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Abstract

A clustering agreement index quantifies the similarity be-
tween two given clusterings. It is most commonly used to
compare the results obtained from different clustering algo-
rithms against the ground-truth clustering in the benchmark
datasets. In this paper, we present a general Clustering Agree-
ment Index (CAI) for comparing disjoint and overlapping
clusterings. CAI is generic and introduces a family of clus-
tering agreement indexes. In particular, the two widely used
indexes of Adjusted Rand Index (ARI), and Normalized Mu-
tual Information (NMI), are special cases of the CAI. Our in-
dex, therefore, provides overlapping extensions for both these
commonly used indexes, whereas their original formulations
are only defined for disjoint cases. Lastly, unlike previous
indexes, CAI is flexible and can be adapted to incorporate
the structure of the data, which is important when comparing
clusters in networks, a.k.a communities.

Introduction
Clustering agreement indexes are well-studied and widely-
used in cluster validation (Aggarwal and Reddy 2014),
where they measure the agreement between clustering re-
sults and the ground-truth clustering, available in the bench-
mark datasets. More generally, clustering agreement indexes
quantify the similarity between two clusterings of the same
dataset (see Fig. 1 for a visualized for a toy example), and are
utilized to compare and combine multiple clusterings, usu-
ally obtained from different objectives, different algorithms,
or different parameters of an algorithm; notable cases are
consensus clustering (Fred and Jain 2005), ensemble cluster-
ing (Strehl and Ghosh 2003), and multi-view clustering (Cui,
Fern, and Dy 2007). The stability and robustness of cluster-
ing algorithms can also be assessed based on the similarity
of their results when introducing noise/variations/sampling,
and/or changing the order of the data (Fred and Jain 2003;
Wagner and Wagner 2007).

More recently, clustering agreement indexes have been
applied extensively in the comparison of community min-
ing algorithms (Danon et al. 2005; Lancichinetti and For-
tunato 2009; Gustafsson, Hörnquist, and Lombardi 2006);
which cluster nodes in a given network, based on the rela-
tionships between them. Clusters in networks, a.k.a commu-
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(a) Three clusterings of a dataset with 13 data points.

(b) Comparing the pair-wise similarity of clusterings.

Figure 1: A clustering agreement measure compares the pair-wise
similarity of clusterings.

nities, are shown to be highly overlapping (Gregory 2010;
Leskovec, Lang, and Mahoney 2010). However, the cur-
rent extensions of the clustering agreement indexes for over-
lapping cases (Lancichinetti, Fortunato, and Kertesz 2008;
McDaid, Greene, and Hurley 2011; Yang and Leskovec
2013), which are used in the evaluation of overlapping com-
munity detection methods, are either inaccurate or ineffi-
cient, as discussed in detail in the related works.

In this paper, we present a general clustering agreement
formula which naturally extends to overlapping clusters. The
main contributions of this paper are five-fold:

1. The introduction of a novel, generalized Clustering
Agreement Index (CAI);

2. Proofs that CAI generalizes a number of well-known ex-
isting agreement measures;

3. The derivation of a novel NMI measure, CMI, for over-
lapping clusterings, which reduces to the original NMI if
clusterings are disjoint, and is both faster to compute and
performs better compared to the current available overlap-
ping extensions.

4. The derivation of a ARI formulation, CRI, for overlap-
ping clusterings, which reduces to the original ARI if
clusterings are disjoint, and is faster to compute compared
to the current available extension, i.e., computational or-
der is reduced from O(n3) to O(n);

5. Empirical comparison of four well-known overlapping
community detection methods, obtained based on the pre-
vious and the newly proposed agreement indexes.



Background and Related Works
Clustering agreement indexes are often classified into three
main families of set-matching, pair counting, and informa-
tion theoretic indexes. The former class of indexes are less
favoured as they suffer from the “problem of matching”
(Meilă 2007); whereas the representatives of the latter two
classes: Adjusted Rand Index (ARI) (Hubert and Arabie
1985) and Normalized Mutual Information (NMI) (Vinh,
Epps, and Bailey 2010), respectively, are the most com-
monly used indexes for comparing clusterings. Although
classified differently, we have previously shown that the ARI
and NMI indexes are derived from a generalized clustering
distance formula (Rabbany and Zaı̈ane 2015), which mea-
sures the average dispersion in the confusion matrix of the
two given clusterings, i.e., their pair-wise cluster overlaps.
The above measures are all only defined when clusterings
are disjoint.

