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Abstract—This paper describes a novel and fast placement algorithm
for FPGA design space (e.g., area, power or reliability) exploration. The
proposed algorithm generates the placement based on the topological
similarity between two configurations (netlists) in the design space. Thus,
it utilizes the sharing of reusable information during the design space
exploration and avoids the time-consuming placement computation like
VPR. Tested on logic-level and algorithm-level design space exploration
cases, our similarity-based placement accurately depicts the “shape” of a
design space and pinpoints the designs which are of most interest to IC
designers. Moreover, a turbo version of circuit similarity-based placement
performs an average of 30x (up to 100x) faster than VPR’s while still
achieving comparable placement results.

I. INTRODUCTION

An FPGA design offers a variety of customizations by varying
design parameters. Those parameters include decisions at the al-
gorithm level (e.g., SIMD or pipeline) or at the architecture level
(e.g., cache and bus structures); options at high-level synthesis (e.g.,
scheduling and resource binding tradeoff); combinations of various
logic synthesis and optimization (e.g., ABC toolset [1]). Efficiency
of a design space exploration tool is of paramount importance for
designers to quickly identify a small set of favorable design param-
eter combinations (i.e., configurations) for a multi-objective design.
However, they still heavily rely on the general CAD tools (e.g., Altera
Quartus or Xilinx ISE) to generate every single configuration among
thousands of them, and suffer from long runtime.

Previous work on accelerating design space exploration can be
divided into two categories: methods that minimize the number of
configurations to be evaluated [2], and methods that generate design
evaluation by modeling [3] [4] [5]. The runtime for generating one
configuration is crucial for the efficiency of both methodologies. In
this paper, we accelerate placement, one of the most time-consuming
phases in FPGA synthesis, to increase the efficiency of generating
each configuration in the design space.

A unique property of design space exploration problem is the ex-
istence of similarities between netlists of different configurations.
Such similarities include both local similarity and global similarity.
The local similarity is due to the use of common primitives (e.g., DSP
modules or macros) in different configurations. The global similarity
exists because the characteristics of the application are shared by all
configurations that implement it. We illustrate this property using an
algorithm-level example with two implementation algorithms (i.e.,
RAG-n [6] and Hcub [7] ) of a constant multiplier block. The
algorithm-level schematics of these two implementations (generated
by CMU SPIRAL [8]) are shown in Figure 1. Although there is a sig-
nificant difference between the structures of these two configurations
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Fig. 1. Constant multiplier blocks generated by CMU SPIRAL (integer
constants: 58, 183, 161, 7; bit width is 8)

at the first glance, they both use adders, subtractors and shifters as
building blocks (primitives), which lead to a local similarity. When
these algorithm level designs are mapped to FPGAs, such local
similarity results in similarities of local clusters that contain look-up
tables (LUTs) or DSPs. In addition, both configurations implement
the same functionality, which results in global similarity. Specifically,
the I/O (X and Ys) of both configurations are identical; there are
identical internal structures (e.g., subgraph 28x → 29x → 14848x
is shared by both implementations) as highlighted in Figure 1 using
different colors; both configurations are sparse directed acyclic graph
(DAG) structures, and they are topologically similar.

Our approach takes advantage of this similarity property to
accelerate the placements for all configurations in the design space.
The kernel part is the circuit similarity algorithm, which quickly
detects the similarity between configurations based on topological
structures. Our proposed CAD flow, shown in Figure 2, starts with the
computation of a reference placement for a particular configuration
using an existing FPGA placer (e.g., VPR [9]). After that, the
placements for the rest of configurations can be generated very
efficiently using the circuit similarity algorithm.

To verify the effectiveness of the circuit similarity algorithm, we
have performed experiments on both the logic-level and algorithm-
level design space cases. Experimental results show that our circuit
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Fig. 2. CAD flow for the design space exploration using circuit similarity-
based placement

similarity-based placement captures the characteristics of the design
space with accurately estimated wire length and critical delay, and
pinpoints the best designs. Moreover, our approach achieves averaged
30x speedup compared to VPR’s placement.

The remainder of this paper is organized as follows: Section
II describes the circuit similarity algorithm in detail. Section III
experimentally demonstrates logic-level and algorithm-level design
space exploration. The paper is concluded in Section IV.

