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Abstract

Clusteringis theproblemof groupingdatabasedonsim-
ilarity andconsistsof maximizingtheintra-groupsimilarity
whileminimizingtheinter-groupsimilarity. Theproblemof
clusteringdatasetsis alsoknownasunsupervisedclassifi-
cation,sinceno classlabelsare given. However, all exist-
ing clusteringalgorithmsrequire someparameters to steer
the clusteringprocess,such as the famous

�
for the num-

ber of expectedclusters, which constitutesa supervisionof
a sort. We presentin this papera new, efficient, fast and
scalableclusteringalgorithmthat clusters over a range of
resolutionsand findsa potentialoptimumclusteringwith-
out requiring anyparameterinput. Our experimentsshow
that our algorithmoutperformsmostexistingclusteringal-
gorithmsin qualityandspeedfor largedatasets.

1. Intr oduction

Thereexist amultitudeof algorithmsfor clusteringdata.
Basically, they eachtry to concentrateon someimportant
issuesin clustering,suchashigh dimensionalityproblems,
efficiency, scalabilitywith datasize,sensitivity to noisein
data,identificationof clusterswith variousclustershapes,
etc. However, nonehasmanagedto take all thesefactors
into accountatonce.Themajordrawbacksof existingclus-
teringalgorithmsincludethesplittingof largegenuineclus-
ters,which is thecasefor partitionalapproachessuchask-
means[6]; failure to handleconvex andelongatedshapes
of clustersasis thecasewith mosthierarchicalapproaches
suchasCURE [11] andROCK [4]; and the sensitivity to
noisein the datasuchas in CHAMELEON’s case[7] or
DBSCAN[2], a density-basedclusteringalgorithm.

Thegreatestdifficulty in thefield of dataclusteringis the
needfor input parameters.Many algorithms,especiallythe
hierarchicalmethods[5, 11], requiretheinitial choiceof the
numberof clustersto find. Evenwherethis is not required
or thealgorithmcanstopautomaticallybeforethatnumber
is reached,other parametersgreatly influencethe output.

Onecanarguethat for someapplicationsparametersarea
meansto incorporatedomainknowledgeinto the cluster-
ing processandthusarebeneficialin somecircumstances.
This is particularlytruewhenthe numberof clustersto be
discoveredis predeterminedand fixed by the application.
However, in many applicationstheoptimalvaluesof these
parametersareverydifficult to determine.Oftena longand
tedioustrial-and-errorprocessis usedto tunetheseparam-
eters. However, whenthe numberof dimensionsis larger
thanthree,this becomesextremelydifficult or unpractical,
andan automatedprocessis desirable.On the otherhand,
domainknowledgecould be expressedin the definition of
similarity functionsusedto measurehow similaror dissim-
ilar datapointsarein orderto groupthemin clusters.

In this paper, we presenta novel clusteringalgorithm
calledTURN* which doesnot requirethe input of any pa-
rameterand still efficiently discoversclustersof complex
shapesin very largedatasets.We reporttheefficiency and
demonstratetheeffectivenessof TURN* on largeandcom-
plex datasetscontainingpointsin 2D spaceborrowedfrom
[7, 13] for comparisonreasons.

Section 2 gives an overview of existing, well-known
clusteringalgorithmsandSection3 describesourclustering
algorithmTURN*. Section4 presentssomeexperimental
resultsfor TURN*andsixestablishedclusteringalgorithms.
Finally, Section5 concludesanddiscussesfuturework.

2. RelatedWork

There are mainly four groups of clustering methods:
partitioning methods,hierarchicalmethods,density-based
methodsandgrid-basedmethods.We giveabrief introduc-
tion to theseexisting methodsin this section.

Supposingthereare � objectsin the original dataset,
partitioningmethodsbreaktheoriginal datasetinto

�
par-

titions. Thebasicideaof partitioningis very intuitive, and
theprocessof partitioningis typically to achievecertainop-
timal criterioniteratively.

Themostclassicalandpopularpartitioningmethodsare
k-meansand k-medoid,whereeachclusteris represented



by the gravity centreof the clusterin k-meansmethodor
by oneof the “central” objectsof the clusterin k-medoid
method.

All the partitioning methodshave a similar clustering
quality and the major difficulties with thesemethodsin-
clude: (1) The number

�
of clustersto be found needsto

beknown prior to clusteringrequiringat leastsomedomain
knowledgewhich is oftennot available;(2) it is difficult to
identify clusterswith largevariationsin sizes(largegenuine
clusterstendto besplit); (3) themethodis only suitablefor
concaveclusters.

