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Abstract. Learning from imbalanced data is an important and common prob-
lem. Many methods have been proposed to address and attempt to solve the 
problem, including sampling and cost-sensitive learning. This paper presents an 
effective wrapper approach incorporating the evaluation measure directly into 
the objective function of cost-sensitive neural network to improve the perfor-
mance of classification, by simultaneously optimizing the best pair of feature 
subset, intrinsic structure parameters and misclassification costs. The optimiza-
tion is based on Particle Swarm Optimization. Our designed method can be ap-
plied on the binary class and multi-class classification. Experimental results on 
various standard benchmark datasets show that the proposed method is effective 
in comparison with commonly used sampling techniques. 
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1 Introduction 

The classification of data with imbalanced data distributions has posed a signifi-
cant drawback in the performance of the most traditional classification methods, 
which assume an even distribution of examples among classes [1]. This problem is 
growing in importance and has been identified as one of the 10 main challenges of 
Data Mining [2].  Much work has been done in addressing the class imbalance prob-
lem. These methods can be grouped in two categories: the data perspective and the 
algorithm perspective [3]. The significant shortcomings with the re-sampling ap-
proach are that the optimal class distribution is always unknown and the criterion in 
selecting instances is uncertain; furthermore, under-sampling may reduce information 
loss and over-sampling may lead to overfitting for model constructed. The cost-
sensitive learning technique takes misclassification costs into account during the 
model construction, and does not modify the imbalanced data distribution directly. 
Assigning distinct costs to the training examples seems to be the most effective ap-
proach of class imbalanced data problems. 
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In the cost-sensitive learning, the misclassification costs play a crucial role in the 
construction of a cost-sensitive learning model for achieving expected classification 
results. However, in many contexts of imbalanced dataset, the appropriate misclassifi-
cation costs are unknown. Besides the costs, the feature set and intrinsic parameter of 
some sophisticated classifiers also influence the classification performance, such as 
SVM and neural networks. Moreover, these factors influence each other. This is the 
first challenge. The other is that as we know, for evaluating the performance of cost-
sensitive classifier on the skewed data set, the overall accuracy is not sufficient any 
more. An appropriate evaluation measure is critical in both assessing the classification 
performance and guiding the classifier in the imbalanced data distribution scenario, 
such as G-mean and AUC. 

 In order to solve the challenges above, we design a novel framework for training a 
cost-sensitive neural network driven by the imbalanced evaluation criteria. The train-
ing scheme can bridge the gap between the training and the evaluation of cost-
sensitive learning, and it can learn the optimal factors associated with the cost-
sensitive classifier automatically under the guidance of the performance metrics [4]. 
The search space is expanded exponentially as the class number increases. Moreover 
the factors to be searched are mixture including continuous and discrete variables. 
Therefore, we use Particle Swarm Optimization (PSO) [5] as the optimization strategy 
due to its fast and effective solution space exploration. 
    The contributions of this work can be listed as follows: 

1) Optimizing the factors (misclassification cost, feature subset and intrinsic struc-
ture parameters) simultaneously for improving the performance of cost-sensitive neu-
ral network (CS-NN). We use G-mean [6] to guide the optimization of CS-NN.  

2) Most existing imbalance data learning so far are still limited to the binary class 
imbalance problems. There are fewer effective solutions in multi-class imbalance 
problems, which exist in real world applications. Our method can be applied on the 
multi-class imbalance data.  

2 Proposed Approaches 

2.1 Cost-sensitive Neural network 

The cost-sensitive learning technique takes misclassification costs into account 
during the model construction, and does not modify the imbalanced data distribution 
directly. The standard neural network is cost insensitive. In standard neural network 
classifiers, the class returned is C* by comparing the probability of each class directly 
for each instance x according to Eq.(1).  
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The probabilities generated by a standard neural network are biased in the imbal-
anced data distribution, adjusting the decision threshold moves the output threshold 
toward inexpensive class such that instances with high costs become harder to be 
misclassified [7]. The idea is based on the classifier producing probability predictions 
rather than classification labels.  Results suggest that threshold-moving, replacing the 
probability a sample belongs to a certain class with the altered probability, which 
takes into account the costs of misclassification, is found to be a relatively good 
choice in training CS-NN [8]. This method uses the training set to train a neural net-
work, and the cost sensitivity strategy is introduced in the test phase. Given a certain 
cost matrix, the CS-NN with threshold-moving return the class C*, which is comput-
ed by injecting the cost according to Eq.(2).  
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where Cost(Ci) denotes the cost of misclassifying instance of class i. Pi
*  denotes 

the class probabilities from the neural network combined with misclassification 

cost. iη is a normalization term such that *
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2.2 Particle Swarm Optimization 