In more detail, let U denote a clustering of dataset D
with n datapoints into k mutually disjoint subsets/clusters,
i.e., U = {u1, u2 . . . uk}; where ui ∩ uj = ∅, ∀i 6= j and
D = ∪ki=1ui. The agreement between U and another clus-
terings ofD, say V with r clusters, is computed based on the
confusion table (a.k.a contingency table) of U and V , whose
(i, j)th element denotes the size of overlap between ui and
vj , nij = |ui ∩ vj |, i.e.,

v1 v2 . . . vr marg. sums
u1 n11 n12 . . . n1r n1.

u2 n21 n22 . . . n2r n2.

...
...

...
. . .

...
...

uk nk1 nk2 . . . nkr nk.
marg. sums n.1 n.2 . . . n.r n

The last row and column are the marginal sums, i.e., ni. =∑
j nij , and n.j =

∑
i nij . ARI and NMI indexes are

both measuring the (normalized) sum of the divergences in
rows (and columns) of this table, as shown by our general-
ization in (Rabbany and Zaı̈ane 2015). Several other clus-
tering agreement indexes are defined based on this con-
fusion matrix, including Jaccard, Rand Index, F-measure,
Wallace (1983), Fowlkes and Mallows (1983), Mirkin In-
dex (Wu, Xiong, and Chen 2009), and Variation of In-
formation (Meilă 2007). All these measures are only de-
fined when clusters are disjoint. In the literature, there is
also a line of work on extending the agreement indexes
for fuzzy clusters with soft memberships (Brouwer 2008;
Quere et al. 2010; Campello 2010; Anderson et al. 2010;
Hullermeier et al. 2012). The fuzzy measures are not appli-
cable to cases where a data-point could fully belong to more
than one cluster, i.e., crisp overlappings; which are common
in the clusters of nodes in networks, a.k.a communities.

When comparing overlapping communities, the two over-
lapping extensions for NMI by Lancichinetti, Fortunato, and
Kertesz (2008) and McDaid, Greene, and Hurley (2011), are
commonly used. These indexes are both defined based on
a matching between the clusters of the two clusterings, and
hence fail to measure the agreement accurately when this
matching is not perfect. For instance, in Fig. 1, the origi-

nal ARI and NMI indexes (which are defined only for dis-
joint cases) both agree with A, however the set-matching
measures, including these two overlapping NMI extensions,
suggest the opposite. This “problem of matching”, coined
by (Meilă 2007), is present in all the matching based agree-
ment indexes, including the Balanced Error Rate with align-
ment introduced by Yang and Leskovec (2013), and the av-
erage F1 score, and Recall measures used by Mcauley and
Leskovec (2014).

The reason for resorting back to the set-matching formu-
lations is the inherent difficulty of extending any formula
based on the confusion matrix for overlapping clusters; since
this matrix can not differentiate between the natural over-
laps in the data and the cluster overlaps used for measuring
the (dis)agreement. To tackle this issue, the agreements be-
tween two given clusterings can be measured directly based
on the co-memberships of data-points in their clusters, in-
stead of the overlaps between their clusters; as implemented
by our overlapping ARI extension proposed previously in
(Rabbany and Zaı̈ane 2015). Although this extension accu-
rately extends the ARI for overlapping cases, it is computa-
tionally expensive and not scalable to most cases. In the next
section, we show that this previous extension is a special
case of our new CAI index, whereas the new formulation is
more general and significantly more efficient.

Here, we introduce a novel generalized formula which
measures the overlaps within the clusterings themselves, and
factors them from their confusion matrix; hence naturally
extends to overlapping clusterings. Our formulation reduces
to the original formula if clusterings are disjoint, while it
does not restrict any condition on the clusterings, and works
for disjoint, fuzzy, or crisp overlapping clusters.

