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Abstract. Extracellular plant proteins are involved in numerous pro-
cesses including nutrient acquisition, communication with other soil or-
ganisms, protection from pathogens, and resistance to disease and toxic
metals. Insofar as these proteins are strategically positioned to play a
role in resistance to environmental stress, biologists are interested in pro-
teomic tools in analyzing extracellular proteins. In this paper, we present
three methods using frequent subsequences of amino acids: one based on
support vector machines (SVM), one based on boosting and FSP, a new
frequent subsequence pattern method. We test our methods on a plant
dataset and the experimental results show that our methods perform
better than the existing approaches based on amino acid composition.

1 Introduction

Proteins are the molecules that accomplish most of the functions of the living
cell. All proteins are composed of linear sequences of smaller molecules called
amino acids. There are twenty naturally occurring amino acids. Long proteins
may contain a chain of as many as 4500 amino acids. Finding the proteins
that make up a creature and understanding their functions is the foundation
of explanation in molecular biology [11]. With the introduction of large-scale
sequencing, biologists have accumulated an immense volume of raw biological
sequences that are publicly available. In order to better understand the functions
and structures of these protein sequences, a vitally important problem facing the
biology community is to classify these sequences into different families based on
the properties of the sequences, such as functions, structures, etc.

Protein sub-cellular localization is a key functional characteristic of proteins.
In order to execute a common physiological function, proteins must be localized
in the same cellular compartment. Proteins may be localized at various loca-
tions within the cell or be transported to the extracellular space. The process
through which proteins are routed to their proper sub-cellular localizations is
called sub-cellular protein sorting. Protein sorting is the simplest in gram posi-
tive prokaryotes, where proteins are only directed to the cytoplasm, the plasma
membrane, the cell wall, or secreted to the extracellular space. Gram nega-
tive protein localization sites include the cytoplasm, the inner membrane, the
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periplasm, the outer membrane, and the extracellular space. Sub-cellular local-
izations in eukaryotic proteins are much more complex due to the presence of
membrane-bound organelles. The major location sites for eukaryotic proteins in-
clude the plasma membrane, the nucleus, the mitochondria, the peroxisome, the
endoplasmic reticulum, the Golgi apparatus, the lysosome, the endosome, and
others (such as chloroplasts, vacuoles, and the cell wall in plant cells).

The sub-cellular localization of a protein plays an important role with re-
gard to its function. Knowledge of sub-cellular localization can provide valuable
information concerning its possible functions. It can also help in analyzing and
annotating sequences of hypothetical or known gene products. In addition, it can
influence the design of experimental strategies for functional characterization [5].

Since the number of collected sequences has been rapidly increasing, it is time
consuming and costly to approach this problem of predicting the sub-cellular
localization of a protein entirely by performing various biological experimental
tests. In view of this, it is highly desirable to develop some algorithms to rapidly
predict the sub-cellular localizations of proteins.

Herein, we are particularly interested in identifying those proteins that are
secreted to the extracellular environment (called extracellular proteins), versus
proteins localized at various locations within the cell (called intracellular pro-
teins) in plants. Extracellular plant proteins are involved in numerous processes
including nutrient acquisition, communication with other soil organisms, protec-
tion from pathogens, and resistance to disease and toxic metals. Insofar as these
proteins are strategically positioned to play a role in resistance to environmental
stress, biologists are interested in proteomic tools in analyzing them [26].

A number of methods have been developed in the bioinformatics community
for predicting protein sub-cellular localizations. They can be classified into three
major approaches based on the features used in the learning algorithms. The
first approach is based on “sorting signals”, which are short subsequences of
approximately 3 to 70 amino acids. For example, SignalP [17, 18] and TargetP
[6] use neural networks to identify the sorting signals. The accuracy of Sig-
nalP is 68% for human proteins, 70.2% in Eukaryote, 83.7% in E.coli, 79.3% in
Gram-negative bacteria and 67.9% in Gram-positive bacteria. TargetP achieves
an accuracy of 85% in plants and 90% in non-plant proteins. The second ap-
proach is based the amino acid composition. The amino acid composition of a
protein sequence refers to the relative frequencies of 20 different amino acids.
Each protein is represented by a histogram with 20 bins, regardless of the length
of the protein. NNPSL [19] uses neural network and SubLoc [10] uses support
vector machines(SVM) to learn the predictors based on amino acid composi-
tion. The accuracy of NNPSL is 66% in Eukaryotes excluding plants, and 81%
in prokaryotes. The accuracy of SubLoc is 91.4% in prokaryotes and 79.4%
on eukaryotes. The third approach, e.g. LOCKey [15] and PA-sub [14], uses
the textual information associated with a protein (available in Swiss-Prot [3])
to learn the predictor. Some tools (e.g. PSORT [16]) take an integrative ap-
proach by combining several different methods. LOCKey achieves an accuracy
of 87% on their test data extracted from Swiss-Prot. PA-sub achieves an overall
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accuracy of about 98% in all of their datasets (including animal, archea, fungi,
plant, Gram-positive bacteria and Gram-negative bacteria).