Swarm Intelligence (SI), an artificial intelligence technique for machine learning, is a 
research branch that models the population of interacting agents or swarms that are 
able to self-organize. SI has recently emerged as a practical research topic and has 
successfully been applied to a number of real world problems.  

Particle swarm optimization (PSO) is a population-based global stochastic search 
method attributed to Kennedy and Eberhart to simulate social behavior [4]. Compared 
to Genetic Algorithms (GA), the advantages of PSO are that it is easy to implement 
and has fewer control parameters to adjust. Many studies have shown than PSO has 
the same effectiveness but is more efficient than GA [9]. PSO optimizes an objective 
function by a population-based search. The population consists of potential solutions, 
named particles. These particles are randomly initialized and move across the multi-
dimensional search space to find the best position according to an optimization func-
tion. During optimization, each particle adjusts its trajectory through the problem 
space based on the information about its previous best performance (personal best, 
pbest) and the best previous performance of its neighbors (global best, gbest). Even-
tually, all particles will gather around the point with the highest objective value.  

The position of individual particles is updated as follows: 
1 1t t t
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With v, the velocity calculated as follows:    
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where vi
t indicates velocity of particle i at iteration t, w  indicates the inertia factor, 

C1 and C2 indicate the cognition and social learning rates, which determine the rela-
tive influence of the social and cognition components. r1 and r2 are uniformly distrib-
uted random numbers between 0 and 1, xi

t is current position of particle i at iteration t, 
pbesti

t indicates best of particle i at iteration t, gbestt indicates the best of the group. 

2.3 PSO based cost-sensitive neural network (PSOCS-NN) 

In this section, we present a new measure oriented framework for optimizing the 
cost-sensitive neural network, which uses a particle swarm intelligence to carry out 
the meta-learning. 

An important issue of applying the cost-sensitive learning algorithm to the imbal-
anced data is that the exact cost parameters are often unavailable for a problem do-
main. The misclassification cost, especially the ratio misclassification cost, plays a 
crucial role in the construction of the cost-sensitive approach. It is not correct to set 
the cost ratio to the inverse of the imbalance ratio (the amount of majority instances 
divided by the amount of minority instances).  

Apart from the misclassification cost information, the intrinsic structure parameters 
and feature subset selection of the neural network have a significant bearing on the 
performance. Both factors are not only important for imbalanced data classification, 
but also for any other classification task. The proper intrinsic structure parameter 
setting of neural network (i.e. number of hidden layers and connection weights) can 
improve the classification performance. Feature selection is the technique of selecting 
a subset of discriminative features for building robust learning models by removing 
most irrelevant and redundant features from the data. The imbalanced data distribu-
tion are often accompanied by the high dimensional in real-world data sets such as 
text classification, or bioinformatics. Optimal feature selection can concurrently 
achieve good performance and dimensionality reduction [3]. Zheng et al[10] suggest 
that existing measures used for feature selection are not very appropriate for imbal-
anced data sets. Hulse et al. [11] investigate that the wrapper feature selection is a 
good approach for imbalanced datasets, which can find potentially interesting feature 
information not captured by other filter techniques. Furthermore, the feature subset 
choice influences the appropriate intrinsic structure parameters as well as misclassifi-
cation costs and vice versa, obtaining these optimal factors of CS-NN must occur 
simultaneously. 

Based on the reason above, our specific goal is to devise a strategy to automatically 
determine the optimal factors during training of the cost-sensitive classifier oriented 
by the imbalanced evaluation criteria. In this paper, for the multivariable optimiza-
tion, especially the hybrid multivariable, the best method is swarm intelligence tech-
nique [12]. We choose the particle swarm optimization (PSO) as our optimization 
method because it is very mature and easy to implement. In addition, many experi-
ments claim that PSO has equal effectiveness but superior efficiency over GA [9]. 
The wrapper method is called PSOCS-NN, which empirically discovers the potential 
misclassification costs, the feature subset, and the intrinsic structure parameters for 
CS-NN. 