Clustering Agreement Index (CAI)
Consider clustering U which clusters dataset D with n dat-
apoints. For each data point i ∈ D, and cluster u ∈ U ,
let u←i denote the membership strength of data-point i in
cluster u. The restrictive assumption on this definition is∑
u u←i = 1, ∀ i ∈ D, for disjoint and fuzzy cases,

whereas in the former we also have u←i ∈ {0, 1}, and in
the latter u←i ∈ [0, 1]. Here, we do not put any assumption
on the form of the clusterings, and define a general agree-
ment measure for two given clusterings of a same data-set.
More formally, we assume i ∈ u iff u←i > 0 and obtain the
size of each cluster u ∈ U as:

ou =
∑
i∈u

u←i (1)

Similarly, we consider pairwise overlap between each pair
of clusters u and v, where i ∈ u∩ v iff u←i > 0∧ v←i > 0,
and compute the size of this overlap as:

ouv =
∑
i∈u∩v

u←i × v←i (2)

If we consider two clusterings U and V of the (same)
dataset D, then {{ouv ∀u ∈ U} ∀v ∈ V } constitutes the
confusion matrix of U and V . In the same manner, we can
represent the intrinsic overlaps of the clustering themselves



as {{ouu′ ∀u ∈ U} ∀u′ ∈ U} and {{ovv′ ∀v ∈ V } ∀v′ ∈
V }. We quantify and sum up these overlaps using a generic
function, ϕ : R≥0 7→ R; and also consider an expectation
form, E , to make the parallel with the previous formulations.
More specifically, we consider:

OUU =
∑
u∈U

∑
u′∈U

ϕ(ouu′) , OV V =
∑
v∈V

∑
v′∈V

ϕ(ovv′)

OUV =
∑
u∈U

∑
v∈V

ϕ(ouv) , EUV =
∑
u∈U

∑
v∈V

ϕ(
ouov
n

)

Based on these we then define the Clustering Agreement In-
dex (CAI) as:

CAI(U, V ) =
OUV − EUV

1
2 (OUU +OV V )− EUV

(3)

We can derive different agreement measures using differ-
ent ϕ(.) functions. In particular, we introduce two agree-
ment indexes derived with ϕ(x) = x2 and ϕ(x) = x log(x);
which are respectively called CRI and CMI . In the follow-
ing, we prove that these two derivations reduce respectively
to the originalARI andNMI when clusterings are disjoint.
Hence, they provide overlapping extensions for these two
commonly used indexes.
Theorem 1. CRI, derived from CAI using ϕ(x) = x2, re-
duces to the ARI for disjoint clusters.

Proof. CRI is derived from CAI with ϕ(x) = x2 as:∑
u∈U

∑
v∈V

o2uv −
∑
u∈U

∑
v∈V

( ouov
n

)2

1
2

[ ∑
u,u′∈U

o2uu′ +
∑

v,v′∈V
o2vv′

]
−
∑
u∈U

∑
v∈V

( ouov
n

)2

(4)

ARI, on the other hand, is defined by Hubert and Arabie
(1985) based on the pair counts, i.e., the number of pairs of
data points clustered in the same and different clusters in the
two given clusterings. These pair counts can be calculated
based on the confusion matrix, whereas, the ARI for two
clusterings with k and r disjoint clusters is often formulated
as (Albatineh, Niewiadomska-Bugaj, and Mihalko 2006):

ARI =

k∑
p=1

r∑
q=1

n2
pq − (

k∑
p=1

n2
p.)(

r∑
q=1

n2
.q)/n

2

1
2
[
k∑
p=1

n2
p. +

r∑
q=1

n2
.q]− (

k∑
p=1

n2
p.)(

r∑
q=1

n2
.q)/n2

(5)

where npq measures the overlap between the pth cluster in
the first clustering and the qth cluster in the second clus-
tering, which we respectively denote by u and v, for short.
Hence, we have npq = |u ∩ v| =

∑
i∈u∩v 1. When cluster-

ings are disjoint, we have u←i = 1 iff i ∈ u and zero other-
wise; and we can write: npq =

∑
i∈u∩v u←i × v←i = ouv .

