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ABSTRACT
The number of classification rules discovered in associative clas-
sification is typically quite large. In addition, these rules contain
redundant information since classification rules are obtained from
mined frequent itemsets and the latter are known to be repetitive.
In this paper we investigate through an empirical study the per-
formance of associative classifiers when the classification rules are
generated from frequent, closed and maximal itemsets. We show
that maximal itemsets substantially reduce the number of classi-
fication rules without jeopardizing the accuracy of the classifier.
Our extensive analysis demonstrates that the performance remains
stable and even improves in some cases. Our analysis using cost
curves also provides recommendations on when it is appropriate to
remove redundancy in frequent itemsets.

1. INTRODUCTION
Classification is an important task in many applications. Associa-
tion rule-based classifiers [1, 2] are classification systems that con-
sist of a set of rules, with each rule predicting that an object belongs
to a specific class if it has certain properties. The rules are discov-
ered using an association rule mining algorithm [3]. The associa-
tion rule mining problem has been thoroughly studied in the data
mining community [4, 5, 6, 7], thus there are several fast algorithms
for discovering these types of rules. An attractive characteristic
that associative classifiers possess is their readability. However, the
number of classification rules they generate is quite large.

Typically, associative classifiers generate classification rules from
frequent patterns (i.e., all patterns that are seen frequently in the
training data). Closed [8] and maximal [9] patterns are compressed
representations of all the frequent patterns. They have been pro-
posed to substantially reduce the number of frequent patterns. This
reduction is achieved by eliminating redundancy present in the fre-
quent patterns set. Closed patterns are a lossless form of compres-
sion, as the frequent patterns and their respective supports can be
reproduced from this representation. On the other hand, maximal
patterns represent a lossy compression since the support measures
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of the frequent patterns have to be recomputed.

Several research studies demonstrate the usefulness of closed and
maximal itemsets in different applications. In the case of classifi-
cation the use of these patterns has not been thoroughly explored.
Closed and maximal frequent patterns reduce the number of asso-
ciation rules, but it is not clear that they reduce the number of clas-
sification rules as well. We hypothesize that they do and probably
even improve the performance of the classification.

In this paper we investigate the performance of associative classi-
fiers when the classification rules are generated from closed and
maximal itemsets. Through our analysis we answer the following
critical questions:

• How substantial is the reduction in the number of classifica-
tion rules? It is known that closed and maximal representa-
tions reduce the number of patterns, but how does this trans-
late to classification rules?

• What is the effect of rules extracted from closed and maximal
itemsets on the classification performance? Are closed and
maximal itemsets a good substitute for frequent itemsets in
associative classifiers?

In the framework proposed in this paper, we integrate several asso-
ciative classifiers with classification rules generated from frequent,
closed and maximal patterns. Our hypothesis is that the use of
closed and maximal is advantageous to associative classifiers. The
benefit is twofold: first, the set of classification rules generated
from closed and maximal itemsets is smaller; second, the perfor-
mance level of the classifier stays the same or it improves. We test
our hypothesis with an extensive experimental study and we show
that this hypothesis holds over a large range of applications.

The contributions of this paper are as follows:

• We integrate associative classifiers with classification rules
generated from closed and maximal itemsets;

• The classification stage is what distinguishes the existing as-
sociative classifiers. We study the potential of classification
rules generated from closed and maximal patterns with sev-
eral scoring schemes used in the classification stage;

• We carry out an extensive experimental study on well-known
UCI datasets and on microarray data



2. PREREQUISITES
Association rule mining is a data mining task that discovers rela-
tionships between items in a transactional database. The efficient
discovery of such rules has been a major focus in the data mining
research community, given their popularity in market basket analy-
sis and other applications. From the original apriori algorithm [3]
there have been a remarkable number of variants and improvements
[4, 5, 6, 7].

Formally, frequent pattern mining is defined as follows. Let I =
{i1, i2, ...im} be a set of items. Let D be a set of transactions, where
each transaction T is a set of items such that T ⊆I . A transaction
T is said to contain X , a set of items in I , if X ⊆ T . We define in
the following the types of patterns that we study in this paper.

Definition 1. Frequent itemset: An itemset f ⊆ I is said to be
frequent if its support s (i.e., the percentage of transaction in D
that contain f ) is greater than or equal to a given minimum support
threshold.

Definition 2. Frequent closed itemset: A frequent itemset c⊆ I is
said to be frequent closed if and only if there is no frequent itemset
c′ such that c⊆ c′ and the support of c equals the support of c′.

Definition 3. Maximal frequent itemset: A frequent itemset m⊆
I is said to be maximal frequent if there is no other frequent itemset
that is a superset of m.