Evaluation measures play a crucial role in both assessing the classification per-
formance and guiding the classifier modeling. As we known, neural networks are 
driven by error based objective functions. We have known the overall accuracy is not 
an appropriate evaluation measure for imbalanced data classification. As  a  result,  
there  is  an inevitable  gap  between  the evaluation measure  by  which  the  classifier  
is  to  be evaluated  and  the objective function according to  the classifier trained 
[13]. The classifier for imbalanced data learning needs to be driven by the more ap-
propriate measures. We inject the appropriate measures, G-mean into the objective 
function of the classifier in the training with PSO. The G-mean is the geometric mean 
of accuracies measured separately on each class, which is commonly utilized when 
performance of each class is concerned and expected to be high simultaneously [13-
14]. The value of the evaluation metric is taken as the fitness function to adjust the 
position of a particle. Through training the CS-NN with G-mean, we can discover the 
best factors. The G-mean is defined as: 
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where Ri denotes the recall of class Ci, and M is the number of the classes. 
In the binary class classification (M=2), given a certain cost matrix, the CS-NN will 

classify an instance x into positive (+) class if and only if: 
( | ) ( ) ( | ) ( )P x Cost P x Cost+ + > − −                                     (6)                             

Therefore the theoretical threshold for making a decision on classifying instances 
into positive is obtained as: 
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where Crf is ratio of two cost value, Crf= C(+)/C(-). The value of Crf  plays a crucial 
role in the construction of CS-NN for the classification of the binary class data . 

Similarly, for the multiple class classification (M>2), we set the cost of the largest 
class to 1. The other M-1 ratio cost parameters need to be optimized.  

PSO was originally developed for continuous valued spaces; however, the feature 
set is discrete, each feature is represented by a 1 or 0 for whether it is selected or not. 
We need to combine the discrete and continuous values in the solution representation 
since the costs and parameters we intend to optimize are continuous while the feature 
selection is discrete. The major difference between the discrete PSO [15] and the 
original version is that the velocities of the particles are rather defined in terms of 
probabilities that a bit will change to one. Using this definition a velocity must be 
restricted within the range [0, 1], to which all continuous values of velocity are 
mapped by a sigmoid function: 
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Equation 8 is used to update the velocity vector of the particle while the new posi-
tion of the particle is obtained using Equation 9. 
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where ri is a uniform random number in the range [0, 1] . 
In the training of the feed-forward neural network, it is often trained by adjusting 

connection weights with gradient descent. Another alternative is to use swarm intel-
ligence to find the optimal set of weights [13]. Since the gradient descent is a local 
search method vulnerable to be trapped in local minima, we opted to substitute the 
gradient descent with PSO in our use of PSOCS-NN in order to alleviate the curse of 
local optima. We use a hybrid PSO algorithm similar to the PSO-PSO method pre-
sented in [16]. In the PSO-PSO Methodology, a PSO algorithm is used to search for 
architectures and a PSO with weight decay (PSO: WD) is used to search for weights. 
We also used two nested PSOs, where the outer PSO is used to search for architec-
tures (including the feature subset which determines the input node amount as well as 
the number of the hidden nodes) and costs; the inner PSO is used to search for 
weights of the neural network defined by the outer PSO. In our work, we assume 
there is only one hidden layer. The solution of the outer PSO includes three parts: the 
cost, the number of the hidden nodes and the feature subset, and the solution of the 
inner PSO contains the vector of the connection weights. The amount of the variables 
to be optimized in the inner PSO is determined by the number of the hidden nodes in 
the  outer PSO. Figure 1 illustrates the mixed solution representation of the two 
PSOs. The detailed algorithm for PSOCS-NN is shown in Algorithm 1. 