Recently, She et al. [22] proposed some methods for outer membrane protein
classification based on frequent subsequences. Their results have shown that
frequent-subsequence-based methods perform better than other methods in the
biological domain using precision as a measure. In this paper, we use similar
ideas for the problem of extracellular plant protein prediction.

In our work, we use support vector machines as well as boosting using fre-
quent subsequences of amino acids, then combine them with amino acid com-
position of proteins to improve accuracy. We also introduce a promising new
approach FSP specifically designed for frequent subsequences.

2 Predicting Extracellular Proteins

While modeling proteins with histograms representing the amino acid composi-
tion has been shown successful [19, 10, 2, 8], we found that the amino acid com-
position loses discriminant power for plant proteins. Instead we model a protein
by a set of frequent subsequences it contains. Our hypothesis is that frequent
subsequences of amino acids are better descriptors to discriminate between ex-
tracellular and intracellular plant proteins. In this section, after introducing the
features used in the training algorithms, we introduce three different methods
for extracellular plant protein prediction.

2.1 Feature Extraction

We use frequent subsequences as the features for the learning algorithms. A
frequent subsequence is a subsequence made up of consecutive amino acids that
occurs in more than a certain fraction (MinSup) of extracellular proteins. The
reason we choose frequent subsequences is based on the following observations:

– Subsequences that appear frequently in extracellular proteins and rarely ap-
pear in intracellular proteins have very good discriminative power for iden-
tifying extracellular proteins and can be of great interest to biologists.

– It has been known that common subsequences among related proteins may
perform similar functions via related biochemical mechanisms [7].

– Frequent subsequences capture the local similarity that may relate to im-
portant functional or structural information of extracellular proteins.

There are algorithms for finding frequent subsequences in a set of sequences
using generalized suffix trees (GST) [25]. A GST is a trie-like structure designed
for compactly representing a set of strings. Each suffix of the string is represented
by a leaf in the GST. Each leaf is associated with an index i. The edges are
labeled with character strings such that the concatenation of the edge labels on
the path from the root to the leaf with index i is a suffix of the ith string in
the set. There are algorithms that can construct the GST for a set of strings
in linear time [9]. After a GST is constructed, it is traversed in order to find
frequent subsequences.
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2.2 SVM Method

The first method we use is based on support vector machines (SVM) [24].
SVM is well founded theoretically because it is based on well developed sta-
tistical learning theory. It has also been shown to be very effective in real-world
applications.

In order to use SVM, the input data have to be in the form of vectors. Each
protein sequence is transformed into an n-dimensional vector x = (a1, a2, ..., an),
where n is the number of frequent subsequences found from extracellular pro-
teins, and aj(1 ≤ j ≤ n) is the feature corresponding to the ith subsequence. A
binary representation is used. If the ith subsequence appears in protein sequence
x, the value of aj is set to 1. Otherwise, it is set to 0. For the class label, +1 is
used to indicate extracellular proteins and -1 for intracellular proteins.

We can train the SVM using different kernel functions. A kernel function Φ(x)
maps the input vector x into a higher dimensional space. Nonlinear separators
for the original data can be found by a linear separator in this higher dimensional
space. Classical kernel functions include:
Linear Kernel Function: K(xi, x) = xi ·x; Polynomial Kernel Function: K(xi, x)
= (xi ·x+1)d; and Radial Basic Function(RBF): K(xi, x) = exp(−γ ‖ xi−x ‖2).

