fea-
ture’s importance within the spectrum. Then, a spectro-temporal representation
extraction module (STE) is introduced to explore the depression-related patches
and representations in the learned features.

2.1 Learnable frequency-domain filterbanks module (LFB)

As shown in Fig. 3, LFB uses a learnable FD filterbanks for retaining task-related
acoustic information.

Learnable  filterbanks

Filterbanks 
output feature

STFT spectrum

T

Bbin

frame

Fig. 3. Illustration of learnable frequency-domain filterbanks.

The convolution theorem provides both time-domain and frequency-domain
approaches for signal analysis, it states that the Fourier transform F(·) of the
convolution of two signals is equivalent to the product of their Fourier transforms.

F(x ∗ f t) = fr ⊙ S, (1)

where F(·) indicates Fourier transform, ∗ and ⊙ are convolution and point-wise
multiplication operation. In our work, x ∈ RL×1 and S ∈ RB×T correspond to
the signals and their short-time Fourier transform spectrum, respectively, and
f t ∈ Rw×1 and fr ∈ R1×B are impulse and frequency response of filters. Existing
TD filtering methods parameterize the center and bandwidth of f t and employ a
convolutional layer with stride ω and kernel size l to approximate F(·) [22][23].
However, obtaining the TD filterbanks features requires more computational
cost, i.e., (L− l+ 1) · (L−l

ω + 1) convolutional operations, compared to one-shot
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short-time Fourier transform (STFT) x → S and multiplication operation ⊙. To
solve it, in our work, x is first transformed into S, then an efficient FD filtering
is applied on S to obtain feature X,

X[k, :] = fr
k ⊙ |S|2, k ∈ [1,K], (2)

where k is the filter index. fr
k indicates the Gaussian filter, | · |2 denotes absolute

square operation, which aims to emphasize the amplitude information of speech,

fr
k [b] = e

− (b−ck)2

2σ2
k , b ∈ [ck − B

2K
, ck + B

2K
], (3)

where ck ∈ [0, 1] and σk ∈ [0, 0.1] are learnable center frequency and standard
deviation, respectively. All filters are uniformly distributed across all bins with a
length B

K , and the difference ∆c ≥ 0 between adjacent ck+1 and ck. As a result,
a learnable filterbanks F ∈ RK×B is built by stacking a series of fr

k . Given an
STFT spectrum, the filterbanks outputs are produced as follows,

X = F⊙ |S|2 ∈ RK×T , (4)

where each fr
k serves as an aggregation function of the power spectrum, facil-

itating the retention or attenuation of pertinent information by adjusting its
importance weight.

2.2 Spectro-temporal representation extraction module (STE)

As shown in Fig. 4, STE comprises two blocks:
(i) The multi-scale feature fusion block (MFB) for enhancing essential features
and weakening irrelevant ones by fusing features under different receptive fields.
(ii) The spectro-temporal cross attention block (CAB) for assigning weights to
different patches by comprehensively considering of time frames and frequency
bands, thus preserving desired representations.
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Fig. 4. Illustration of spectro-temporal representation extraction module.

As shown in Fig.4 (i), MFB utilizes dilated convolutions to extract multiscale
features from X, where the convolution operations are grouped and applied
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individually along the filter axis. Here, η dilated convolutions are stacked, each
one with a 2η−1 receptive field, and combined with a ReLU function and element-
wise convolution. Then, the obtained multiscale features are fused using element-
wise addition, yielding Xfu.