Therefore, for disjoint clusters (when ϕ(x) = x2) we have:

k∑
p=1

r∑
q=1

n2
pq =

∑
u∈U

∑
v∈V

o2uv = OUV

Similarly, np. =
∑r
q=1 npq , which represent the size of

cluster p. In case of disjoint covering clusters, we then have

np. =
∑
i∈u u←i = ou. Hence, with ϕ(x) = x2, we have:

(

k∑
p=1

n2
p.)(

r∑
q=1

n2
.q)/n

2 =

k∑
p=1

r∑
q=1

(np.n.q/n)2 = EUV

Furthermore, since clusters are disjoint, ouu′ = ou iff
u = u′ and zero otherwise, i.e., disjoint clusters only have
overlap with themselves which is equal to their size, we fur-
ther have:

k∑
p=1

n2
p. =

∑
u∈U

o2u =
∑
u∈U

∑
u′∈U

o2uu′ = OUU

Substituting these terms in theARI of Equation 5 results in
the CRI in Equation 4, which concludes the proof.

Theorem 2. CMI, derived from CAI using ϕ(x) = x log(x),
reduces to the NMIsum for disjoint clusters.

Proof. NMIsum is a common normalization for the mutual
information between two given clusterings. It is formally de-
fined for disjoint clusters as (Vinh, Epps, and Bailey 2009):

NMIsum(U, V ) =
I(U, V )

1
2

[H(U) + H(V )]

=
H(U, V )−H(V )−H(U)

1
2

[H(U) + H(V )]−H(V )−H(U)
(6)

where H(U) denotes the entropy of clustering U ; I(U, V )
denotes the mutual information between two clustering U
and V , and H(U, V ) denotes their joint entropy; which are
all calculated based on the confusion matrix, assuming this
matrix shows the joint probability distribution of, member-
ships of data points in, clustering U and V . More precisely:

H(U, V ) = −
k∑
i=1

r∑
j=1

nij
n

log(
nij
n

)

Similar to the ARI, nij denotes the overlap between the ith

cluster in U and the jth cluster in V , which we call u and v
for short, and then we write:

H(U, V ) = −
∑
u∈U

∑
v∈V

ouv
n

log(
ouv
n

)

= − 1

n

∑
u∈U

∑
v∈V

ouv(log(ouv)− log(n))

= − 1

n

∑
u∈U

∑
v∈V

ouv log(ouv) +
log(n)

n

∑
u∈U

∑
v∈V

ouv

Since clusters are covering and disjoint we have∑
u∈U

∑
v∈V

ouv = n, hence we get:

H(U, V ) = − 1

n

∑
u∈U

∑
v∈V

ouv log(ouv) + log(n)

Similarly, for disjoint covering clusters we also have∑
u∈U ou = n, and we can also rewrite H(U) as:

H(U) = −
k∑
i=1

ni.
n

log(
ni.
n

)

= −
∑
u∈U

ou
n

log(
ou
n

) = − 1

n

∑
u∈U

ou log(ou) + log(n)



Since when clusters are disjoint we have ouu′ = ou iff u =
u′ and zero otherwise, H(U) is further equivalent to (when
0 log 0 = 0):

H(U) = − 1

n

∑
u∈U

ou log(ou) + log(n)

= − 1

n

∑
u∈U

∑
u′∈U

ouu′ log(ouu′) + log(n)

Therefore we can write:

H(U)+H(V ) = 2 log(n)−
1

n
(
∑

u,u′∈U

ouu′ log(ouu′) +
∑

v,v′∈V

ovv′ log(ovv′))

On the other hand, for H(V ) +H(U) we also have:

H(U) + H(V ) = −
∑
u∈U

ou
n

log(
ou
n

)−
∑
v∈V

ov
n

log(
ov
n

)

For disjoint covering clusters, we can further show that:

−
∑
u∈U

ou
n

log(
ou
n

)−
∑
v∈V

ov
n

log(
ov
n

)

= − 1

n

∑
u∈U

∑
v∈V

ouov
n

log(
ouov
n

) + log(n)

By substituting these terms in the NMIsum of Equation 6,
we get the CMI formula, which concludes the proof.

Lastly, we show that theCRI provides an alternative (and
computationally feasible) formulation for the overlapping
ARI proposed in (Rabbany and Zaı̈ane 2015).
Theorem 3. CRI of Equation 4 is equivalent to the overlap-
ping extension of ARI proposed in (Rabbany and Zaı̈ane
2015).