Algorithm 1 PSOCS-NN 
Input: Training set D; Termination condition of two PSO Touter and Tinner; Population size of 

two PSOs SNouter and SNinner 
1. Randomly initialize outer-PSO population (including costs, number of the hidden nodes, 

and feature subset) 
repeat    % outer PSO 

foreach particlei 
2.       Construct Di with the feature selected by the particlei 
3.        Separate Di randomly into Trti  (80%) for training and Trvi 

  (20%) for validation  
4.   Randomly initialize inner-PSO population (connection weights) in each particlei 

          repeat     % inner PSO 
foreach particleij 

5.                   Obtain the number of the hidden nodes from the particlei 
6.                   Construct a neural network with the weights optimized by the particleij  
7.           Validate the neural network on the Trti

  and assign the fitness of particleij with 
the G-mean 

              end foreach 
8.             Inner-PSO particle population updates 

until Tinner 
9.         Obtain the optimal connection weight vector in the gbesti

inner of the inner PSO 
10.  Evaluate the neural network classifier with cost optimized by the particlei as well as 

the connection weights optimized on the Trvi, and obtain the value Mi
 based on G-

mean 
11.  Assign the fitness of particlei with Mi  

end foreach 
12.    Outer-PSO particle population updates  

until Touter 
Output: the number of the hidden nodes, costs, feature subset and the connection weights of 

the gbestinner in the gbestouter  
 



Outer PSO cost vector number of the 
hidden nodes, N 

F1 F2 … Fp-1 Fp 

Inner PSO w1 w2 … wN -1 wN 
Fig. 1 Solution representations of outer and inner PSO 

3 Experimental study 

We present two experiments separately, the binary class imbalanced data and multi-
class imbalanced data. These datasets are from the public UCI benchmark [17]. In all 
our experiments, instead of the traditional 10-fold cross validation which can result in 
few instances of minority class, each dataset was randomly separated into training set 
(70%) for constructing classifiers and test sets (30%) for validating the classifiers. 
This procedure was repeated 20 times for obtaining unbiased results. 

3.1 Binary class imbalanced data  

3.1.1 Dataset description 
To evaluate the classification performance of our proposed methods in different bina-
ry class classification tasks, and to compare with other methods specifically devised 
for imbalanced data, we tried several datasets from the UCI database. We used all 
available datasets from the combined sets used in [18]. This also ensures that we did 
not choose only the datasets on which our method performs better. There is no stand-
ard dataset for imbalanced classification, and most of these selected UCI datasets 
have multi-class labels. The minority class label (+) is indicated in Table 1. 
 

Table 1 The data sets used for binary imbalanced data classification  
The dataset name is appended with the label of the minority class (+) 

Dataset  (+) Instances Features Class balance 

Hepatitis (1) 155 19 1:4 
Glass (7) 214 9 1:6 
Segment (1) 2310 19 1:6 
Anneal (5) 898 38 1:12 
Soybean (12) 683 35 1:15 
Sick (2) 3772 29 1:15 
Car (3) 1728 6 1:24 
Letter (26) 20000 16 1:26 
Hypothyroid(3) 3772 29 1:39 
Abalone (19) 4177 8 1:130 

 
3.1.2 Experiment 1  
In this experiment, we made the comparison between basic neural network (Basic 
NN) with and without the feature selection, cost-sensitive neural network (CS-NN), 
our method proposed using G-mean oriented training for CS-NN by PSO (PSO-
CSNN) with and without the feature selection. For the Basic NN with feature selec-
tion, it is a common wrapper feature selection method with evaluating by classifica-



tion performance. As for the CS-NN, the misclassification cost ratio is searched itera-
tively to maximize the measure score within a range of cost value. In the Basic NN 
and CS-NN, the number of neurons in the hidden layer was the average number be-
tween the input and output neurons. They are trained with gradient descent. 

For the PSO setting of our method, PSOCS-NN, the initial parameter values in our 
proposed method were set according to the conclusion drawn in [19]. The parameters 
used were: C1=2.8, C2=1.3, w=0.5. For empirically providing good performance while 
at the same time keeping the time complexity feasible, the particle number was set 
dynamically according to the amount of the variables optimized (=1.5×|variables 
needed to be optimized|), and the termination condition could be a certain number of 
iterations (500 cycles) or other convergence condition (no changes any more within 2
× |variables needed to be optimized| cycles).  

Along with these parameters in PSO, the other parameters are the upper and lower 
limits of CS-NN parameters to be optimized.  For the intrinsic structure parameters of 
neural network, the upper and lower limits of the connection weights were set to 100 
and -100 respectively in the inner PSO; the upper and lower limits of the number of 
hidden nodes were empirically set to 5 and 20 respectively in the outer PSO.  The 
range of Cost(Ci) of each class Ci was empirically chosen to [1, 100×ImbaRatioi], 
where the ImbaRatioi is the size ratio between the largest class and each class Ci. 