II. CIRCUIT SIMILARITY

A. Circuit Similarity Detection

Time complexity and global topological information are two major
concerns in the existing graph similarity algorithms. Coupled node-
edge algorithm computes graph similarity based on the iterative
definition [10]. Our circuit similarity algorithm employs iterative
method used in molecular graphs [11], which has less computation
and contains global topological information.

The iterative similarity algorithm is summarized in Algorithm 1. In
each iteration (t), the algorithm computes the similarity score X(t)

i,j

(0 ≤ X
(t)
i,j ≤ 1) between each node pair (vi, v

′
j) in two graphs,

where vi ∈ G and v′j ∈ G′. The higher the similarity score of a
node pair is, the more likely these two nodes are matched together.
This score is updated based on the values of their adjacent node
pairs (n(v)) obtained in the previous iteration and the predefined
inter-similarity between two nodes/edges (kv/ke). π is an injective
map from n(vi) to n(v′j), if |n(vi)| < |n(v′j)|, and vice-versa. The
predefined similarity is used to capture non-topological connections
between two graphs. The algorithm terminates when the difference
between the total similarity scores in two consecutive iterations is

smaller than ε, or the number of iterations reaches an upper bound
M .

Algorithm 1 Similarity of G and G′

Initialize X(0)
i,j

while |
∑
X(t) −

∑
X(t−1)| > ε and t < M do

if |n(vi)| < |n(v′j)| then

X
(t)
i,j = (1− α)kv(vi, v

′
j)

+ αmax
π

1

|n(v′j)|

∑
v∈n(vi)

X
(t−1)
v,π(v)

ke((vi, v), (v
′
j , π(v)))

else

X
(t)
i,j = (1− α)kv(vi, v

′
j)

+ αmax
π

1

|n(vi)|
∑

v
′∈n(v′j)

X
(t−1)

π(v
′
),v

′ ke((vi, π(v
′
)), (v

′
j , v

′
))

Algorithm 1 is designed for undirected molecular graphs where the
computational complexity is too expensive to handle real circuits. We
first adapt Algorithm 1 to consider a directed circuit graph and then
present two techniques to significantly improve both time and space
efficiency.

One unique constraint for circuit similarity detection is that the
matching of the corresponding PIs and POs of the two circuits must
be guaranteed. Therefore, the similarity score of corresponding PI/PO
nodes is set to be constant 1 and is not updated during the iteration.
For those internal nodes without predefined similarity, we replace kv
with X(t)

i,j , and ke with 1. Moreover, we can perform the update for
edges that leave the nodes and edges that enter the nodes, separately.
More specifically, given the two graphs, we initialize the similarity
scores of all pairs of nodes to be 1. In each iteration, for |in(vi)| <
|in(v

′
j)| and |out(vi)| < |out(v

′
j)|, the update of similarity score

X
(t)
i,j is modified as follows, where in(v) is the set of all adjacent

nodes entering v and out(v) is the set of all adjacent nodes leaving
v.

X
(t)
i,j = (1− α)X(t−1)

i,j + α
1

|out(vi)|+ |in(vi)|
[max
π

(
∑

v
′∈out(v′j)

X
(t−1)

π(v
′
),v

′ ) + max
π

(
∑

v
′∈in(v′j)

X
(t−1)

π(v
′
),v

′ )]

In our experiment, we find α = 0.75 gives the best matching
quality. After obtaining a similarity matrix that describes a complete
bipartite graph, where the weight associated with each edge denotes
the similarity score of two nodes, we can then compute a maximum
matching to obtain a node matching between the two graphs using
the min-cost network flow [12].

B. Performance Enhancement

In order to save runtime and storage, we present two pruning
techniques in DACs to significantly reduce the number of updated
node pairs.

Support Constraint. Two internal nodes are less likely to be matched
if they share few predefined matchings in their supports. A support of
a node is the set of nodes with predefined matchings in the transitive
fanin or fanout cone of this node. Formally, for two nodes v ∈ G
and v′ ∈ G′, the support constraint requires

min(
XSP (v),SP (v′)

|SP (v)| ,
XSP (v),SP (v′)

|SP (v′)| ) ≥ β



where XSP (v),SP (v′) denotes the support similarity of v and v′,
which is the sum of similarity scores of all v → v′ node pairs in
their supports, SP (v) is the support node set of v and β ∈ (0, 1] is
a constant. If the support constraint of the two nodes is not satisfied,
we do not update their similarity score in the iteration.