Proof. Consider Un×k denotes k clusters over a dataset with
n data-points; i.e., uik shows the strength of the data-point
i’s memberships in cluster k. Using this matrix representa-
tion, the size of pairwise cluster overlaps in U can be com-
puted by UTU , whereas the number of clusters that each
pairs of data-points appeared together in, can be computed
byUUT . The Clustering Co-Membership Difference Matrix
(∆) is then defined as: ∆(U, V ) = (UUT − V V T )n×n; a
normalization of which gives the generalized ARI, i.e.,

ARIδ(U, V ) =

1− ‖∆(U, V )‖2F
‖UUT ‖2F + ‖V V T ‖2F −

2
n2 |UUT ||V V T |

(7)

where |.| is the sum of all elements in the matrix, and ‖.‖2F
is the squared Frobenius norm, i.e., sums the squared values
of the given matrix. First, since we have:

(UUT )ij = Ui.U
T
.j = Ui.Uj. =

k∑
p=1

UipUjp

hence we can write ‖UUT ‖2F as:

n∑
i=1

n∑
j=1

(
(UUT )ij

)2
=

k∑
p=1

k∑
p′=1

n∑
i=1

n∑
j=1

UipUjpUip′Ujp′

The expression UipUjpUip′Ujp′ is zero if either i or j does
not belong to cluster p or p′, i.e., one of the terms becomes
zero, hence we can further rewrite ‖UUT ‖2F as:

k∑
p=1

k∑
p′=1

∑
i,j∈p∩p′

UipUjpUip′Ujp′ =

k∑
p=1

k∑
p′=1

 ∑
i∈p∩p′

UipUip′

2

For clarity, we use p to denote both the index of the cluster
and the cluster itself, i.e., we simply write p ∩ p′ instead of
U.p ∩ U.p′ . Now, we can rewrite ‖UUT ‖2F as:

∑
u∈U

∑
u′∈U

( ∑
i∈u∩u′

u←i × u′←i

)2

=
∑
u∈U

∑
u′∈U

o2uu′
∗
= OUU

whereas ∗= denotes that the equivalence holds since we have
ϕ(x) = x2. Similarly, we have:

‖UUT − V V T ‖2F =

n∑
i=1

n∑
j=1

(
(UUT )ij − (V V T )ij

)2
∗
= OUU +OV V − 2

n∑
i=1

n∑
j=1

(
(

k∑
p=1

UipUjp)(

r∑
q=1

ViqVjq)

)

where
n∑
i=1

n∑
j=1

(
(

k∑
p=1

UipUjp)(

r∑
q=1

ViqVjq)

)

=

k∑
p=1

r∑
q=1

( ∑
i∈p∩q

UipViq

)2

=

k∑
p=1

r∑
q=1

o2pq
∗
= OUV

We can further show that |UUT ||V V T | = n2EUV , since:

|UUT ||V V T | =

 n∑
i=1

n∑
j=1

(UU
T
)ij

 n∑
i=1

n∑
j=1

(V V
T
)ij


=

 k∑
p=1

n∑
i=1

n∑
j=1

UipUjp

 r∑
q=1

n∑
i=1

n∑
j=1

ViqVjq


=

 k∑
p=1

∑
i,j∈p

UipUjp

 r∑
q=1

∑
i,j∈q

ViqVjq


=

k∑
p=1

∑
i∈p

Uip

2
r∑

q=1

∑
i∈q

Viq

2

=

k∑
p=1

(op)
2

r∑
q=1

(oq)
2
=

k∑
p=1

r∑
q=1

(opoq)
2

By simple substitution, we now re-formulate Equation 7 as:

ARIδ(U, V )
∗
= 1− Ouu +Ovv − 2Ouv

Ouu +Ovv − 2EUV

Which holds when we have ϕ(x) = x2, which concludes
the proof.

Although equivalent, the CRI formulation is more effi-
cient than the ARIδ , and is in fact on par with the disjoint
variation in terms of the efficiency. We discuss this in more
details in the next section.