An association rule is an implication of the form “X ⇒ Y ”, where
X ⊆ I ,Y ⊆ I , and X ∩Y = /0. The rule X ⇒ Y has a support
s in the transaction set D if s% of the transactions in D contain
X ∪Y . In other words, the support of the rule is the probability that
X and Y hold together among all the possible presented cases. It is
said that the rule X ⇒ Y holds in the transaction set D with confi-
dence c if c% of transactions in D that contain X also contain Y .
In other words, the confidence of the rule is the conditional prob-
ability that the consequent Y is true under the condition of the an-
tecedent X . The problem of discovering all association rules from
a set of transactions D consists of generating the rules that have a
support and confidence greater than given thresholds. These rules
are called strong rules and represent interesting patterns in data.
In this context, a classification rule is a particular association rule
that associates frequent features with a class label.

3. ASSOCIATIVE CLASSIFIERS
The use of association rule mining for building classification mod-
els is relatively new. These classification systems discover the strongest
classification rules in the dataset and use them to classify new ob-
jects.

The first reference to using association rules as classification rules
is credited to [10], while the first classifier using these association
rules was CBA introduced by [2] and later improved in CMAR [1]
and 2SARC [11]. The idea is relatively simple. Given a training
set modelled with transactions where each transaction contains all
features of an object in addition to the class label of the object,
we can constrain the mining process to generate association rules
that always have as consequent a class label. In other words, the
problem consists of finding the subset of strong association rules of
the form X ⇒C where C is a class label and X is a conjunction of
features.

Associative classifiers have the advantage over other rule-based
classification systems that they guarantee to find all interesting rules

(in the support-confidence framework). However, this property
also guarantees that the number of classification rules will be quite
large. In this paper, we focus our efforts on lowering the number of
rules by mining closed and maximal itemsets. In addition to reduc-
ing the size of the system (i.e., the number of classification rules),
redundant information is also eliminated. The next section gives a
detailed description of our framework.

4. INTEGRATING ASSOCIATIVE CLASSI-
FIERS WITH CLOSED AND MAXIMAL
PATTERNS

Our hypothesis is that the use of closed and maximal patterns is
beneficial to associative classifier. The benefit is twofold: first, the
set of classification rules generated from closed and maximal item-
sets is smaller; second, the performance level of the classifier stays
the same or it improves. In our framework we integrate several
associative classifiers with classification rules generated from fre-
quent, closed and maximal patterns to investigate our hypothesis.

The classification stage plays an important role in building any
associative classifier. That is why we integrate in our framework
several classification schemes. We investigate these systems when
classification rules are generated from frequent, closed and maxi-
mal itemsets. The goal of our study is to find out the effect that
closed and maximal patterns produce when integrated with asso-
ciative classifiers.

The modules of our framework are as follows:

• Discover frequent, closed and maximal itemsets. Let F be
the set of all frequent itemsets, F={

⋃
f such that f ⊆ I, and

support(f) ≥ minsupp}. Let C be the set of all closed item-
sets, C={

⋃
c such that c ⊆ I, it is closed and support(c) ≥

minsupp}. Let M be the set of all maximal itemsets, M={
⋃

m such that m⊆ I, it is maximal and support(c)≥ minsupp}.
Since we are interested in building a classifier, only itemsets
that have a class label are considered.

• Generate classification rules from mined itemsets. From one
set of patterns (F, C or M) find all rules such that the con-
sequence of the rule is a class label. Let R be the set of all
classification rules, R={

⋃
r such that r is of the form X →Y ,

where Y is a class label and confidence(r) ≥ minconf }. Let
us consider that R f , Rc and Rm are the rule sets generated
from frequent, closed and maximal itemsets. Order classifi-
cation rules in R f , Rc and Rm by confidence and break ties
by support.

• Classify a new object using the set of classification rules (R f ,
Rc or Rm). The classification decision is made according to a
scoring scheme. The scoring schemes that we investigate are
as follows:

1. Classify a new object according to the highest ranked
rule that applies. This scheme is used in CBA [2]. We
denote this method as FR (first rule)

2. Classify a new object based on average of the confi-
dences. Let us assume that k rules apply to a new ob-
ject. Let S be the set of k rules. Divide S in subsets by
class label: S1,S2...Sn. For each subset Si sum the con-
fidences of rules and divide by the number of rules in



Si, this is the score that is associated to class i. The ob-
ject is classified in the class with the highest score [12].
We denote this method as AvR (average the confidences
of the rules that apply).