A hierarchicalclusteringalgorithmproducesa dendro-
gramrepresentingthe nestedgroupingrelationshipamong
objects.In thepastfew years,many new hierarchicalalgo-
rithmshave beenpublished.Themajordifferencebetween
all thesehierarchicalalgorithmsis the measureof similar-
ity betweeneachpair of clustersandthe underlyingmod-
ellingof theclusters.Becausethesealgorithmsaretypically
computationallyexpensive, many proceedby samplingthe
dataandclusteringonly a representativesampleof thedata
points,which putstheeffectivenessof theclusteringat the
mercy of thegoodnessof thesamplingmethod.

Insteadof usingasinglepoint to representaclusterasin
centroid/medoidbasedmethods,CURE[11] usesaconstant
numberof representativepointsto representacluster. These
areselectedsothatthey arewell scatteredandthen“shrunk”
towardsthecentroidof theclusteraccordingto a shrinking
factor � . Clustersimilarity is measuredby the similarity
of theclosestpair of thecluster’s representativepointsThe
problemwith CUREis its globalsimilarity measurewhich
makesit ineffective with complex datadistributionsandit
cancausefalseoutliers(SeeFigure4).

ThesameauthorsdevelopedROCK [4]. ROCK operates
on a derivedsimilarity graphandis thussuiteablefor both
numericalandcategorical data. ROCK measuresthe sim-
ilarity betweenpairsof clustersby thenormalizednumber
of total links betweenthem. This is givenasa fixedglobal
parameter( � ). However, ROCK is extremelysensitive to � ,
which reflectsa fixed modelingof clusters.ROCK’s clus-
tering result is not goodfor complex clusterswith various
datadensities,andthealgorithmis sensitive to noise.

A recent state-of-art clustering method is
CHAMELEON [7] which considersboth relative con-
nection and relative closeness. The algorithm operates
on a derived similarity graph allowing the clusteringof
numericalas well as categorical data like ROCK. Phase
one of the algorithm uses a graph partitioning method
to pre-clusterobjects into a set of small clusters. The
secondphasemerges thesesmall clustersbasedon their
similarity measure. CHAMELEON has been found to
be very effective in clusteringconvex shapes. However,
the algorithm cannothandleoutliersandneedsparameter
settingin orderto work effectively.

Density-basedmethodsidentify clustersthroughthedata
point densityand can usually discover clusterswith arbi-
traryshapeswithoutapre-setnumberof clusters.DBSCAN
is a typical density-basedmethodwhich connectsregions
with sufficiently high density into clusters. Eachcluster
is a maximumsetof density-connectedpoints. Pointsare
connectedwhenthey aredensity-reachablefrom oneneigh-
bourhoodto the other. A neighbourhoodis a circle of a
radius( � ) andreachabilityis definedbasedon a minimum
numberof points( �����
	���
 ) containedin a radius � . DB-
SCAN, however, is very sensitive to the selectionof � and�����
	���
 andit cannotidentify clusterswith differentdensi-
ties.Theproblemof discoveringclusterswith differentden-
sitiesandclusterswithin clusterswasalleviatedin OPTICS
[9] by thesameauthors.However, theparameter�����
	���

still needsto bedefined.

Grid-basedmethodsfirst discretizethe clusteringspace
into a finite numberof cells,andperformclusteringon the
griddedcells.Themainadvantageof grid-basedmethodsis
thattheprocessingspeedonly dependson theresolutionof
griding andnot on thesizeof the dataset. Thegrid-based
methodsaremoresuitablefor high densitydatasetswith
hugenumberof dataobjectsin limited space.

Representative grid-basedalgorithmsinclude CLIQUE
[1] and, recently, WaveCluster[12] which appliesa noise
filter andwavelet transformation.Grid-basedquantization
of the data spacespeedsup the processing,but due to
the rectangularstructure,the algorithmrepresentsa much
coarserapproachto levelsof resolutionthanthatadoptedby
our algorithmTURN* presentedherein,or DBSCAN, and
is muchmorelikely to leadto themisclassificationof data
points.Thealgorithmrequiresthisquantizationsoonedoes
nothavetheoptionof classifyingthedataat full resolution.
WaveClusteroffers multiresolutionby skipping“rows” of
thequantizeddata(i.e. down sampling),a muchcruderap-
proachthan that usedby the otheralgorithmsthat useall
thedataandsimplyexpandthenearestneighbourdefinition
or equivalentof eachpoint. WaveCluster’s main benefits
arespeedandscalabilitysincethedatais readin andquan-
tizedandthensubsequentprocessingis on a muchsmaller
effectivedatasize.