As shown in Fig.4 (ii), CAB uses a patch-embed [7] convolution of kernel size
P to split Xfu into different patch tokens sequentially, yielding Xpe ∈ RH×W×D,
where patches with same frequency bins in different time frames are arranged
adjacently, H, W indicate the number of patches in vertical and horizontal di-
rections, respectively, and D denotes the token size. Moreover, the patches are
organized into different vertical or horizontal windows, and the self-attention is
performed in parallel across frequency and time windows. Formally, Xpe is first
linearly projected to G heads, and each head computes self-attention within ei-
ther the frequency or time window. Then, the G heads are equally split into
two parallel groups (each has G

2 heads). The first group of heads [h1, · · · ,hG
2
]

executes frequency window self-attention, and the second one performs time
window self-attention. The outputs of two parallel groups are concatenated to-
gether. For example, in Fig. 4-①, Xpe is partitioned into non-overlapping set
[X1

no, · · · ,Xm
no, · · · ,XM

no] of equal window width τ . The frequency window self-
attention output Ym

g is defined as

Ym
g = softmax(

Xm
noW

1
g · (Xm

noW
2
g)

T√
dg

) ·Xm
noW

3
g, (5)

where Xm
no ∈ R(τ×W )×D and M = H

τ . W1
g,W

2
g and W3

g ∈ RD×dg represent
the projection matrices of queries, keys and values for the gth head, respectively,
and dg is set as D

G . The time window self-attention can be similarly derived.
Finally, the patch merging is used to merge adjacent patches as ( H

2P × W
2P , 4D),

and a fully connected (FC) layer is applied to select the desired representation to
( H
2P × W

2P , D). As the STE is stacked, the representations of interest are retained,
and a FC layer is used to complete the classification, and the loss function used
the cross-entropy loss.

2.3 Speech feature disentanglement strategy (SDCL)

To better initialize the parameters of LFB, the self-supervised SDCL strategy
is proposed to guide the filters to concentrate on emotional representations by
leveraging unlabeled data. Specifically, our work design a pretext task to extract
consistent ERs by supervising only the similarity of segment pairs. SDCL as-
sumes that speech features comprise both speaker features (Xsr

i ) and emotional
features (Xer

i ), i ∈ {m,n}. By disentangling SRs (Zsr
i ) and ERs (Zer

i ) from
Xsr

i and Xer
i and subsequently exploiting ERs, the learnable filters are guided

by SDCL to focus on emotional regions of interest. Importantly, Zsr
m and Zsr

n

are extracted from distinct segments within the same speech and exhibit same
speaker information, while Zer

n and Zer
m preserve identical emotional states. This

motivates us to recombine Zsr
i with Zer

i to achieve the interaction and recon-
struction of speech representations. SDCL involves three factors:
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Fig. 5. Overview of the proposed speech representation disentanglement strategy
(SDCL) and classification framework (right).

(i) Speech sampling: A straightforward data augmentation method is adopted
to generate similar segment pairs by sampling non-overlapping segments xm and
xn from the same speech.

(ii) Representation disentangling: As depicted in Fig. 5, SDCL consists of
encoders, projectors, predictors and discriminators. First, the encoders consist of
two LFBs (i.e., EI and ET ) and two STEs (i.e., GI and GT ), which share weights
between two branches. Specifically, xn,xm are fed into EI and ET to obtain
features Xsr

i and Xer
i , i ∈ {m,n}; the extractors, STE, explore SRs and ERs,

instructing the learnable filters to focus on relevant regions to obtain Zer
i and

Zsr
i . The original and reconstructed representations Vori

i and Vrec
i are achieved

by concatenating Zer
i and Zsr

i . The projector applies non-linear transformations
to Vrec

i and Vori
i to obtain Qrec

i and Qori
i . To enhance representation invariance,

the predictor is utilized to ensure that one representation can be reconstructed
and matched by another one extracted from distinct segments of the same speech,
even after a non-linear perturbation, yielding Prec

i and Pori
i . The negative cosine

similarity S(·) is chosen as the loss function to compute the similarity for segment
pairs,

Lsim =
1

2
(D(Pori

i , sg(Qori
j )) +D(Prec

i , sg(Qrec
j )))

+
1

2
(D(Pori

j , sg(Qrec
i )) +D(Prec

j , sg(Qori
i ))),

(6)

where i, j ∈ {m,n}, i ̸= j, sg(·) denotes the stop-gradient.
(iii) Loss function To ensure successful disentanglement of the representa-

tions, several constraints are applied as follows:

Ltotal = Lsim + α(Ldiff + Ldis) + βLlc + γLgl, (7)

where α, β and γ are constraint terms that determine the contribution of each
regularization to the overall loss.
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1) The difference loss Ldiff enforces the discrepancy of learned features to
ensure that filters capture distinct regions,

Ldiff = ∥Xsr⊤

i ·Xer
i ∥2F , i ∈ {m,n}, (8)

where ∥ · ∥2F is the squared Frobenius norm. Moreover, the discrimination loss
Ldis guarantees the orthogonality of SRs and ERs as follows:

Ldis = ∥Zsr⊤

i · Zer
i ∥2F , i ∈ {m,n}, (9)

2) The local similarity loss Llc minimizes the discrepancy between ERs by
aligning them in a shared subspace, utilizing the central moment discrepancy,
as follows,

Llc =
∥E(Zer

n )− E(Zer
m )∥2

ξ
+

O∑
o=2

∥Co(Z
er
n )− Co(Z

er
m )∥2

ξo
, (10)

where ξ is an interval distance constant, E(·) is empirical expectation, and Co(·)
is the oth order sample central moment.

3) To ensure the global consistency of ERs across all samples, a discriminator
is introduced to engage in a minimax adversarial game with LFB EI , which
utilizes earth moving distance to reduce the discrepancy between ERs and the
normal distribution Znor. Under the Lipschitz continuity conditions,

Lgl = Ez∼Zer
i
[D(z)]− Ezr∼Znor [D(zr)], i ∈ {m,n}, (11)

where D(·) represents the discriminator function, and the loss added to generator
LFB is −Ez∼Zer

i
[D(z)].

3 Experiment

In this section, extensive experiments are conducted to evaluate the performance
of the DSPA model on three datasets, aiming to investigate the following issues:

Q1. How does DSPA’s performance compare to state-of-the-art methods?
Q2. Is the LFB module beneficial for SDD tasks?
Q3. What does the SDCL disentangled from speech?

3.1 Datasets

We perform extensive experiments on three publicly available datasets, DAIC-
woz [10], CMDC [25] and EATD-corpus [20], with samples from each dataset as
shown in Table 1. The DAIC-woz dataset comprises structured clinical interviews
conducted by animated virtual interviewers targeting depression diagnosis and
related psychological assessments.The CMDC dataset consists of semi-structured
clinical interviews with predefined sets of questions designed to induce speech
patterns related to depression.The EATD-corpus dataset contains self-reported



Title Suppressed Due to Excessive Length 9

Table 1. Details of the three publicly available datasets.

Datasets Criteria Detail
Number

Normal control Depression

DAIC-woz [10] PHQ-8 Training set 77 30
Development set 23 12

CMDC [25] PHQ-9 Whole dataset 52 26
EATD-corpus [20] SDS Whole dataset 132 30

speech recordings across a wide range of affective states to present the speech
features associated with depression.

Experimental setting: The component architectures are detailed in Ta-
ble 2. All signals are resampled to 16 kHz, the segment length is 6s, K=64,
B=513, M=4, G=4, D = 64. STFT utilizes a 25 ms window and a 10 ms hop
length. The cross-entropy and Adam optimizer are employed, with a batch size
of 64 and an initial learning rate of 5e-4. During pre-training, SDCL is trained
on each dataset separately, and the learning rate set to 5e-3. The hyperparam-
eters α, β and γ are 1, 1 and 1, respectively. The SDCL module is trained on
each dataset separately.

Table 2. Component structures, ⇒ indicates connection direction.

Component Layers
Projector FC ⇒ (BN+ReLU) ⇒ FC ⇒ (BN+ReLU) ⇒ FC ⇒ BN
Predictor FC ⇒ (BN+ReLU) ⇒ FC

Discriminator SN (FC) ⇒ ReLU ⇒ SN (FC) ⇒ ReLU ⇒ SN (FC)
Extractor STE ⇒ STE ⇒ STE
∗ BN, batch normalization, SN, spectral normalization.