 
Table 2 Experimental results (average G-mean and size of the feature subset after feature selection)of 
the PSOCS-NN method with and without feature selection (FS), as well as Basic NN and CS-NN  
Dataset Basic NN CS-NN PSOCS-NN 

without FS FS without FS without FS FS 
Hepatitis  0.751 0.807 (11) 0.755 0.819 0.848 (8) 
Glass  0.832 0.845 (5) 0.916 0.957 0.970 (4) 
Segment  0.993 0.997 (10) 1 1 1 (11) 
Anneal  0.736 0.798 (19) 0.818 0.909 0.934 (12) 
Soybean  0.929 1 (12) 1 1 1 (12) 
Sick  0.517 0.623 (10) 0.712 0.834 0.907 (7) 
Car 0.783 0.796 (4) 0.928 0.960 0.969 (4) 
Letter  0.955 0.962 (9) 0.972 0.979 0.971 (10) 
Hypothyrid 0.651 0.763 (17) 0.813 0.928 0.958 (14) 
Abalone 0.751 0.753 (6) 0.784 0.891 0.856 (5) 

 

The average G-mean scores and the amount of feature subset are shown in Table 
2. From the results in Table 2, we found that simultaneously optimizing the feature 
subset, intrinsic structure parameters and costs generally helps the CS-NN learn on 
the different data sets, regardless of whether there is feature selection or not. We also 
found the feature selection step for these classifiers when working on the imbalanced 
data classification for both the Basic NN and the PSOCS-NN. Therefore, we can draw 
the conclusion that simultaneously optimizing the intrinsic parameters, misclassifica-
tion costs and feature subset with the imbalanced evaluation measure guiding, im-
proves the classification performance of the cost-sensitive neural network on the dif-
ferent datasets.  



3.1.3 Experiment 2  
In this experiment, the comparisons are conducted between our method and the 

other state-of-the-art imbalanced data methods, such as the random under-sampling 
(RUS), SMOTE over-sampling [20], SMOTEBoost [21], and SMOTE combined with 
asymmetric cost neural network (SMOTE+CS-NN) [18]. For the re-sampling meth-
ods, the re-sampling rate is unknown. In our experiments, in order to compare equal-
ly, either under-sampling or over-sampling method, we also use the evaluation meas-
ure G-mean as the optimization objective of the re-sampling method to search the 
optimal re-sampling level. The increment step and the decrement step are set as 50% 
and 10% separately. This is a greedy search, that repeats, greedily, until no perfor-
mance gains are observed. Thus, in each fold, the training set is separated into training 
subset and validating subset for searching the appropriate rate parameters. For the 
SMOTE+CS-NN, for each re-sampling rate searched, the optimal misclassification 
cost ratio is determined by grid search under the evaluation measure guiding under the 
current over-sampling level of SMOTE.  

 
Table 3 Experimental comparison between PSOCS-NN and other imbalanced data classification meth-

ods on the binary imbalanced data 
Dataset Metric RUS SMOTE SMB SMOTE+CS-NN PSOCS-NN 
Hepatitis  G-mean 0.793 0.835 0.807 0.851 0.848 