2.3 Boosting Method

Boosting is a meta-learning method that has a theoretically justified ability to
improve the performance of any weak classifier. A weak classifier is an algorithm
that, given ε, δ > 0 and access to random examples, can achieve at least slightly
better error rate ε than random guessing (ε > 1/2 − γ, where γ > 0), with a
probability (1−δ). The purpose of boosting is to build a highly accurate classifier
by combining many weak or base hypotheses, each of the weak hypothesis may
be only moderately accurate. Various different boosting algorithms have been
proposed in the literature [4, 20, 23].

Boosting algorithms work iteratively. During each iteration, a classifier is
learned based on a different weighted distribution of the training examples. The
main intuition behind boosting algorithms is to increase the weights of the in-
correctly classified examples and decrease the weights of the correctly classified
examples. This forces the learning algorithm to focus on those examples that are
not correctly classified in the next iteration. The algorithm usually stops after a
pre-specified number of iterations, or it can stop when some measurement of the
quality of the classifier based on certain measurement (such as error rate) starts
to deteriorate. The set of classifiers obtained after these iterations are combined
together for the final prediction of unseen examples.

In our application of extracellular protein prediction, we use AdaBoost [20]
with simple rule-based classifiers as the weak hypotheses. Every rule is a simple
check for the presence or absence of a frequent subsequence in a protein pri-
mary sequence. Based only on the outcome of this test, the weak hypothesis
outputs the prediction and the confidence that each label (“extracellular” or
“intracellular”) is associated with the protein sequence.
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If we denote the possible class label for a protein sequence x by l and define
a ∈ x to represent the fact that subsequence a appears in protein sequence x,
the weak hypothesis corresponding to this subsequence has the following form:

h(x, l) =
{

c0l if a∈ x
c1l if a/∈ x

where the cjl are real numbers. The weak learner searches all possible frequent
subsequences. For each subsequence, it calculates the values cjl and assigns a
score. Once all the subsequences are searched, the weak hypothesis with the
lowest score is returned by the weak learner. In our case, the score is an exact
calculation of Zt (refer to [20] for details). The score is calculated as follows
(refer to [21] for details):

Let X0 = {x : w /∈ x} and X1 = {x : w ∈ x}. For j ∈ {0, 1} and for
b ∈ {−1, +1}, we calculate the following based on the current distribution Dt:

W jl
b =

m∑
i=1

Dt(i, l){xi ∈ Xj ∧ Yi[l] = b}

Zt is minimized for a particular term by choosing cjl = 1
2 ln(

W jl
+1

W jl
−1

) and by

setting αt=1. These settings imply that

Zt = 2
∑

j∈{0,1}

∑
l∈Y

√
W jl

+1W
jl
−1

After all frequent subsequences are searched, the weak learner returns the one
for which the value of Zt is the smallest.

2.4 Frequent Subsequence Pattern (FSP) Method

She et al. proposed a rule-based classification based on frequent patterns, which
have the form ∗X1 ∗ X2 ∗ ..., where X1, X2, ... are frequent subsequences made
up of consecutive amino acids, and “*” is a variable-length-don’t-care (VLDC)
that can substitute for zero or more letters when matching the pattern against
a protein sequence [22]. Their method finds a set of frequent patterns that dis-
criminate outer membrane proteins (OMP) from non-OMPs. In the classification
stage, if a protein matches one of the frequent patterns, it is classified as OMP.
Otherwise it is classified as non-OMP. We adopt a similar idea in our method,
but with the following modification.

Consider a pattern P=∗X1 ∗ X2∗ that appears in two different sequences S1
and S2 such that X1 and X2 are close to each other in S1 while they are too
far apart in S2. Intuitively, the match in S1 is more likely to be biologically
significant. In our algorithm, we introduce another parameter called MaxGap.
When matching a pattern against a protein sequence, if the distance (in terms
of number of amino acids) of two adjacent subsequences are too far apart, we
do not consider it to be a match. For example, if MaxGap is set to be 3, the
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pattern “*ABC*DEF*” does not match the sequence “ABCMNOPQDEF”, since
the gap between subsequence “ABC” and “DEF” is 5 (see Figure 1(a)). However
the pattern “*ABC*DEF*” matches the sequence “ABCABCPQDEF”, since we
can find a way to align them, so that the gap between “ABC” and “DEF” is 2. In
this paper, we call the pattern with MaxGap to be frequent subsequence pattern,
and the pattern without MaxGap to be frequent pattern.