3.2 Comparison with the state-of-the-art methods (Q1)

To demonstrate the effectiveness of our DSPA model, it is compared with state-
of-the-art methods (audio modality). The same experiment settings as the com-
peting approaches are used to ensure competitiveness. Specifically, the results of
the DAIC-woz dataset are tested on the development datasets. A 5-fold cross-
validation is conducted on the CMDC datasets, and a 3-fold cross-validation is
performed on the EATD-corpus datasets.

Table 3 shows that our method consistently achieves better F1 score than
the comparison methods. 1) Particularly, the shallow methods (e.g., logistic,
random forest (RF) and support vector machine (SVM)), perform poorly on all
the datasets. 2) Similarly, our model outperforms the methods with Mel-spectral
features. These results are consistent with our initial viewpoint that handcrafted
spectral features underperform in comparison to learnable ones. 3) Experimen-
tal findings illustrate the effectiveness of our approach in leveraging the latent



10 Y. Wenju et al.

Table 3. Comparison with the state-of-the-art methods, LLDs denote low-level de-
scriptors: MFCCs, COMPARE and eGeMAPS.

Dataset Methods Inputs F1 score Precision Recall

DAIC-woz

SVM [10] LLDs 0.400 0.330 0.500
DepAudioNet [16] MFbanks 0.610 0.625 0.770
DEPA(frame) [24] STFT 0.640 0.640 0.640
Mfcc-LSTM [18] MFCCs 0.655 0.735 0.645

STFN [11] Signals 0.760 0.650 0.920
NetVlad-GRU[20] MFbanks 0.770 0.630 1.000

DALF[22] Signals 0.784 0.782 0.794
DSPA STFT 0.792 0.785 0.798

CMDC

SVM [25] LLDs 0.910 0.920 0.910
Logistic [25] LLDs 0.840 0.850 0.840

Naïve Bayes [25] LLDs 0.890 0.890 0.890
Bi-LSTM [13] LLDs 0.910 1.000 0.830

IIFDD [6] LLDs 0.920 0.960 0.890
DSPA STFT 0.927 0.935 0.920

EATD-corpus

RF [20] LLDs 0.500 0.480 0.530
SVM [20] LLDs 0.460 0.540 0.410

NetVlad-GRU [20] MFbanks 0.660 0.570 0.780
Mm-LSTM [2] MFbanks 0.490 0.440 0.560
ABAFnet[21] MFbanks 0.694 0.684 0.690

DSPA STFT 0.702 0.681 0.735

information hidden in the STFT spectrum, yielding high quality disease-related
features. In contrast, other methods, except DALF, depend heavily on prior
knowledge or intricate feature engineering, resulting in a limited capacity to ex-
tract useful representations. 4) The parameters of Mfcc-LSTM, DALF, DepAu-
dioNet, Mm-lstm, NetVlad-GRU are 0.42 million (M), 1.89M, 0.55M, 1.10M,
0.92M, respectively. Our framework’s parameters are 1.63M, which achieves a
significant performance improvement (>5% on average) with a slight increase in
computation cost. It demonstrates that our method achieves a balance between
computational cost and performance.

3.3 Ablation studies (Q2)

The same STE extractor and classifier (FC) are employed for ablation studies
to investigate the effectiveness of LFB and SDCL. Specifically, to evaluate the
quality of features, pre-training of LFB is conducted to identify the region of
interest in the STFT spectrum via SDCL, thus yielding LFB output features.

The results in Table 4 show that 1) on the DAIC-woz datasets, LFB im-
proves the model’s performance by 5.7% and 6.4% when compared to the MF-
banks and MFCCs, respectively, which indicates that the LFB learned features
are high-quality for the SDD tasks. 2) Due to the task-oriented adaptability of
the learnable LFB, improved F1 scores are consistently achieved whenever it is
utilized. 3) It demonstrates that distinct parameter initialization methods offer
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Table 4. Ablation study on different inputs and initializations.