3. Classify a new object using a two stage classification
approach [11].

– for each instance in the training set, use R f , Rc
or Rm to collect a set of features (class-features or
rule-features as defined in [11]); Rule features are
generated as follows. Given a rule set (R f , Rc or
Rm ) and a training set, the characteristics of the
rule Ri in R with respect to each instance I in the
training set become features for the second learn-
ing method. For each instance I, a rule either ap-
plies or not. This information along with the rule’s
confidence is used into the model for the second
stage. Similarly class features are generated, but
this time class aggregates are considered as fea-
tures.

– apply a learning method in this new feature space
to learn how to use the rules in the prediction pro-
cess; this scheme is used in 2SARC;

– classify the objects in the testing set using R f , Rc
or Rm and 2SARC combined;

2SARC-CF is the system that uses class features in the
two stage classification approach; 2SARC-RF is the
system that uses rule features in the two stage classi-
fication approach.

5. EXPERIMENTAL STUDY
To test our hypothesis and to study our framework we performed an
extensive experimental study in which we evaluated all four classi-
fication systems in our framework on several datasets. The details
of the datasets and the evaluation techniques used are described in
the following sections.

5.1 Datasets and Experimental Setup
We evaluated our framework on several UCI datasets [13]. In addi-
tion, we studied the performance of associative classifiers in the
classification of several challenging microarray datasets. In our
evaluation we used the following experimental setup. We used an
apriori-like algorithm to mine frequent, closed and maximal item-
sets [14]. We generated classification rules from these patterns and
we integrated them with the associative classifiers discussed in Sec-
tion 4. A k-nearest neighbour algorithm is used in the second stage
of the 2SARC system.

For UCI datasets we set the support threshold to 1%, 5% and 10%.
The confidence threshold was set to 50%. On each UCI dataset
we performed C4.5’s shuffle utility [15] for shuffling the datasets.
A 10-fold cross validation was performed on each dataset and the
reported results are averages over the 10 folds. The continuous
attributes were discretized using the entropy method in [16], with
the code taken from MLC++ machine learning library [17]. It is the
same discretization method for continuous attributes as used in [2].
The support threshold was harder to set for the microarray datasets.
Across the set of datasets the support threshold ranged from 10%
for Prostate Cancer dataset to 75% for Lung Cancer dataset. The
confidence threshold was set to 50%. For each dataset we report
the best result obtained under this parameter setting.

We evaluate the performance of the classifiers based on accuracy,
Brier score, and cost curves [18]. Accuracy represents the percent-
age of the correct classifications out of the total number of classifi-
cations performed. The Brier score is the mean squared difference
between the predicted probability of an instance, and one or zero
depending if the actual label of the instance matches the predic-
tion or not. The best possible score for Brier score is zero. Cost
curves [18] are evaluation tools for classification systems that have
been proposed as an alternative to ROC curves. Each classifier is
represented by a straight line in the cost space. The y-axis is the
normalized expected cost (NEC) of a classifier and is between 0
and 1. The x-axis (PC(+)) is the fraction of the total cost of using a
classifier that is due to positive examples.

All the associative classifiers proposed in the literature so far have
been evaluated under the assuption that they predict only classes.
No score or probability estimation is given for the predictions. How-
ever, one can turn such a classifier into a probability estimator if a
probability can be associated with the class prediction. We did just
that for FR and AvR methods, where the probability of the predic-
tion is the rule confidence and the average of the confidences re-
spectively. Brier score and the area under the curve are reported for
FR and AvR methods. Both these measures require a probability
reported along with the prediction.

5.2 Results
This section presents the results that we obtained in our study. Our
hypothesis has two components: first, we anticipate that the num-
ber of classification rules is significantly reduced when rules are
obtained from closed and maximal itemsets; second, we expect to
keep the same level or improve the performance of associative clas-
sifiers when the classification rules generated from closed and max-
imal patterns are used. The findings of our empirical studies clearly
support our first hypothesis for the case of maximal frequent item-
sets and in most cases of closed frequent itemsets. Indeed, in some
cases the closed itemsets generated almost the same rules as those
obtained from frequent patterns, but when maximal itemsets were
used the number of classification rules always decreased. However,
for our second hypothesis, the findings were not conclusive and fur-
ther analysis (statistical and visual) with cost curves was necessary.
In the remainder we will highlight these findings using different
datasets and show how the rules were effectively reduced without
putting the classification performance in jeopardy.

5.2.1 UCI Datasets
Table 1 shows the number of classification rules generated from fre-
quent itemsets for different supports. Next to the number of rules,
the percentage of rules reduced when they are obtained from closed
and maximal is given. It can be observed from this table that our
first hypothesis is correct. The number of classification rules is sub-
stantially reduced when closed and maximal patterns are employed.
In addition, it can be observed that the use of maximal patterns is
the most beneficial.