Algorithm 1. FSP: Algorithm for Finding Patterns
Input: Training set D = P ∪N . (P and N are the sets of extracellular and intracellular proteins)

Output: R a set of patterns in the format of ∗X1 ∗X2 ∗ ... for predicting extracellular proteins

Parameters: α: rate of weight decrease; δ: threshold total weight; min Znumber: minimum

acceptable Z-number; MaxGap: maximum gap between two subsequences.

Method:
set the weight of every example in P to 1
pattern set R ← ∅
totalWeight ← TotalWeight(P )
while totalWeight > δ · totalWeight do

N
′ ← N, P

′ ← P
pattern r ← empty rule
while true do

Choose the subsequence p with the largest Z-number, according to N
′

and P
′

if Z number(p) < min Znumber then
break

end if
append p to r
for each example t in P

′ ∪ N
′
do

if not Match(t, r, MaxGap) then
remove t from P

′ ∪ N
′

end if
end for

end while
R ← R ∪ {r}
for each example t in P do

if Match(t, r, MaxGap) then
t.weight ← α · t.weight

end if
end for
totalWeight ← TotalWeight(P )

end while
return R

She et al. use an exhaustive search to build frequent patterns to identify outer
membrane proteins by concatenating two or more frequent subsequences [22].
However, since there could be thousands of subsequences found in the training
set, an exhaustive search produces an explosive number of candidate patterns. To
deal with this problem, we exploit a greedy algorithm to find those patterns. We
search for the current best rule and reduce the weights of the positive examples
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that are covered by this rule, until the total weight of the positive examples are
less than a certain threshold (Algorithm 1). The procedure Match(t, r, MaxGap)
in Algorithm 1 is implemented by enumerating all the possible alignment of the
subsequences in the pattern r to the sequence t. The pattern r is considered to
“match” sequence t, if there is one possible alignment, such that the distances
between two adjacent subsequences are all less than MaxGap.

ABCMNOPQDEF

ABC              DEF

ABCABCPQDEF

        ABC     DEF

(a) (b)

Fig. 1. Matching pattern against sequence

The Z-number in Algorithm 1 is calculated as follows. Given a rule R and
sR denotes its support, let aC denote the mean of the target class C, defined
as aC = |SC |/|S|, where S is the current training set and SC is the subset
of S where C is the class label. Let σC denote the standard deviation of the
target class C. In the binary classification problem, it is calculated as σC =√

aC(1 − aC). Using these notions, Z-number is defined as ZR =
√

sR(aR −
aC)/σC . The Z-number measures how well a rule R discriminates examples of
class C [13]. It is similar to the z-test or t-test in statistics. A rule with high
positive Z-number predicts the presence of C with high confidence. A rule with
high negative Z-number predicts absence of C with high confidence. A rule with
Z-number close to zero does not have much power of discriminating examples of
class C.

After the set of patterns are generated, we filter them in order to keep those
patterns with good predictive power. Only those patterns with support greater
than a threshold MinSup and confidence greater than MinConf are kept for
predicting unseen protein examples. The prediction process is relatively easy.
Given an unseen example t, every pattern r in the pattern set is tested. If there
exist a pattern r that matches t, t is predicted to be an extracellular protein,
otherwise it is predicted to be an intracellular protein.

3 Experimental Results

Our hypothesis is that frequent subsequences of amino acids are better dis-
criminant than amino acid composition for distinguishing between intracellu-
lar and extracellular plant proteins. We compare our methods including SVM
based on frequent sequences, boosting based on frequent subsequence, and our
frequent subsequence pattern method (FSP) with SVM based on amino acid
composition and boosting based on amino acid composition. We also investigate
the effect of combining subsequences and amino acid composition in the same
classifier.
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3.1 Dataset and Evaluation

We tested the performance of our methods on a plant protein dataset that we
received from the Proteome Analyst project [14] at the University of Alberta.
This dataset contains 3293 proteins, among which 171 are extracellular proteins.