While WaveClusterclaimsto beparameterfree,our re-
searchshowed that its clusteringresultsarequitesensitive
to the settingsthat have to be made. In fact [12] points
out thatknowing thenumberof clustersto befoundis very
helpful for choosingtheparametersfor WaveCluster.

2.1. UnsupervisedMethod: TURN

Previously, we have deviseda non-parametricapproach
to categorical data clustering in a non-Euclideanspace
calledTURN thatwe usedfor clusteringwebaccesstrans-
actions[3]. Here we presenta non-parametricapproach



suitedto spatialdataaswell ashigherdimensionalspaces.
TURN operateson a derivedsimilarity graphallowing any
similarity function to be pluggedin. The basic idea of
TURN is to identify naturalboundariesbetweenclusters
insteadof spottingclustersthemselves. This amountsto
searchingfor theminimain thedistributionof points,which
representturningpoints.TURN proceedsby iteratively se-
lectinganonassignedobject� andcomputingthesimilarity
between� andall non-assignedobjects. After sorting the
similarities and differencingthem 3 times, the algorithm
looks for a changeof sign (i.e. turning point) in the dif-
ferencednumberseries.All objectsthat appearbeforethe
turningpoint areassignedto thesameclusteras� andtheir
direct neighboursare also pulled in. The processrepeats
until all objectsare assigned[3]. TURN hasbeentested
oncategoricaldataonly andexperimentallyit outperformed
ROCK in clusteringwebusagedata.

3. TURN* Algorithm

In this sectionwe introduceour new clusteringalgo-
rithm TURN*, anon-parametricclusteringapproachthatef-
ficiently discoversclustersof arbitraryshapes.

TURN* consistsof an overall algorithm and two com-
ponentalgorithms,one, an efficient resolutiondependent
clusteringalgorithmTURN-RESwhichreturnsbothaclus-
tering result andcertainglobal statistics(clusterfeatures)
from thatresultandtwo, TurnCut,anautomaticmethodfor
finding the importantor “optimum” resolutionsfrom a set
of resolutionresultsfrom TURN-RES.To date,clustering
algorithmshavereturnedclusteringresultsfor agivensetof
parameters,asTURN-RESdoes,andsomehave presented
graphsor dendogramsof cluster featuresfrom which the
usermaybeableto adjustor selecttheparametersto opti-
mizetheclustering.TURN* takesclusteringinto new terri-
tory by automatingthisprocessremoving theneedfor input
parameters.ClusteringValidationis a field whereattempts
have beenmadeto find rulesfor quantifyingthequality of
a clusteringresult.Thoughdevelopedindependently, Turn-
Cutcouldbeseenasanadvancein thisfield whichhasbeen
integratedinto theclusteringprocess.

3.1. TURN-RES: Clustering at oneresolution

This is afast,efficient,scaleableclusteringalgorithmfor
a singleresolution.While little discussed,exceptin papers
suchas[12], resolutionis akey conceptin clustering.When
a radiusis defined,asin DBSCAN,or somerelatedparam-
eter, aparticularview is beingsetthathasanequivalenceto
viewing a densityplot with a microscopeor telescopeat a
certainmagnification.Thenight sky is oneexample;asthe
magnificationlevel is adjusted,onewill identify different
groupingsor clusters.TheCHAMELEON dataset(Figure

1) is anotherexample. It looks like therearenine clusters
but givenamagnifyingglass,thelargeclusterswill beseen
to have their own sub-clusters.

TURN-RESis resolutionor scaledependentbecauseof
its definition of “close” neighbours.Two points are con-
sidered“close” only if they are separatedby a distance������� �

, at a givenresolution,alongall dimensionalaxes.
For example,points ��� (1, 1) and ��� (3, 3) arenot neigh-
boursunlessthe scaleis reduced(e.g. � 2 giving � � (.5,
.5) and � � (1.5, 1.5)). We computea densityvalue ��� for
eachpoint 	 basedonits distanceto its nearestneighbours,
irrespective of their closeness,which, in our approach,is
a maximumof 2 per dimension,oneon eachside. ��� al-
lows usto determinehow closelypackedthepointsarelo-
cally and a threshold  is set as a cut-off to differentiate
betweenpointsthatareto betreatedasinternalor external
to a cluster. Pointsthatfall on theedgeof a clusterwill not
be marked as internalbut they get includedbecauseclose
neighboursto internalpointsarepulledinto thecluster.  is
not a functionof the datasetbut ratherof themethodem-
ployedanda singlevaluesufficedfor all datasetstestedso
this is not auserinput parameter.