When closed patterns mined at support 1% are used, the set of
classification rules is reduced up to 57.19% (iris dataset). Under
the same support condition, the set of classification rules generated
from maximal patterns is up to 87.03% (iris dataset) smaller than
the rules obtained from frequent patterns. Similar trends are ob-
served for supports of 5% and 10%. For three of the datasets (led7,
tic-tac-toe and waveform) the set of classification rules generated
from closed patterns is less than 0.5% smaller than the set obtained



Table 1: Number of classification rules generated from frequent itemsets and the percentage of rules dropped when closed and
maximal itemsets are used; itemsets mined at 1%, 5% and 10% support

support=1% support=5% support=10%
dataset Frequent Closed Maximal Frequent Closed Maximal Frequent Closed Maximal

(# rules) (% reduced) (% reduced) (# rules) (% reduced) (% reduced) (# rules) (% reduced) (% reduced)
anneal 10500.10 27.92 29.61 2783.20 33.28 38.88 1259.10 33.40 43.47
australian 19457.20 15.30 23.83 4765.20 13.76 34.49 1942.90 13.10 42.92
breast-w 3153.80 9.14 41.66 894.90 2.56 49.46 484.80 1.98 51.20
cleve 7898.80 11.11 26.80 2730.90 5.31 38.18 1161.30 3.01 48.28
crx 24353.30 16.84 22.31 6180.80 19.07 31.89 2597.10 22.53 40.04
diabetes 635.60 13.09 51.64 233.90 9.79 66.61 94.90 6.74 67.44
german 31688.40 14.71 24.38 5328.60 8.54 37.01 1746.00 5.54 47.15
glass 958.60 44.12 48.26 321.00 48.69 58.60 199.20 50.10 62.00
heart 2242.10 7.33 32.74 1074.20 3.84 47.77 547.10 2.07 52.90
hepatitis 25074.90 14.96 18.51 10493.30 17.91 26.19 5208.40 16.69 29.81
horse 31909.10 20.66 27.52 2706.50 19.38 52.32 482.90 11.14 63.88
iris 92.50 57.19 87.03 65.50 54.81 88.55 50.20 53.19 91.04
labor 4790.90 34.25 37.36 684.90 49.06 65.02 137.30 42.32 72.10
led7 258.10 0.46 38.09 237.60 0.00 39.69 NA NA NA
pima 577.20 13.60 53.59 232.70 10.10 67.98 94.90 7.80 68.81
tic-tac-toe 6362.80 5.04 37.07 411.10 0.02 35.13 104.40 0.00 21.26
vehicle 48465.50 16.26 17.71 9854.00 20.51 25.24 1781.70 23.72 36.53
waveform 34886.30 0.01 27.67 610.20 0.00 37.30 47.80 0.00 21.97
wine 17860.30 20.77 23.81 5586.50 27.39 34.16 2490.30 32.29 40.06
zoo 25084.20 17.67 17.67 10963.30 22.38 22.38 5817.60 25.50 25.50
Average 14812.49 18.02 34.36 3307.92 18.32 44.84 1381.47 17.56 46.32

from frequent patterns. However, the use of maximal patterns for
these datasets is still advantageous as it reduces the set of rules be-
tween 21.26% (tic-tac-toe dataset) and 39.69% (led7 dataset). Note
that for led7 dataset no classification rules are generated at 10%
support. Although the reduction in number of rules is sometimes
small for closed patterns, the maximal patterns produce a substan-
tial reduction in most cases. For instance, when heart dataset is
mined at support 10% closed patterns reduce the number of rules
by only 2.07%, while the use of maximal itemsets lowers the num-
ber of rules by 52.9%. The average provided in Table 1 shows that
closed patterns reduce the number of rules by around 18% for all
support thresholds, while the use of maximal patterns lowers the
number of rules between 34.36% and 46.32% for the range of sup-
ports. Thus our hypothesis that the number of classification rules
is substantially reduced by the use of closed and maximal patterns
holds.

The second component of our hypothesis is about the level of per-
formance of the classification systems. The results for the four as-
sociative classifiers investigated in our study are shown in Tables
2 to 5: Table 2 presents the accuracies of the FR method; Table
3 shows the accuracies of the AvR method; Table 4 presents the
accuracies of the 2SARC-CF method; and Table 5 presents the ac-
curacies of the 2SARC-RF method.