We performed 5-fold cross validation, i.e., each run takes one of the 5 folds
as the test set and the remaining 4 folds as the training set. To ensure fair
comparisons, all the methods are evaluated using the same folding.

The performance of a classification algorithm is usually evaluated by its over-
all accuracy. However, in our application, overall accuracy is not a good evalua-
tion metric since in our dataset, only about 5% of the proteins are extracellular
proteins. A high accuracy (95%) can easily be achieved by classifying every pro-
tein to be intracellular. Instead, we choose to use precision, recall and F-measure
with respect to the rare class (extracellular proteins) as our evaluation metrics.
They are based on the confusion matrix shown in Table 1. Using the notions in
Table 1, precision (P ) and recall (R) of extracellular class can be defined as:

P =
TP

TP + FP
, R =

TP

TP + FN

Table 1. Confusion Matrix

Actual Extracellular Actual Intracellular
Predicted as Extracellular TP FP
Predicted as Intracellular FN TN

The F-measure is a harmonic average of precision and recall: F = 2PR
P+R .

For all the experiments, the subsequences are obtained by setting the min-
imum support threshold to be 5%. The numbers of subsequences in each fold
are: 2658, 2605, 2532, 2817, 2722 for folds 1 to 5 respectively.

3.2 Experimental Result of SVM

We used the SVMlight implementation [12] since it is well-known and has been
used extensively in previous research. We tried with three different kernels, in-
cluding the linear kernel, the polynomial kernel with degree of 2 and the radial
basis function kernel with γ=0.005. For each kernel, we tried different values
for C (the regularization parameter that controls the trade-off between mar-
gin and misclassification error). The best result (in terms of F-measure) using
frequent subsequences is 0.804 with a linear kernel. We compared our method
with SubLoc [10]. SubLoc uses SVM with amino acid composition as its features.
The authors show that SubLoc performs better in terms of accuracy compared
with other methods based on amino acid composition. It also performs better
than methods based on N-terminal signals. SubLoc is not specifically designed
for predicting extracellular proteins, but since its implementation is based on
SVMlight, we re-implemented it with SVMlight and tested it on our dataset.



Frequent Subsequence-Based Protein Localization 43

We tried the same parameter settings as we did in SVM with subsequences.
The best result obtained is only 0.522 with a polynomial kernel (d=2) and
C=1000.

3.3 Experimental Result of Boosting

In the experiments with boosting, we chose the number of iterations to be 500,
1000 and 2000. The results show that the boosting algorithm is robust with re-
spect to the number of iterations. The best result obtained by boosting using
frequent subsequences is 0.729 with 1000 iterations. For the purpose of com-
parison, we also tried AdaBoost based on amino acid composition. Since the
attributes are continuous values in this case, the weak hypothesis used is a sin-
gle test of whether the composition of an amino acid is above or below some
threshold (see [21] for details). The best result obtained is a mediocre 0.574
with 1000 iterations.

3.4 Experimental Result of the FSP Method

For the experiments using the frequent subsequence pattern (FSP) method, there
are quite a few parameters to be tuned. In order to tune those parameters, we
took a portion of the training examples and tried our algorithm with different
parameter settings, then tested the learned model on another portion of the
examples. Through trial and error, we identified the following parameter setting:
MinLen set to 3, min gain to 0.1, δ to 0.03 and α to 0.8. The MinSup is set to
5%, MinConf to 80%, and MaxGap to 300. We obtained a precision of 0.765,
a recall of 0.614 and an F-measure of 0.681.

Even though SVM based on frequent subsequences achieves the best experi-
mental result, there are some advantages in using the FSP method. The reason is
that the decision functions learned by SVM algorithms are difficult for people to
understand. The discovered hyperplane is difficult to manipulate. However, the
decision rules found by the FSP method can be easily interpreted and modified
by human experts. Figure 2 shows some examples of the rules found by the FSP
method. Biologists can easily read these rules and determine whether they are bi-
ologically meaningful. They can also incorporate their biological knowledge and
modify the patterns, e.g., by adding or removing subsequences in the patterns,
to get even better classification models. This study is currently in progress.