As noisetypically cancreatesmall clusters,we defined
small clustersas noise or outliers. Small is definedas
min(

�!�"�
, #%$ �!�"� ) where # is the numberof datapoints.

TURN-REScollectscertainglobalstatisticsor clusterfea-
tures,being

�
, the numberof clusters,� , the numberof

pointsassignedto clusters(not consideringoutliers), � , to-
tal densityand ��& , meandensity(�'�(� ). Our interestis to
characterizetheresolutionlevel in suchaway thatlevelsof
particularinterestcanbedeterminedautomatically. � is the
sumover � of � � thatis definedfor point 	 as:

� ��) � �
*
+-, �

. � * /1012 � * 34065
(1)

Note:
� /

and
� 3

arethe distancesto the ‘left’ and‘right’
sideneighboursalonga dimensionalaxis � .

Oncethedatapointshave beencharacterizedasinternal
or external,they aresimply agglutinatedinto clusters.An
unclassifiedinternal point is selected,a new clusternum-
ber is assignedto it and all of its “close” neighboursare
similarly classified. For eachof thosethat are also in-
ternal, the processis repeated.Not incorporating“close”
neighboursof externalpointsstopsclustersgrowing across
’noise’ bridges.

To quickly determinethe nearestneighbourids of each
point a singlesort is performedon eachdimension.Build-
ing theclustersrequiresonefurthersortby id. Eachsort is
followedby a singlescangiving a computationalcomplex-
ity of 7 . #98;:�< . # 565

.



TURN-RES Algorithm
Input: 2D datapointsandresolutionlevel =
Output: Clustereddatapoints

1. For eachdatapoint > , scalecoordinatesof > to resolution =
andfind the two nearestneighbourson eachdimensionalaxis,
andthedistance? of eachfrom > ; if ?A@CB!D E assignthepoint
asa “close” neighbour;

2. computethedensityFHG ; set > asinternalif FHG�IKJ (J is fixed
andnotaninputparameter)

3. For eachnonassignedinternaldatapoint > do

(a) add > to new clusterL ;

(b) addall “close” neighboursof > to L ;

(c) for all M addedpoints that are internal add all their
“close” neighboursto L andrepeatuntil MONPE ;

TURN* Algorithm
Input: 2D datapoints

Output: “Best” clusteringof datapoints

1. startat resolution= =1:1. SeekQSR by increasing/decreasingthe
resolutionby stepT"U6V W (multiplying or dividing by XYD ZY[\ZYD EY[6D]D]D )
andclusteringat eachresolutionuntil all pointsarelabelledas
outliers;

2. scanfrom Q R towardsQ_^ (̀aN�B ) by repeating.

(a) decreasetheresolution= by stepT�b�V W ;
(b) clusterat = with TURN-RES;

(c) storeclusteringresultandstatisticsF , F�c , ` , and d for = ;
(d) stop if `(NOB elsecall TurnCut to determineif = is an

“optimum” clusteringresultandstoponsuccess.

3.2. TurnCut

TurnCutusesthecoreof theTURN algorithmdescribed
in Section2.1, from our previous work in [3], detectinga
changein thethird differentialof aseriesto identify impor-
tant areasin a clusterfeatureacrossresolutionseriesbuilt
by repeatedcalls to TURN-RESby theTURN* algorithm.
Singleanddoubledifferencingareroutinelyusedin timese-
riesanalysis([10]) to rendera seriesstationary. Differenc-
ing amountsto a highpassfilter which we have employed,
differencingthrice (doubledifferencingthe changevalues
of the series),aswe found it to be mosteffective way to
revealmeaningfulchangein theunderlyingtrend.

Though developedindependentlyof work on Cluster-
ing Validation, TurnCut automatesother authors’concept
of finding the “knee” in the cluster featuregraph[8]. It
picksout the first (andsubsequent)“abrupt” changein the
overall trendof the curve - accelerationor reversalof the

rateof changeof theclusteringfeaturestudied.If thedata
points being clusteredare homogenouslydistributed, no
“turn” will befound. If clustersexist, TurnCutwill pick out
the point wherestabilizationoccursin the clusteringpro-
cess,whichwill oftencoincidewith a level thatanobserver
would identify asa clusteringresult(almostby definition-
we would never pick out a level thatdid not appearto rep-
resenta certainplateau).In generaltherecanbeseveralof
theseand the algorithm can find them all even thoughin
this paperthealgorithmgivenfor TURN* stopsat thefirst
found. In effect, TurnCut is detectingplateausin the en-
tropy curve.