Complexity of CAI
Let k and r, denote the number of clusters in the two given
clusterings, where k ≥ r. Also let m denote the cardinal-
ity of the largest cluster in the two clusterings. The com-
plexity of ARI (Equation 5) and NMI (Equation 6), which
are only defined for disjoint clusters, is O(krm). Since they
are both formulated based on the k × r confusion matrix,
whose entries are the pairwise cluster overlaps, that are mea-
sured by set intersection in O(m). The CAI (Equation 3), is
also formulated based on k × r pairwise cluster overlaps,
which are defined in Equation 2, and can be computed in
O(m). Moreover, CAI also measures the pairwise cluster
overlaps in each of the two clusterings themselves, which
costs O(k2m) and O(r2m). Hence the total complexity of
CAI formula, is O((kr+ k2 + r2)m), which is in the order
of O(k2m). This is about the same as the cost for the dis-
joint clusters. This is much more efficient when compared to
the overlapping formulation of ARI (Equation 7) presented
in (Rabbany and Zaı̈ane 2015), which is based on pair-wise
co-memberships and computes in the order of O(n3), where
n denotes the number of data points. Therefore, our new ex-
tension can be computed more efficiently in real world ap-
plications where n is large.

Properties of CAI
Here, we show basic properties of CAI which are the basic
axioms for a ‘good’ clustering agreement measure (Wagner
and Wagner 2007).
Proposition 1. CAI(U,U) = 1

Proposition 2. Symmetry: CAI(U, V ) = CAI(V,U)

Proof. We can see that ouv =
∑
i∈u∩v u←i × v←i = ovu.

Based on which simply follows that OUV = OV U and
EUV = EV U , hence CAI(U, V ) = CAI(V,U).

Proposition 3. Upper bound: CAI(U, V ) ≤ 1 when
1
2 (OUU +OV V ) is the upper bound for OUV and EUV .

Proof. CAI(U, V ) ≤ 1 iff OUV −EUV
1
2 (OUU+OV V )−EUV

≤ 1 iff
OUV − 1

2 (OUU+OV V )
1
2 (OUU+OV V )−EUV

≤ 0; which holds if we have OUV ≤
1
2 (OUU + OV V ) and EUV ≤ 1

2 (OUU + OV V ), i.e., when
1
2 (OUU +OV V ) is the upper bound for OUV and EUV .

Proposition 4. Lower bound: 0 ≤ CAI(U, V ) when
EUV ≤ OUV , and also EUV ≤ 1

2 (OUU +OV V ).

Proof. From the definition of CAI, it is easy to see that this
proposition holds.

It is easy to show that the upper bound of Proposition 3 is
valid for the CRI (derivation of CAI with ϕ(x) = x2); and
the lower bound of Proposition 4 is valid for CMI (deriva-
tion of CAI with ϕ(x) = x log(x)). We also experimentally
observe that the upper bound of Proposition 3 is also valid
for CMI, and the lower bound of Proposition 4 is valid for
CRI. However, proofs are not straightforward and are future
works. It is interesting to study if there exists a property or
constraint for ϕ which guarantees these bounds, and encom-
passes both ϕ(x) = x2 (CRI) and ϕ(x) = x log x (CMI).

(a) Structure independent agreement

A(  ) > A (  ), , >

(b) Structure dependent agreement

Figure 2: Including the connections between the data-points
makes the agreement of the first pair of clusterings stronger, since
it is better aligned with the structure of the data.

Flexibility of CAI
CAI does not enforce any assumptions on the form of mem-
berships of data-points. This flexibility is in particular im-
portant when adapting the clustering agreement indexes
to compare communities, i.e., clusters in networks. More
specifically, communities are defined based on the connec-
tions between the nodes, whereas all the classic clustering
agreement measures ignore the relationships between data-
points. Fig. 2 illustrate the effect of including the structure
on the agreement of two clusterings, by a revisit to exam-
ple of Fig. 1. An intuitive way to incorporate the structure
of the data in measuring the agreement between clusterings
is to simply modify the memberships of nodes in clusters
(e.g., weighted by degree) and/or the overlap of two clusters
(e.g., sum of edges instead on nodes) to also consider the re-
lationships between the data points. This is possible only if
the agreement measure is flexible and has no restricting as-
sumptions on the marginals of the contingency table, or the
form of data-points’ memberships in clusters. Which is the
case for CAI, but not for the other classic measures.

Applicability of CAI
In this section, we compare our CRI and CMI derivations,
against other overlapping alternatives, within their most
common application, i.e., external evaluation of community
detection algorithms. The experimental settings are as fol-
lows. First, we generate a set of benchmark datasets us-
ing a generator which synthesizes networks with built-in
ground-truth communities. Then, these datasets are clus-
tered with different community detection algorithms. Fi-
nally, the results obtained from different algorithms are com-
pared against the ground-truth in these benchmarks, using a
clustering agreement index. Therefore, we obtain a ranking
of algorithms per each agreement index. Our goal here is to
show that these rankings are generally similar but disagree
in some cases; in particular the rankings obtained from the
current overlapping extensions of NMI and CMI (our over-
lapping extension) disagree the most when the number of
clusters is much higher/lower than the ground-truth.