IF (sequence contains *CKN*CGPGHGIS*) THEN (extracellular)
IF (sequence contains *YWGQNG*EIN*) THEN (extracellular)
IF (sequence contains *QVY*AGH*NVT*) THEN (extracellular)
...
ELSE (intracellular)

Fig. 2. Examples of patterns found by the FSP method



44 O.R. Zäıane et al.

3.5 Combining Frequent Subsequences and Amino Acid
Composition

It is clear that the methods based on frequent subsequences perform better than
those based on amino acid composition. However, we can still take advantage
of the information represented in the amino acid composition histograms by
combining these two features. We investigated this possibility. Interestingly, we
found that SVM does not improve at all. The result shows that there is no
obvious benefits of combined features for SVM. In other words, SVM could not
take advantage of the additional information. In the case of the RBF kernel,
SVM based on combined features deteriorated. The additional data (amino acid
composition) created noise.

Contrary to SVM, the performance of boosting (measured by F-measure) can
be improved significantly by combining frequent subsequences and amino acid
composition. As can be seen in Table 2 and Table 3 Boosting using combined
features gives a better result than the best result of SVM with frequent subse-
quences reaching 0.831. Boosting better exploits this additional data regarding
the amino acid composition when added to the frequent subsequences.

Table 2. AdaBoost classification with combined features

Number of iterations Recall Precision F-measure
500 0.685 0.967 0.802
1000 0.717 0.989 0.831
2000 0.708 0.989 0.826

Table 3. Comparison of AdaBoost based on different features

Number of iterations Combined feature Subsequence Composition
500 0.802 0.714 0.562
1000 0.831 0.729 0.574
2000 0.826 0.726 0.548

Since amino acid composition is represented by fractional numbers (i.e. the
histogram), there is no easy way to merge frequent subsequences and amino
acid composition in the FSP method. Thus, we did not combine amino acid
compositions in our FSP algorithm. However, a new model to represent this
information is worth investigating.

For cross comparison, we chose the best (in terms of F-measure) result gener-
ated by each algorithm (i.e., 0.804 for SVM with subsequences, 0.729 for boost-
ing with subsequences, 0.522 for SVM with amino acid composition, 0.574 for
boosting with amino acid composition). The comparison of different algorithms
is shown in Figure 3. Our methods based on frequent subsequences are better
than methods based on amino acid composition. In particular, Boosting with a
combination of frequent subsequences and amino acid composition performs the
best among the different approaches reaching an F-measure of 0.831.
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Fig. 3. F-measures of different algorithms

4 Conclusion and Future Work

We present in this paper several methods for identifying extracellular plant pro-
teins using frequent amino acid subsequences. Our experimental results show
that our methods perform better than amino acid composition-based methods.
The best result is actually achieved by combining frequent amino acid sub-
sequences and amino acid composition using Boosting. Combining these two
features is not always beneficial. It was indeed detrimental in the case of SVM.

Even though the experimental results show SVM and boosting based on
frequent subsequences as being the best approaches, there are advantages in
using our new FSP method. The main reason being that contrary to SVM for
example, the decision functions of the FSP method are easily readable rules that
can be easily understood, interpreted and edited by human experts. Moreover,
FSP is extendable. While it can not accommodate amino acid composition for
the moment, additional information such as location of frequent subsequences,
and constraints on their sizes could be combined in the algorithm.

There are a number of directions for possible future research. First of all, we
only use the protein primary sequences for training the predictor of extracellular
proteins. If additional properties of proteins (e.g., secondary structures, func-
tions) are available, future research can take these characteristics into account
to make a more accurate prediction.

With respect to frequent subsequences of amino acid, one important fea-
ture is the location of the subsequence within the protein. Biologists believe
that the position of a frequent subsequence, in the beginning, the end, or other,
within the protein can provide some indication regarding the protein itself. We
are currently investigating the combination of frequent subsequences, amino
acid composition, and the relative subsequence positions to build a more ro-
bust classifier. In particular, we are dividing a protein sequence into percentiles
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(50%, 25%, and 10%) and labeling the relative position of a frequent subsequence
by the portion in the protein where the subsequence starts. One good model that
lends itself to this type of combinations is the associative classifier [1]. Based on
associations rules, classification rules can be learned from proteins modeled into
transactions of features. These rules are also easily understood and potentially
modifiable by human experts in include additional domain knowledge.
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