Other authorsonly analyzeda feature versuscluster
number(

�
) graph [8]. We evaluated

�
and found better

resultswith meandensityandoften further improvements
with total density(asdefinedabove) acrossresolutions.In
most algorithmsdatacan only be collectedfor a particu-
lar valueof

�
. In TURN* we canstudyasfine a resolution

stepsizeaswechoose,severalstepsoftenyieldingthesame
valueof

�
. Our resultmakessensebecauseeachstatistic

hasmoreinformationthantheprevious-
�

is a fairly coarse
statisticcomparedwith thosewe definedthat changewith
everypointaddedto theclusteringresult.

3.3. TURN*: Finding the bestclustering

The algorithm proceedsby detectingclustersacrossa
rangeof differentresolutionsstopping(or at leastflagging)
what is consideredasthe “optimal” clusteringusingTurn-
Cut. A resolutionis simply a scaleby which all datapoint
valuesaremultiplied (seeTURN-RESabove).

Naturally, TURN-RES will return a clustering result
only within a certainrangeof resolutions.On oneendof
therangeeverydatapointwill beclassifiedasnoise/outlier.
Moving in thedirectionof increasing

�
, thefirst resolution

level at which this occurswe call egf . Moving in theother
directionapointis reachedwhereall pointsareincludedin a
singlecluster( eh� ). First,thealgorithmseekseif startingby
clusteringwith TURN-RESat resolution1:1 andthenstep-
pingout at a largegeometricincrement(� *"j k = lhm � n where
thescaleo 1:1; �pm � n wherethescaleq 1:1)clusteringuntile f is found. Thenthestepsizeis reduced( l � nir � � n ) and
a scanover e fts e � is performed.Geometricstepssizes
areusedas:a) thisensuresquickly finding e f andtravers-
ing the rangeto e � , andb) optical magnificationstepsare
alwaysgivenin geometricvalues.

At eachstep,TURN-RESis calledandtheclusteringre-
sult and global features/statisticsare storedand TurnCut
is called to assessif an “optimum” clusteringhas been
achieved. If so, eitherTURN* stopsaswe did in this re-
searchor it canbeallowedto continue,collectinginforma-
tion for all thekey resolutionsflaggedby TurnCut.

No sampling takes place, however the scalability of



TURN* is evidencedby theperformanceonsmallandlarge
datasets(Table 2). The spacecomplexity is straightfor-
ward. For eachobject,a simpledatastructureis neededto
storecoordinatesin the u ) m dimensionalspace,thenear-
estneighboursoneachdimensionalaxis,andsomespecific
datasuchasclusterlabel,typeof pointetc.Thus,themem-
ory spaceneededis 7 . uv# 5

.

3.4. Parameter Free?

The parametersinvolved in the componentalgorithms
are1)  , thatdefinesif apoint is to betreatedasinternal,2)
the resolutionlevel given to TURN-RES,3) the definition
of a “small” cluster, and4) the stepsize(s)usedbetween
resolutionsatwhich TURN-RESis run.

Our implementationis parameterfreein sofar as1)  is
part of the conceptof closenessfor a resolutionlevel and
thusshouldnot needto bevariedasprovedto be thecase;
2) TURN* feedsTURN-RESaseriesof resolutionsstarting
from theextremecase( e f ) whereall pointsareidentified
asoutliersso the useris never asked to entera resolution;
3) we foundthatonly very smalldatasetswould needthis
modifying andTURN* is not intendedfor suchsets;4) the
stepsizestartslargeuntil e f is foundandis thenreduced.
In choosingthe stepsizethereis a trade-off betweenfine-
nessandspeed.We foundthestepsizewe choseto bero-
bust acrossvaried dataset typesbut if the differentiation
betweenclusterdensitiesin thedatawassmall,a key reso-
lution couldbemissed.However, to besecureagainstthis
thealgorithmcouldbeextendedasfollows: OnceTurnCut
flagsa resolutionof interestthe rangeacrossthe previous
stepcanbescannedby furtherreducingthestepsizegiving
finerresolvingpower. It is mostunlikely thatany userinput
wouldbeneededin thiscaseandthespeedof thealgorithm
makesthisadditionalprocessingreasonable.