Input features
F1 score

DAIC-woz CMDC EATD-corpus
MFCCs 0.728 0.891 0.636

MFbanks 0.735 0.902 0.623
LFB w/ Mel 0.764 0.916 0.685
LFB w/ U-Hz 0.757 0.908 0.664
LFB w/ ERB 0.747 0.904 0.671

LFB w/ (SDCL w/o Ldiff) 0.740 0.894 0.633
LFB w/ (SDCL w/o Llc) 0.754 0.905 0.668
LFB w/ (SDCL w/o Lgl) 0.771 0.903 0.672

LFB w/ SDCL 0.792 0.927 0.705

different known priors for filters, and the self-supervised training of LFB via the
SDCL strategy can effectively disentangle significant ERs, leading to superior
prior guidance for filters. 4) Collaborative learning under multiple losses of Ldis,
Ldiff, Llc and Lgl is essential for disintegrating speech representations.

3.4 Discussion

Several discussions are conducted to further analyze our method’s performance.
Additionally, the parameters of LFB are analyzed to understand what its focus.

A. How does the generalization ability of LFB? As depicted in Table 5,
we investigate the generalization ability of LFB. The parameters of LFB are
first optimized on one dataset, and then fixed or fine-tuned the LFB on another
dataset to complete the classification. The accuracy decreases by 2.3% and 1.5%
when using fixed LFB parameters on two datasets, respectively. However, the
performance is improved after fine-tuning the LFB module. This is due to the
inconsistent data distribution caused by the different corpus and questionnaire,
but highlights the adaptability of LFB to variations in different scenarios.

Table 5. The generalization ability of LFB.

Datasets Module F1 scoreSource Target LFB Others
CMDC EATD-corpus F T 0.633
CMDC EATD-corpus T T 0.687

EATD-corpus CMDC F T 0.904
EATD-corpus CMDC T T 0.912

* F indicates Fixed and T indicates fine-Tuning.
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Fig. 6. Analysis of the disentangled representations.

B. What does the SDCL disentangled from speech? (Q3) Building upon
the effectiveness of SDCL, this part aims to prove that the ERs disentangled
by SDCL are emotion-related. We select the Wav2Vec2.0 models that are fine-
tuned in the speech emotion recognition and speaker identification tasks, respec-
tively [5][19]. Both the Wav2Vec2.0 models and the pre-trained DSPA are used
for representation extraction on the same test datasets of CMDC datasets. Fi-
nally, a t-SNE distributional analysis of ERs and SRs is conducted to investigate
whether representations with distinct semantics are bounded.

As shown in Fig. 6 (a), representations with identical semantics are clustered
in the overlapping space, while ERs and SRs are clearly separated. It is believe
that when tasks are identical, the extracted representations lie in the same dis-
tribution, regardless of differences in network structure. These findings confirm
that SDCL adheres to the pretext task during pre-training.

C. What do the learnable filters focus on? (Q3) A distributional analysis
of ERs-focused filters is conducted to investigate what these filters learned. As
shown in Fig. 6 (b), it can find that the filters predominantly cluster within the
0-1 kHz range. These findings are consistent with the observation that depression
exhibits a correlation with the F0 and formant frequencies F1 [1]. Importantly,
the first formant of the vowel phonemes /e/, /i/, /o/ and /u/ are in this fre-
quency range. Based on our findings, a new text-corpus will be designed that
contains more words constituted by mentioned vowel phonemes. Furthermore,
these findings inspire us to construct precise spectral features by removing task-
irrelevant regions.
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4 Conclusion

In this paper, a depression speech analysis network (DSPA) is designed, which
includes a specially designed learnable feature extraction component, LFB, tai-
lored for SDD tasks, and the STE, a follow-on module for identify representations
of interest in LFB learned features. With a well-designed self-supervised strat-
egy, our SDCL strategy harnesses unlabeled data to disentangle robust emotional
representations, providing a novel insight on initializing learnable filterbanks. Fu-
ture work will be devoted to quantifying the features in the spectrum to enhance
the interpretability of speech representations.
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