AUC 0.611 0.74 0.815 0.827 0.877 
Glass  G-mean 0.847 0.851 0.885 0.965 0.970 

AUC 0.919 0.964 0.988 0.953 0.994 
Segment  G-mean 0.993 0.999 0.998 1 1 

AUC 0.999 1 1 1 1 
Anneal  G-mean 0.702 0.799 0.848 0.914 0.934 

AUC 0.902 0.856 0.839 0.911 0.932 
Soybean  G-mean 0.948 1 1 1 1 

AUC 1 1 1 1 1 
Sick  G-mean 0.354 0.699 0.748 0.816 0.907 

AUC 0.721 0.817 0.856 0.885 0.941 
Car G-mean 0.786 0.944 0.939 0.988 0.969 

AUC 0.806 0.986 0.990 1 1 
Letter  G-mean 0.957 0.959 0.966 0.963 0.971 

AUC 0.925 0.929 0.943 0.998 1 
Hypothyrid G-mean 0.673 0.841 0.853 0.917 0.958 

AUC 0.861 0.923 0.952 0.935 0.972 
Abalone G-mean 0.726 0.748 0.756 0.857 0.856 

AUC 0.751 0.793 0.771 0.828 0.875 
Number of 
Wins / Ties 

G-mean 0/0 0/1 0/1 2/2 6/2 
AUC 0/1 0/2 0/2 0/2 7/3 

The experiment results of average G-mean and AUC are shown in Table 3. As 
shown in bold in Table 3, our PSOCS-NN outperforms all the other approaches on 
the great majority of datasets. From the results, we can see that the random under-
sampling presents the worst performance. This is because it is possible to remove 
certain significant examples. Both the SMOTE and SMOTEBoost improve the classi-
fication for neural network. However, they have a potential disadvantage of distorting 



the class distribution. SMOTE combined with different costs is better than single only 
SMOTE over-sampling, and it is the method that share most of the second best re-
sults.  

The feature selection is as important as the re-sampling in the imbalanced data 
classification, especially on the high dimensional datasets. However, the feature selec-
tion is always ignored. Our method conducts the feature selection in the wrapper par-
adigm, hence improves the classification performance on the data sets which have 
higher dimensionality, such as Anneal, Sick and Hypothyroid. Although all methods 
are optimized under the evaluation measure oriented, we can clearly see that PSOCS-
NN is almost always equal to, or better than other methods. What is most important is 
that our method does not change the data distribution. The re-sampling based on the 
SMOTE may make the model overfitting, resulting in a weak generalization not as 
good as the training.  

3.2 Multiclass imbalanced data 

Most existing imbalance data learning so far are still limited to the binary class imbal-
ance problems. There are fewer solutions in multi-class imbalance problems. They 
have been shown to be less effective or even cause a negative effect in dealing with 
multi-class tasks [8]. The experiments in [22] imply that the performance decreases as 
the number of imbalanced classes increases. We choose six multiclass datasets to 
evaluate our method. The data information is summarized in Table 4. The chosen 
datasets have diversity in the number of classes and imbalance ratio. 

Table 4 The data sets used for multiclass imbalanced data classification 
Dataset   Class Instances Features Class distribution 

Cmc 3 1473 9 629/333/511 
Balance 3 625 4 49/288/288 
Nursery 4 12958 8 4320/328/4266/4044 
Page 5 5473 10 4913/329/28/88/115 
Satimage 6 6435 36 1533/703/1358/626/707/1508 
Yeast 10 1484 9 463/429/244/163/51/44/35/30/20/5 

We compare our method with the other four methods on the datasets in Table 4. 
The average G-mean values are shown in the Table 5. Through the comparison, we 
found that our method is effective on the multiclass data.  

Table 5 Experimental comparison between PSOCS-NN method and other imbalanced data classification 
methods on the multiclass imbalanced data 

Dataset RUS SMOTE SMB SMOTE+CS-NN PSO-CSNN 
Cmc 0.719 0.741 0.749 0.755 0.793 (4) 
Balance 0 0.507 0.562 0.525 0.542 (3) 
Nursery 0.498 0.789 0.811 0.809 0.853 (4) 
Page 0.684 0.707 0.739 0.758 0.771 (6) 
Satimage 0.825 0.831 0.841 0.844  0.872 (15) 
Yeast 0 0.311 0.327 0.335 0.406 (6) 



4 Conclusion 

Learning with class imbalance is a challenging task. Cost-sensitive learning is an 
important approach without changing the distribution because it takes into account 
different misclassification costs for false negatives and false positives. Since the costs, 
the intrinsic structure parameters and the feature subset are important factors for the 
cost sensitive neural network, and they influence each other, it is best to attempt to 
simultaneously optimize them using an object oriented wrapper approach. We pro-
pose a wrapper paradigm oriented by the evaluation measure of imbalanced dataset as 
objective function with respect to misclassification cost, feature subset and intrinsic 
parameter of classifier. The optimization processing is through an effective swarm 
intelligence technique, the Particle Swarm Optimization. Our measure oriented 
framework could wrap around an existing cost-sensitive classifier. The experimental 
results presented in this study have demonstrated that the proposed framework pro-
vided a very competitive solution to other existing state-of-the-arts methods, on the 
binary class and multiclass imbalanced data. These results confirm the advantages of 
our approach, showing the promising perspective and new understanding of cost-
sensitive learning.  
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