Level Constraint. Given a DAG, a topological sort and reverse
topological sort can label each internal node v with two values,
i.e., level(v) and rlevel(v), where level(v) (rlevel(v)) denotes the
length of the longest path from PIs (node v) to node v (POs). Two
nodes with significantly different (level, rlevel) values are less likely
to be matched. Formally, for two nodes v ∈ G and v′ ∈ G′, the level
constraint requires

|level(v)− level(v′)| ≤ Bl, |rlevel(v)− rlevel(v′)| ≤ Br

where Bl and Br are two nonnegative constant integers.
We have tested the above two pruning techniques with different

settings. In summary, compared to the number of nodes without
pruning, our pruning techniques reduce the number of nodes by 3
to 4 orders with comparable placement quality. Interested readers
can refer to technical report [13] for more details.

C. Circuit Similarity-based Placement

As shown in Figure 2, circuit similarity is used to speed up place-
ment which allows faster design space exploration. More specifically,
given a network G where each node denotes a LUT and each edge
denotes an interconnection between LUTs, the placement of network
G can be obtained by performing a highly-optimized placement (e.g.,
VPR). For another network, G′, which is generated by other design
parameters, its placement is generated by first computing the similar-
ity between networks G and G′, and finding the correspondence of
nodes in these two networks. Based on such node correspondence,
the initial placement of network G′ can be determined using the
placement of network G, e.g., if node V ′ in network G′ corresponds
to node V in network G, V ′ is assigned the same coordinates as node
V . Further refinement (e.g., low-temperature simulated annealing) is
applied to the initial placement of G′ to gain better results.

III. DESIGN SPACE EXPLORATION

A. Logic-Level Design Space Exploration

Experimental CAD flow and settings. The objective of this design
space exploration is to identify the influence of logic-level optimiza-
tion to a post-layout design. Starting from 19 ABC logic synthesis
scripts (abc.rc in ABC [1]), we have the resulting synthesized netlists
stored in BLIF file format. Next, a technology mapping (“if -k 4”) is
performed on the netlists to map them into a 4-LUT-based network.
Afterwards, the technology mapped netlists are packed into CLBs
using T-VPack [9] with “no cluster” option. After this point, we
compare two CAD flows: (a) circuit similarity-based flow and (b)
VPR from-scratch flow. Flow (a) first selects the largest configuration
(i.e., the one with largest number of CLBs) as the reference. Then
the reference configuration is placed using VPR and produces a
reference placement (“.p” file). The reference configuration and its
placement are then used to guide the initial placement of the new
configuration by finding the similarity between the new configuration
and the reference configuration. A low-temperature annealing process
using VPR (initial temperature is set to 0.1) is performed to further
refine the placement results. Flow (b) simply uses VPR to re-place
every single configuration from scratch.

Based on different pruning settings, we develop two versions of
circuit similarity. A high-quality version, CS, uses β = 0.5, Bl =

Br = 1 and inner num = 1 (Controls the number of moves at
each temperature in VPR). A turbo version, CS-t, uses β = 1, Bl =
Br = 0 and inner num = 0.1. Both CS and CS-t are evaluated in
our experiments.

Our proposed circuit similarity algorithm is implemented in C and
evaluated on the 20 applications from the MCNC benchmark. We
collect the results on a Linux server with an 8-core 2.66GHz CPU
and 32GB memory averaged over five runs. The CS2 package [14] is
used to solve the min-cost network flow for the maximum matching
problem in the circuit similarity algorithm.

The number of CLBs (averaged from 1300 to 1506) and levels
(averaged from 7 to 11) vary widely in different configurations in
our design space case.

Quality of the placement. Due to limited space, we show one
representative circuit, “dsip” as an example. The results for the other
circuits are similar. Two essential measures in initial placement stage
are compared, the bounding box cost and the delay cost. The initial
placement results generated by CS and CS-t are significantly better
than VPR’s random initial placement results. CS reduces the bb cost
and delay cost by 76% and 48% compared to VPR, respectively.
We also compare the final placement results of circuit “dsip” for 19
designs using a low-temperature annealing after the initial placement.
We evaluate the final wire length and the critical delay. For wire
length, CS and CS-t produce the results close to VPR’s final results,
increasing with 32% and 53% overhead, respectively. For critical
delay, CS and CS-t achieve better results than VPR, reducing it by
18% and 20%, respectively. More details are included in [13].