The results for FR method are presented in Table 2. When first rule
scoring scheme FR is employed, the variation in the performance
of the systems, measured by accuracy, using closed and maximal
patterns compared to the system built with frequent patterns is as
follows: for closed patterns it ranges from -0.27% to 0.93%; for
maximal itemsets it ranges from -5.36% to 5.32%. It can be ob-
served that the biggest variation in accuracy occurs for iris for

Table 2: Evaluation of FR scoring scheme
dataset accF bsF accC bsC accM bsM
anneal (1%) 93.74 0.05 93.74 0.05 93.96 0.05
australian (10%) 85.53 0.13 85.53 0.13 85.53 0.13
breast-w (1%) 95.41 0.04 95.4 0.04 95.41 0.04
cleve (10%) 84.52 0.14 84.52 0.14 83.85 0.15
crx (10%) 85.37 0.13 85.37 0.13 85.37 0.13
diabetes (5%) 74.32 0.19 74.32 0.19 75.5 0.17
german (1%) 71.1 0.27 71.1 0.27 71.1 0.27
glass (1%) 72.02 0.23 72.95 0.23 72.95 0.23
heart (1%) 81.87 0.17 81.87 0.17 82.24 0.17
hepatitis (5%) 80.56 0.19 80.56 0.19 80.56 0.19
horse (5%) 84.25 0.15 83.97 0.15 85.05 0.14
iris (1%) 94.01 0.05 94.67 0.04 89.33 0.05
labor (1%) 86.34 0.13 86.34 0.13 91.66 0.09
led7 (5%) 71.81 0.20 71.81 0.20 71.81 0.20
pima (5%) 74.2 0.19 74.2 0.19 74.99 0.18
tic-tac-toe (1%) 97.92 0.01 97.92 0.01 98.02 0.01
vehicle (1%) 59.72 0.34 59.72 0.34 59.6 0.34
waveform (1%) 81.86 0.16 81.86 0.16 82.0 0.16
wine (10%) 91.03 0.08 91.59 0.08 89.37 0.10
zoo (1%) 86.18 0.13 86.18 0.13 86.18 0.13
Average 82.58 0.15 82.68 0.15 82.72 0.15

which the accuracy went down due to the fact the number of rules
discovered was very small to start with, and labor for which the
accuracy went up substantially. When iris and labor datasets are
discarded, the range is much smaller (-1.66% to 1.18%). On aver-



age, both closed and maximal patterns improve by a small margin
the classification performance. This trend is confirmed by the Brier
score and by the area under the curve.

Table 3: Evaluation of AvR scoring scheme
dataset accF bsF accC bsC accM bsM
anneal (1%) 94.86 0.04 94.97 0.03 94.64 0.04
australian (10%) 85.97 0.11 85.53 0.11 85.38 0.12
breast-w (1%) 93.87 0.05 93.57 0.05 95.55 0.04
cleve (10%) 82.51 0.14 82.84 0.14 79.87 0.17
crx (5%) 85.39 0.11 85.66 0.11 85.39 0.12
diabetes (5%) 75.24 0.17 75.24 0.17 75.23 0.17
german (1%) 71.2 0.21 71.2 0.21 71.2 0.21
glass (1%) 70.62 0.24 71.08 0.24 71.54 0.24
heart (10%) 80.02 0.16 81.13 0.15 82.61 0.14
hepatitis (1%) 84.59 0.13 82.67 0.15 84.59 0.13
horse (10%) 84.22 0.13 84.49 0.13 82.6 0.14
iris (1%) 94.01 0.05 94.68 0.04 89.33 0.05
labor (5%) 88.0 0.11 86.33 0.12 89.66 0.11
led7 (1%) 70.81 0.20 70.78 0.20 70.76 0.20
pima (1%) 74.59 0.17 74.59 0.17 75.51 0.17
tic-tac-toe (1%) 92.82 0.06 93.22 0.06 93.65 0.06
vehicle (1%) 57.45 0.28 57.69 0.28 57.21 0.29
waveform (1%) 75.54 0.18 75.54 0.18 75.54 0.18
wine (10%) 89.93 0.09 92.74 0.06 89.95 0.09
zoo (5%) 87.18 0.10 87.18 0.10 87.18 0.10
Average 81.94 0.14 82.05 0.14 81.86 0.14

The accuracy results for average rules scoring scheme AvR is shown
in Table 3. The difference in performance for closed patterns when
compared to frequent patterns ranges from -2.29% to 0.66%; for
maximal itemsets it ranges from -5.33% to 1.11%. On average, the
closed patterns are beneficial to the classifier and slightly increase
its performance in terms of accuracy, while the maximal patterns
slightly decrease the classification accuracy. The performance of
the classifier is the same on average for both closed and maximal,
when the classifier is evaluated with the Brier score, while the per-
formance slightly decreases for both closed and maximal when area
under the curve is considered.