While therewill never bea perfectparameterfreesolu-
tion, our implementationprovedrobustacrossawide range
of differentdataset typeswith differing clusterdensities,
closenessof clusters,arbitrary shapedclustersand noise
levelsincludingmany examplesof noise“bridges”.

4. Experimental Results

In this section,we presentexperimentalresultsto evalu-
ateTURN* andcomparetheperformanceof our algorithm
with other well-known clustering algorithms: k-Means,
DBSCAN,CURE,ROCK, CHAMELEON andWaveClus-
ter. The implementationof DBSCAN wasobtainedfrom
the authorsof the algorithm (University of Munich, Ger-
many), while the implementationof ROCK and CURE
wasobtainedfrom theauthorsof CHAMELEON (Univer-
sity of Minnesota,USA) written for theevaluationof their
own algorithm [7]. However, as they could not provide

theCHAMELEON codefor legal reasons,this wasimple-
mentedlocally. Webelievethatour implementationandop-
timizationof CHAMELEON is similar to theonepublished
by the authorsin [7] sincewe get the sameperformance
on the samedatasetsasthat presentedin [7]. WaveClus-
ter [13] wasalsoimplementedlocally for thesamereasons
with equalsuccess.

We testedTURN* on datasetsprovided by the devel-
opersof CHAMELEON [7] and WaveCluster[13]. Due
to CHAMELEON’s computationalintensity, their files are
rathersmall: 8K to 10K. The main benefitclaimedin the
WaveClusterpaperis its effectivenessonlargedatasetsand
their datais 100K+ points. We chosethesedatasetsbe-
causethey arepublicly availableandthey havebeenusedto
evaluateotheralgorithms.Moreover, thesedatasetsare2-
dimensionalmakingit easierto visualizeandprovidecom-
parisons.Wehaveexperimentedwith variousdatasetswith
sizesvarying from 8k to morethan575K datapointsand
ouralgorithmperformedwell in all cases.
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Figure 1. TURN*’s clustering result on t7.10k.dat
before cleaning

On a 10K dataset(t7.10k)Figure1, TURN-REScom-
puteda singleresolutionin 0.26secondsandthetotal pro-
cessof TURN* to find the optimum resolutiontook 3.90
seconds. A single run of CHAMELEON took 28 min-
uteswith the parameter���w�
e1�yx{z set to 4%. �����
e|�!xYz
is the size of the graphpartition in the first phaseof the
algorithm. Selectinga different value would slow down
CHAMELEON or degradetheresults.Theprocessof find-
ing the correctparametersto give a goodclusteringresult
took several hours. DBSCAN is nearlyasfastasTURN*
for a single resolution/parametersettingbut also required
many runsto find the optimal input variablesas it is very
sensitive to its parameters.We effectively spenthourstun-
ing theparametersandfoundout thatthebestvaluesfor the
t7.10k.datdatasetwere ���w�
e1�yx{z )~} and � ) ni� �

. This
would have beenimpossiblewith a higherdimensionality
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Figure 2. TURN*’s cleaned clustering result on
t7.10k.dat after remo val of points identified as
noise
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Figure 3. K-means’ s clustering result on t7.10k.dat
with

� ) �

dataspacesincevalidationis difficult if not impossible.
For the datasetschosen,TURN* took typically 10-20

resolutiontests,performedautomatically, to find an “opti-
mum” resolution. In our research,TURN* found thereso-
lution thata humanobserver would tendto choosein 80%
of cases,andin theothercases,it stoppedoneor two reso-
lutionsawayonwhatwasidentifiablyameaningfulcluster-
ing result. It canalsobeallowedto run on, collectingdata
at each“turn” or key resolutionlevel building the equiva-
lent of a dendogramthat revealsthe clusteringstructureat
differentdensities.

As canbeseenfrom Figures3, 5 and4, k-means,ROCK
andCUREperformrelatively poorly on thesedifficult data
setsdueto the complex shapeof theclustersandthe large
amountof noise. DBSCAN, CHAMELEON andTURN*
work well. WaveCluster, after much tweakingof its set-
tings, camecloseto finding the visually obvious clusters.
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Figure 4. CURE’s clustering result on
t7.10k.dat with

� ) �ir � ) �i� �
, and

number of representative points ) �y�
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Figure 5. ROCK’s clustering result on t7.10k.dat
with � ) �i� ���!n

and
� ) �y�Y�"�

DBSCAN proved very sensitive to the parametersettings.
CHAMELEON requiresthe settingof the numberof clus-
tersto besought,which is generallynotknown. It alsofails
to separateout noise.Combinedwith its high complexity ,
this makesit aweakcontender.