The initial and final placement results show the effectiveness of
circuit similarity-based placement that generates an optimized initial
placement which in turn leads to an optimized final placement. CS-
t, geared with aggressive pruning and significantly lower annealing
effort, still produces placement with comparable or even better quality
than VPR.

Design space shape characterization. In order to characterize the
design space, we compare the minimal, median and maximal wire
length and critical delay produced by CS and CS-t to VPR. Figure
3 shows the minimal critical delay curves of all 19 designs for 20
circuits using CS, CS-t and VPR. The almost identical curves prove
that both CS and CS-t can precisely pinpoint the minimal critical
delay design. The curves of both CS and CS-t also follow close to
VPR’s w.r.t. median and maximum critical delay. The shape of most
configurations w.r.t. wire length is accurately matched as well (More
details in [13]). The results show that CS and CS-t closely capture
the relative critical delay and wire length of each configuration which
is essentially useful in the design space exploration.
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Runtime Comparison. We compare the total runtime of placing
19 designs of each MCNC application using CS, CS-t and VPR.
The time of placing the reference configuration (the largest one)
is measured separately from the rest of 18 configurations. Without
considering the reference configuration placement time, CS achieves
averaged 3x speedup while CS-t achieves averaged 30x speedup with
up to 100x compared to from-scratch VPR placement. As the number
of configurations increases, the reference placement time becomes
negligible since it is a one-time cost.

We can take advantage of the significant speedup of CS-t and use it
to perform quick design space exploration. For instance, the total time
of exploring the whole design space of 20 MCNC applications with
19 designs is more than 8 hours using VPR (place only). In contrast,
it only takes 37 minutes (reference placement time included) using
our CS-t. More significant speedup is expected when larger design
space is explored.

B. Algorithm-Level Design Space Exploration

Experimental CAD flow and settings. We now demonstrate the
effectiveness of the proposed method at the algorithm-level design
space exploration. We use CMU SPIRAL multiplier block generator
(with default constants) to generate the RTL design of each config-
uration based on the Hcub algorithm [7]. We choose the fractional
bits as the design parameter and vary it from 7 to 25, resulting in
a design space containing 18 configurations (Bits=16 is abandoned
since ABC crashed when synthesized it). Once we obtain the RTL
design, we use Altera Quartus to perform RTL elaboration and
generate a BLIF file from a verilog (.v) file. Other experimental
settings are the same as the logic level experiments. Since those
configurations vary at algorithm level, the topological structure and
circuit size differ considerably compared to logic-level variations.
Specifically, the number of CLBs ranges from 501 to 3234 and the
number of levels ranges from 35 to 62, respectively.

Experimental results. Figure 4(a) shows the wire length-critical path
delay space produced by VPR. The label besides each point indicates
the corresponding configuration (e.g. “B7” means configuration using
Bits=7). Figure 4(b) shows the same design space using CS. From
these two figures, we can clearly see that CS and VPR find the
same pareto-points, i.e., optimal configurations of this design space,
such as B7, B8 and B9. In addition, the overall shapes of the two
design spaces match well. This proves that our circuit similarity not
only works well at low level logic synthesis, but also at high level
algorithm level. Moreover, in terms of runtime, CS and CS-t achieve
7x and 30x speedup compared to VPR, respectively.

IV. CONCLUSIONS AND FUTURE WORK

In this work, we have presented circuit similarity-based placement
for accelerating FPGA design space exploration. The characteristics
of each design can be captured by finding the similarity between
each configuration and a reference configuration. The experimental
results prove that our algorithm works well at both logic level and
algorithm level. The shape of the design space can be precisely
depicted and design curves can be well matched. Moreover, our CS-t
achieves averaged 30x speedup compared to VPR placement. From
the perspective of both design space estimation quality and runtime,
our circuit similarity has been demonstrated to be a good tool for
efficient FPGA design space exploration.

For future work, we will try to apply our circuit similarity to
other applications, e.g., FPGA incremental design, FPGA architecture
design and FPGA verifications.
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