In more detail, we use the overlapping LFR benchmark
generators (Lancichinetti, Fortunato, and Kertesz 2008), to
synthesize benchmarks with varying fraction of overlapping
nodes (10 realizations for each setting to report the average).
The overlapping community detection methods included in
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Figure 3: In each sub-plot, agreement of the results with the
ground-truth is measured using the corresponding agreement in-
dex, plotted as a function of the fraction of overlapping nodes.
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Figure 4: Size of clusters found by each community detection al-
gorithm, corresponding to the results in Fig. 3.

this comparison are: COPRA (Gregory 2010), MOSES (Mc-
Daid and Hurley 2010), OSLOM (Lancichinetti et al. 2011),
and BIGCLAM (Yang and Leskovec 2013). We apply the
overlapping extensions of NMI , i.e., NMI ′ by Lanci-
chinetti, Fortunato, and Kertesz (2008) and NMI ′′ by Mc-
Daid, Greene, and Hurley (2011); the adjusted omega index
(Aω) by Collins and Dent (1988); the δ-based formulations
for the ARI by Rabbany and Zaı̈ane (2015), to compare
them against the ARI and NMI overlapping extensions
presented in this paper, i.e., CRI and CMI derived from
our CAI generalization. Fig. 3, shows the resulted ranking
of algorithms according to each agreement measure, plotted
as different sub-plots. In other words, each subplot provides
a comparison of the community detection methods accord-
ing to the corresponding clustering agreement index.

We can see in Fig. 3 that overall, the rankings of algo-
rithms are consistent according to different agreement mea-
sures. This is expected, since these indexes are similar or
in case of ARIδ and CRI , identical. We can however ob-
serve the differences between set-matching based extensions
ofNMI (subplots in the top row), with theNMI extension
presented here (CMI). For example, we can see that ac-
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Figure 5: Experimental time comparison of CRI and CMI derived
from our generalization, with ARIδ , NMI ′, NMI ′′, and Aω .

cording to both CMI and CRI , performances of OSLOM
and MOSES algorithms are close, however, the previous
overlapping extensions of NMI (NMI ′ and NMI ′′), rank
OSLOM significantly higher. This is because OSLOM finds
relatively less communities, as shown in Fig. 4, and hence its
communities are better matched with the ones in the ground-
truth, whereas MOSES’s communities are finer grained and
not properly matched with the communities in the ground-
truth, when using a set-matching based agreement index.
We can observe a similar pattern in the comparison of BIG-
CLAM and COPRA; i.e., BIGCLAM finds too few commu-
nities and its performance plot is consequently shifted much
lower by the NMI ′ and NMI ′′, when compared to CMI
and other agreement measures. Therefore, in general CMI
seems to be a more accurate overlapping extension for the
NMI when compared to the NMI ′ and NMI ′′.

We further compare the time complexity of these indexes,
reported in Fig. 5, where the average run time for comput-
ing different indexes is plotted as a function of number of
nodes in the network. We can see that the proposed CMI
and CRI overlapping derivations of CAI are much more ef-
ficient compared to the other measures, particularly when
compared to the ARIδ . This confirms our theoretical com-
parison presented earlier.

Conclusions

In this paper, we presented an elegant generalization of clus-
tering agreement indexes, which i) extends to overlapping
cases, ii) generalizes existing measures, iii) introduces novel
measures. In particular, our CMI derivation is both more
accurate and more efficient compared to the previous over-
lapping NMI extensions. Our generalization, called CAI ,
and its derivations, are scalable and flexible, and there-
fore, unlike the previous measures, applicable to the large
datasets, such as a typical network. The implications of our
proposal are however more broad, since our newly proposed
generalization applies to all cases of disjoint, fuzzy, or crisp
overlapping clusters. As a future work, it is interesting to in-
vestigate other sensible choices for the generative function
used in our generalization, to derive new CAIs, and to study
its advantages and limitations.
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