TURN* providesfast,efficient, scaleableclusteringand
identifiesoutliersallowing for theoptionalremovalof noise
as hasbeendonein the TURN* output presentedin Fig-
ure 2. This would be useful in many applicationssuchas
OCR preprocessing,imageenhancement,etc. It canstop
at or flag interestinglevels of granularityidentifiedby the
behaviour of globalclusteringfeaturesasdiscussed.

Hereweshow ourexperimentalresultsof eachalgorithm
ontheDS4datasetfrom theCHAMELEON paper[7], also
known ast7.10k. This datasetwaschosenbecauseit has
several featureswhich challengea clusteringalgorithm. It
hasnineclustersof differentshapes,sizesandorientations,
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Figure 6. CHAMELEON’s clustering result
on t7.10k.dat with �
� �!8�:�
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Figure 7. DBSCAN’s clustering result on t7.10k.dat
with � ) n�� n

and MinPts )�}

andthe densitywithin andbetweenthe clustersvaries. In
addition, there are clusterswithin clusters,non-spherical
shapesand a large amountof randomnoisewhich could
createartificial “bridges” betweenthe clusters. In all the
clusteringresult figures,black points indicatedatapoints
identifiedby thealgorithmasnoise.

4.1. Clustering EffectivenessComparison

Clustering results of TURN* are shown in Figure 1.
TURN* correctly identified the nine principal clustersas
shown in Figure 2 This cluster result shows that TURN*
caneffectively identify all the9 clustersandfilter outnoise.
This result was found by TURN*’s automaticresolution
scanprocessanddid not requireany parametertuning.

K-mean’s resultis shown in Figure3. Fromherewe see
that k-meanstendsto find sphericalclusters.It is obvious
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Figure 8. WaveCluster’ s clustering result on
t7.10k.dat with �gz�
�:�8������!:�� ) n

and � ) ��� n

that it is not well suitedto find arbitrary shapedclusters.
Our experimentsshowed that CURE hassimilar problems
to k-means: it tendsto find sphericalclusters(Figure 4).
ROCK is designedfor clusteringcategorical databut can,
in theory, handlenumericaldatalike the � �����y���g���{� � data
set.Its resultfor clusteringthis spatialdatasetis, however,
notgood.After adjustingtheparametersfor alongtime,the
bestclusteringresultfoundis presentedin Figure5. For this
result,wesetthenumberof clustersto be1000,andamong
the resulting1000clusters,we got five largeclusters.The
remaining995canbeconsideredasnoiseandthey all group
aroundtheuppercrescentin Figure5.

Algorithm Clustering Complexity Memory
time (secs) Usage

K means 8.44 �����%� 5.5MB

CURE 155.59 �%����� U � 4.6MB

ROCK 526.19 I������ U � 1.145GB

CHAMELEON 1667.86 I��������-� �!�%� 8.6MB

DBSCAN 10.53 �������-� �!�%� 1.4MB

WaveCluster 0.82 �����%� 0.8MB

TURN-RES 0.26 �������-� �!�%� 1.4MB

TURN* 3.90 �������-� �!�%� 1.4MB

Table 1. Clustering Speed and Memor y Size Re-
sults upon a 10K data set

CHAMELEON’s result is shown in Figure6, which is
very closeto theresultin theCHAMELEON paper. Com-
paredwith TURN*’s result, we seethat CHAMELEON
includes all the noise points in the neighbouringclus-
ters. In addition,we neededto setseveral parametersfor
CHAMELEON to obtainthis qualityof clustering.

DBSCAN could give a good result if the adequatepa-
rametersare known. We found that the only problemof



Data SetSize Clustering time (seconds)

10,000 0.26

100,000 3.70

228,828 8.29

275,429 9.15

574,499 22.18

Table 2. Average clustering speed of TURN-RES on
one resolution across dataset sizes

DBSCAN is that it is indeedvery sensitive to the two pa-
rameters� and �����
	���
 . Figure7 shows theresultsof DB-
SCAN with � setat 5.5 and �����
	���
 at 4. At � ) ni� �

the
result is similar to TURN*’s but any small changein � or���w�
	���
 causessplittingor mergingof clusters.WaveClus-
ter’s best result on t7.10k.datwas with the signal thresh-
old on the transformedfrequency domain � ) ��� n

and�¡z�
�:�8]�����!:�� ) n
(Figure 8). Two clustersare joined due

to the strengthof the bridgein the averagedsignaloutput.
Adjusting � (for example)resolvesthis problembut breaks
othergenuineclusters.