The performance of 2SARC-CF system is presented in Table 4.
The use of closed patterns decreases the performance by up to 1%
and increases it by up to 1.66%; the variation in performance for
maximal itemsets ranges from -3.34% to 3.33%. Note that, again,
for maximal itemsets the range is much smaller (-1% to 0.58%)
when the difference is computed without iris and labor datasets.
On average, the performance increases slightly when closed pat-
terns are used and decreases slightly when classification rules are
generated from maximal patterns.

When 2SARC-RF scoring scheme is considered (Table 5), the vari-
ation in the performance of the system for closed patterns ranges
from -1.33% to 1.8%; for maximal itemsets it ranges from -3.99%
to 3.67%. Note that for maximal itemsets the range is much smaller
(-1.24% to 0.48%) when iris and labor datasets are discarded. On
average, both closed and maximal patterns decrease insignificantly
the classification performance.

These very small increases or decreases in accuracy do not seem
to be significant, but a verification is required to support our hy-
pothesis. We performed a series of Wilcoxon signed ranked tests

Table 4: Accuracy for 2SARC-CF scoring scheme
dataset Frequent Closed Maximal
anneal 98.45 98.01 98.01
australian 87.27 87.41 87.85
breast-w 97.28 97.29 97.28
cleve 84.84 84.5 84.18
crx 86.97 86.84 86.83
diabetes 77.05 77.18 76.14
german 74.9 74.7 74
glass 70.99 70.68 71.13
heart 85.2 84.83 84.46
hepatitis 87.08 86.42 86.41
horse 84.78 84.53 84.25
iris 95.34 95.33 92
labor 93.33 94.99 96.66
led7 73.85 73.85 73.87
pima 75.51 75.11 74.86
tic-tac-toe 99.69 100 98.85
vehicle 66.91 68.21 67.38
waveform 79.7 79.8 79.06
wine 96.64 97.73 96.06
zoo 95.09 94.09 94.09
Average 85.54 85.58 85.17

Table 5: Accuracy for 2SARC-RF scoring scheme
dataset Frequent Closed Maximal
anneal 99.01 99.01 99.12
australian 88.28 87.86 87.84
breast-w 97.43 97.29 97.42
cleve 84.19 83.52 84.21
crx 86.97 86.39 86.96
diabetes 75.49 75.36 74.33
german 73.6 73.8 73.8
glass 71.97 71.52 71.57
heart 85.94 85.94 85.94
hepatitis 85.84 87.64 85.8
horse 83.98 85.04 83.42
iris 95.99 96.65 92
labor 92.99 91.66 96.66
led7 74.28 74.09 74.08
pima 74.86 74.33 73.82
tic-tac-toe 100 100 100
vehicle 71.99 71.15 70.92
waveform 80.8 80.88 81.28
wine 97.77 97.22 97.74
zoo 98.33 97.09 97.09
Average 85.98 85.82 85.7



Table 6: Maximal versus frequent on UCI datasets
M vs. F wins losses ties
FR 9 4 7
AvR 8 9 3
2SARC-CF 5 14 1
2SARC-RF 5 13 2

Table 7: Number of classification rules generated from fre-
quent itemsets and the percentage of rules dropped when closed
and maximal itemsets are used

dataset Frequent Closed Maximal
(# rules) (% saved) (% saved)

Breast Cancer 11304 20.21 20.25
Lung Cancer 10139 22.6 22.6
AML-ALL 40441.4 15.23 15.23
Prostate Cancer 95307.8 14.28 14.28

between the classifier built from frequent patterns and the model
built from maximal patterns. In addition, we tested the classifier
built from frequent patterns versus the model built from closed pat-
terns. There was indeed no statistically significant difference in
the performance. The Wilcoxon test is a non-parametric test [19],
it does not make any assumptions about the distributions of the
values. Based on average performance we can conclude that us-
ing maximal patterns is advantageous because the reduction in the
number of rules is significant, while the improvement or the drop
in the performance level is not statistically significant.

Table 6 shows on how many datasets the use of maximal patterns
performs better (wins), as well as (ties) or worse (losses) than when
frequent patterns are used.

The use of maximal patterns is more beneficial to FR and AvR
systems. This is due to their naïve scoring schemes and thus re-
ducing the redundancy in the rule set is beneficial. 2SARC-CF
and 2SARC-RF use scoring schemes that are learned automatically
from data and thus making the system less sensitive to the redun-
dancy in the set of rules.