TURN*wasappliedonboththeCHAMELEONdatasets
[7] andthe large datasetsavailablefrom the WaveCluster
authors(100K - 575K points)[13], andthe testresultsare
shown in Table2 showing that the algorithmscalesnearly
linearlywith thedatasetsize.

5. Conclusion

Theefficiency andeffectivenessof clusteringalgorithms
keepsimproving. Our researchconfirmsthe weaknessin
the oldermethodsandthe relative benefitsof the morere-
centalgorithms.While OPTICS[9], WaveCluster[12], and
otheralgorithmsprovide informationatdifferentresolution
levelsthroughdendogramsor relatedgraphs,it is left to the
userto find what resolutionto choose.Also, all the algo-
rithmshavecertainchoices- parameters- to setrequiringat
leastsomedomainknowledgewhich is oftennot available
to theuser. Notethatwhile ourapproachis non-prarametric
andfully unsupervised,theusercanstill opt for agivenres-
olution if desired.

In thispaper, wehaveproposedanew clusteringmethod
called TURN* that can build clusteringinformation for a
datasetacrossresolutionsincluding the equivalentof the
dendogramsbuilt by other algorithms. The TURN algo-
rithm allows us to automaticallyidentify and, if desired,
stopon the importantresolutionlevel(s) for clustering.An
extension,Fuzzy TURN, not discussedheredue to limits
of space,permitsflatteningof the dendogramto identify
clusterscontainingareasof differing densities. Together,
we have a completeclusteringsolutionwhich canoperate
unsupervised.It is fast, scaleswell with increasingdata

size,discoversclustersof arbitraryshapeandis freeof in-
put parameters.It is well suitedto a parallel implementa-
tion makingit even fasterwith a nearlinear speedup.Our
solutioncanalsoscaleto higherdimensions,aswill bere-
portedelsewhere,but herewe emphasisethe utility in the
areaof two-dimensionalspatialclustering.For thesake of
argumentandvisualvalidation,we have used,asdid other
authorsof clusteringalgorithms,two-dimensionaldatasets
to illustrateeffectiveness.
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approachto web log analysis. In Web Mining Workshop
in conjunctionwith the SIAM InternationalConferenceon
DataMining, pages41–50,Chicago,IL, USA, April 2001.

[4] S.Guha,R. Rastogi,andK. Shim. ROCK: a robustcluster-
ing algorithmfor categorical attributes. In 15th Int’l Conf.
onDataEng., 1999.

[5] J. Han andM. Kamber. Data Mining, ConceptsandTech-
niques. MorganKaufmann,2001.

[6] A. JainandR.Dubes.Algorithmsfor ClusteringData. Pren-
ticeHall, 1988.

[7] G. Karypis, E.-H. Han, andV. Kumar. CHAMELEON: A
hierarchicalclusteringalgorithmusingdynamicmodeling.
IEEEComputer, 32(8):68–75,August1999.

[8] M. V. M. Halkidi, Y. Batistakis. On clustering valida-
tion techniques.Journal of IntelligentInformationSystems,
17(2-3):107–145,December2001.

[9] M.Ankerst, M.Breunig, H.-P. Kriegel, and J.Sander. OP-
TICS:Orderingpointsto identify theclusteringstructure.In
Proc. 1999ACM-SIGMODConf. on Managementof Data
(SIGMOD’99), pages49–60,1999.

[10] T. Masters. Neural, Novel & Hybrid Algorithmsfor Time
SeriesPrediction. JohnWiley andSons,1995.

[11] K. S.S.Guha,R.Rastogi.CURE:An efficientclusteringal-
gorithmfor largedatabases.In SIGMOD’98, Seattle,Wash-
ington,1998.

[12] G. Sheikholeslami,S.Chatterjee,andA. Zhang.Waveclus-
ter: a multi-resolutionclusteringapproachfor very large
spatialdatabases.In 24th VLDB Conference, New York,
USA, 1998.

[13] G. Sheikholeslami,S. Chatterjee, and A. Zhang. A
wavelet-basedclusteringapproachfor spatialdatain very
large databases.The InternationalJournal on Very Large
Databases, 8(4):289–304,February2000.