This empirical study found no significant effect on the accuracy
of classifiers with different rule selection schemes when closed or
maximal frequent patterns are used instead of all frequent itemsets.
The gain, however, is in the reduction of the number of classifica-
tion rules. It remains to see whether this observation is still true
with more challenging datasets such as microarray data which con-
tain a relatively small set of samples.

5.2.2 Microarray Datasets
Microarray data contains measurements of a large number of genes
for a particular sample. Due to high acquisition costs, generally
there is a small number of samples in microarray datasets. The
large feature space (given by the number of genes) and the small
number of samples make the construction of a good classifier dif-
ficult. We have access to microarray data for breast cancer, lung
cancer, leukemia and prostate cancer. A method for reducing the
dimensionality of the feature space for these microarray data has
been proposed in [20]: first, biclusters are found in data (a bicluster
represents a subset of genes that are similar for a subset of samples);
second, transform the original data based on bicluster membership.
This transformation reduces dramatically the feature space. In ad-

Table 8: Accuracy on microarray datasets
dataset Frequent Closed Maximal

FR scoring scheme
Breast Cancer 58.0 58.0 58.0
Lung Cancer 96.1 96.1 96.1
AML-ALL 75.72 75.72 75.72
Prostate Cancer 79.82 79.82 79.82

AvR scoring scheme
Breast Cancer 58.0 58.0 58.0
Lung Cancer 96.1 96.1 96.1
AML-ALL 77.16 77.16 77.16
Prostate Cancer 84.34 83.6 83.64

2SARC-CF scoring scheme
Breast Cancer 81.58 81.58 81.58
Lung Cancer 97.24 96.7 96.7
AML-ALL 92.88 92.88 92.88
Prostate Cancer 86.6 86.6 86.6

2SARC-RF scoring scheme
Breast Cancer 85.5 85.5 85.5
Lung Cancer 96.72 96.72 96.72
AML-ALL 91.44 91.44 91.44
Prostate Cancer 86.6 86.6 86.6

dition, the new features are binary, representing the membership
in a bicluster. This new representation is highly suitable for asso-
ciation rule mining. Thus we investigate our framework on these
microarray datasets and the results are presented in Tables 7 and 8.
It is relevant to notice that while the authors of [20] claim to have
reached the best known classification results on these microarray
datasets, our results using 2SARC with maximal patterns outper-
formed their classification results on Lung Cancer and AML-ALL
datasets.

Table 7 shows the number of classification rules and their reduction
when rules are generated from closed and maximal patterns. For all
the microarray datasets the reduction in the number of rules is al-
most the same for closed and maximal, indicating yet again that
using maximal patterns is indeed a winning strategy. The accuracy
results for FR, AvR and 2SARC-RF methods (shown in Table 8)
remain the same when closed and maximal patterns are used in-
stead of frequent ones. The only variation occurs for 2SARC-CF
for Lung Cancer dataset: the performance insignificantly decreases
for the approaches using closed and maximal patterns.

The results on microarray data and UCI datasets confirm our hy-
pothesis, that the use of closed and maximal patterns maintains the
level of performance while reducing the number of classification
rules. Thus, based on our results so far, we can conclude that the
use of maximal patterns is advantageous. However, we want to
study when exactly is the use of maximal patterns more advanta-
geous than closed patterns and vice-versa. We use cost curve anal-
ysis for this purpose.

5.2.3 Cost Curves Analysis
In the previous sections we presented and discussed the accuracy
obtained for all the studied methods. To gain a better insight into
the examined framework we perform an analysis based on cost
curves. Cost curves [18] are evaluation tools for classification sys-
tems that have been proposed as an alternative to ROC curves.



Their advantage is that in their visualization one can easily see the
performance of a classifier over the entire range of class frequen-
cies and costs.

In our analysis we are interested to see under what conditions the
use of closed and maximal patterns is advantageous to an associa-
tive classifier. Cost curves allow us to easily visualize and detect
these conditions.
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Breast Dataset - FR method

Figure 1: Cost curve performance for FR method on Breast-w
dataset: frequent patterns - long-dashed line; closed patterns
- dashed line; maximal patterns - dotted line; trivial classifiers
- solid lines. Note that the dashed and long-dashed lines are
overlapping.

Figures 1 to 4 show the performance of classification for several
datasets. All the graphs show the performance of a classification
method when classification rules are generated from frequent, closed
and maximal patterns. Thus, three classifiers are compared in each
graph. The classifier built from frequent patterns is represented by
a long-dashed line. The one built from closed itemsets is shown
with a dashed line. The dotted line corresponds to the classification
system built from maximal patterns. The two solid lateral lines rep-
resent the trivial classifiers: the leftmost line represents the classi-
fier that always predicts the negative class, while the rightmost line
represents the classifier that always predicts positives. Note that
cost curve evaluation can be done only for 2-class datasets.

Let us analyze the Breast-w dataset. As shown in Table 1 the use of
closed patterns reduces only slightly (2%-9%) the set of classifica-
tion rules, while the set of classification rules generated from max-
imal patterns is substantially smaller (40% to 50% smaller) than
the one generated from all frequent itemsets. The accuracy for fre-
quent and closed patterns is almost identical, while for maximal
patterns it increases with 0.58%. Based on this information, one
may conclude that the use of maximal patterns with FR method is
the best choice. The cost curve shown in Figure 1 confirms this
choice since the dotted line representing the maximal is indeed the
lowest across the full range of possible PC(+) values. Note that
the dashed and long-dashed lines are overlapping, indicating that
the classifier based on closed and frequent patterns have the same
performance. Let us now look at the same dataset when 2SARC-
CF method is used. The reduction in number of rules is the same as
with FR. However, the performance in terms of accuracy is identi-
cal for frequent, closed or maximal. Thus one may assume again,
that the use of maximal patterns (they lead to the smallest set of
classification rules) would be the best choice. However, the anal-
ysis with cost curves sheds new light on this choice (see Figure
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Breast Dataset - 2SARC-CF method

Figure 2: Cost curve performance for 2SARC-CF method on
Breast-w dataset: frequent patterns - long-dashed line; closed
patterns - dashed line; maximal patterns - dotted line; trivial
classifiers - solid lines

2). It can be observed from the graph that maximal patterns should
be used only for a probability cost higher than 0.65, while for a
smaller probability, closed patterns should be preferred. The use of
closed patterns reduce only slightly the set of classification rules.
This would be an indication that also the performance should not
vary too much between frequent and closed. This assumption is
validated by both Figure 1 and 2. In Figure 1 frequent and closed
have exactly the same performance over the entire range of class
frequencies, while in Figure 2 there is only a maximum difference
of 0.0015 in the normalized expected cost.
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Diabetes Dataset - FR method

Figure 3: Cost curve performance for FR method on Diabetes
dataset: frequent patterns - long-dashed line; closed patterns -
dashed line; maximal patterns - dotted line; trivial classifiers -
solid lines

Diabetes is another interesting dataset to be studied. The trend in
rule reduction is similar to the Breast-w dataset, but the perfor-
mance of the classifiers on this dataset is much poorer. The per-
formance of FR method for Diabetes dataset is shown in Figure 3.
Contrary to the classification systems in Figure 2, the classifiers do
not perform well on the entire range of class frequencies. Indeed,
the trivial classifier can outperform those classifiers. They should
be used only on a smaller range of PC(+) ([0.35-0.85]). Outside
this interval trivial classifiers perform better. The use of maximal
patterns is advantageous in the [0.35-0.7] range, while any of the
frequent or closed patterns should be used in the [0.7-0.85] inter-
val. Again, the classifiers built from frequent and closed patterns
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Heart Dataset - AvR method

Figure 4: Cost curve performance for AvR method on Heart
dataset: frequent patterns - long-dashed line; closed patterns -
dashed line; maximal patterns - dotted line; trivial classifiers -
solid lines

overlap in this graph.

Figure 4 presents the performance of AvR method for Heart dataset.
AvR method performs better than the trivial classifiers in the [0.18-
0.86] interval. Maximal patterns are more beneficial than frequent
or closed patterns in the PC(+) range [0.18-0.64]. Frequent pat-
terns or even closed itemsets should be favored on the remaining
interval of PC(+).

In this section we have analyzed with cost curves several interest-
ing cases. In general, our investigations using cost curves suggest
that the use of maximal patterns leads to the best classification per-
formance over most of the probability ranges. In applications were
the class distribution changes, one may want to use the cost curves
to determine the best classifier.

6. CONCLUSIONS
In this paper we investigated the performance of associative clas-
sifiers when the classification rules are generated from frequent,
closed and maximal itemsets. We showed that maximal itemsets
substantially reduce the number of classification rules without jeop-
ardizing the accuracy of the classifier. Our extensive analysis demon-
strates that the performance remains stable and even improves in
some cases. Our analysis using cost curves also provides recom-
mendations on when it is appropriate to remove redundancy in fre-
quent itemsets. Based on our thorough analysis we are confident
that any investigation of associative classifiers should consider first
and foremost classification rules generated from maximal patterns.
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