FORWARD ERROR RECOVERY:
TOWARD A PREVENTIVE METHODOLOGY!

A.JAOUAZ, K. ZEROUALS3, N. BRIERE3, P. TREMBLAY? and R.O. ZAIANE?2

ABSTRACT

In this paper we propose a new method for the construction of fault tolerant programs: the
"preventive" method, which is based on forward error recovery. With this method, the execution
of the program is controlled relatively to its specification, so that we never try to detect the presence
of any error nor to find the faults which cause the error, but we change the current (correct or erro-
neous) state of the program into a new correct state. Tested on very contaminated programs, this
method has given satisfactory results with a better run time than another forward error recovery
methodology: hybrid validation [Mili, 85]. It also appears to be more efficient than the executable
assertions method [Jaoua and Mili, 90].

Keywords: Forward Error Recovery, Fault Tolerance, Reliability, Relational Specification,
Difunctional Relations. -

RESUME

Dans cet article, nous proposons une nouvelle méthodologie de construction de programmes
tolérants aux fautes: la "méthode préventive", qui est basée sur le recouvrement avant des erreurs,
Avec cette méthode, 1'exécution du programme est contrdlée relativement 2 sa spécification, de telle
sorte que nous n'essayons jamais de détecter la présence d'une erreur, ni de trouver les fautes qui
ont provoque ces erreurs, mais nous changeons 1'état courant du programme (correct ou erroné) en
un nouvel état correct. Testée sur des programmes trés contaminés, cette méthode a donné des ré-
sultats satisfaisants avec un meilleur temps d'exécution qu'une autre méthodologie connue de
recouvrement avant des erreurs appelée validation hybride [Mili, 85]. De plus, il semble qu'elle est
plus efficace que la méthode des assertions exécutables [Jaoua and Mili, 90].

Mots clés: Recouvrement avant des erreurs, Tolérance aux fautes, Fiabilité, Spécification rela-
tionnelle, Relations difonctionnelles.

(1) This research is supported by grants from the Natural Science and Engineering Research
Council of Canada (OGP0089762), Research Formation and help F.C.A.R. (1-3-04-3615-
xxxx-2552), and from Laval University (A 268).

(2) Department of Computer Science, Laval University (Quebec), G1K 7P4.

(3) Department of Mathematics and Computer Science, Sherbrooke University (Quebec),
J1K 2R1, Canada.

1. INTRODUCTION

The best way to build fault tolerant programs is to avoid introducing ad hoc procedures to find the
origine of, detect or even recover, errors. In our present work, we present a constructive method
for fault tolerant programming based on the principle that it is better to prevent than to cure. In
hardware as in software, fault tolerance methodologies are based on error detection [Anderson and
Lee, 1981], [Laprie, 1985], with backward error recovery [Aviziennis, 1985] or forward error re-
covery [Mili, 1985], [Jaoua and Mili, 1990].

In this paper we propose an approach for fault tolerance in which we do not try to detect
errors but only use a general recovery routine as developed in [Jaoua, 1987]. This method may be
applied to any fault tolerant program for which the time of error detection is longer than or equal to
the time of error recovery. What is more interesting, in the special case of forward error recovery,
because we use the information contained in the current program state, recovery routines may
accelerate correct program termination. The proposed approach is a slight modification of the
hybrid methodology proposed in [Mili, 85], and developed in [Jaoua, 87]. In the next section 2,
we present the mathematical background of our work; in section 3, we describe the principles of
the preventive method; in section 4, we introduce a p-reliability metric and use it to compare the
reliability level of three particular merging programs: the first one is built without recovery, the
second is built with error detection and recovery routines and the third program only uses a recov-
ery routine. We conclude, in section 5, by some perspectives of application of this method in soft-
ware engineering.

2. FUNDAMENTALS OF PROGRAM FAULT TOLERANCE
In our present work, we use the theoretical base of fault tolerance established in [Mili, 85]. The
definitions we present are also derived from general references on fault tolerance [Anderson et al.,
85] and [Laprie, 85]. We begin by giving some mathematical backgrounds.

2.1 Mathematical background

We place this study in the framework of a Tarski-like relational algebra [Tarski, 41].

2.1.1 Binary relations

Within a space S, which represents the structure of the information manipulated by a program, we
define a binary relation as a subset of the Cartesian product S x S. An element of relation R is
denoted (s, s'), where s is an argument (or input) of R, and s' is an image (or outpout) of s by
R. In general, relation R is defined as follows:
R ={(s,s"):i(s) A bfs,s") A ofs "))

where i(s) is a unary predicate on the inputs of R, b(s,s"), is a binary predicate relating the out-
puts and inputs, and o(s') is a predicate on the outputs of R. A relational is a relation on the set of
binary relations on S.

Remark: In this paper, binary relations are used as a program specification . [].

With a relation R are associated the following subsets of S:
the image set of s € S, defined by s.R = {s': (s,s") € R};
the domain, defined by dom(R) = {s : 3s': (5,s") € R};
the codomain (or range), defined by cod(R) = {s': 3s: (s,s") € R}).
Let A beasubsetof S,I(A) is the following subset of the identity relation I:
IA)= ((s,s') :s=s'Ase A}.

2.1.2 Relationals

The intersection of relations R and R’ is the relation

RNR'= ((s,s') :(s,s)e RA(s,s") e R'}.
The union of relations R and R' is the relation

RUR'= ((s,s') :(s,s)e Rv(s,s")e R'}.
The relative product (or composition) of relations R and R' is the relation

RoR'= {(s,s') :dteS:(s,t)e RA(t,s)e R'}.
The inverse of relation R is the relation
R ={(s,s'):(s',s)e R}.
The kernel of relation R is the relation
K(R)={(s,s"): @ # s'R c s.R).

2.1.3 Difunctional relations

Arelation R € S x S is difunctional if and only if it satisfies the condition RoR1oR =R. In
[Jaoua et al., 90], we discovered that difunctionals are very general relations, and that in practive it
is very rare to find non-difunctional specifications.

Remarks:

In [Jaoua et al., 90], difunctional relations are called "pseudo-invertible" or regular relations, later
we have found the current name in [Riguet, 48].

In [Jaoua et al., 90], we prove that if R is difunctional then K(R) =R o R-1.

2.2 Fundamentals of fault tolerance

Let p be a program on a space S, and let L be a label in the text of p. We denote the function of
program p as [p]. Given that the label L may appear in the body of a loop, defining only the
"state of the program at label L" may be ambiguous, because the label may be reached more than
once. Instead, we define the state of the program at milestone m = (v,L) to designate the vth visit
to label L.

In the following, we present some useful definitions:

Past and future

Let p be a program on space S, and L be a label in the text of p. Given the milestone
m = (v,L), we define two particular relations:

PASTw,)= {(s,s") : if the execution of p starts at state s, then it reaches milestone (v,L) at
state s'}.

FUTUREx,L) = {(s,s") : if the execution of p starts at milestone (v,L) on state s, then it termi-
nates correctly at state s'}.

Failure. Error. Fault

Let P denotes the expected function of program p, and let sO be an initial state for p.Let R bea
specification defined on space S. Program p is supposed to be correct relativity to R, and
s0 € dom(R).

Failure: Let us observe the execution of program p. If the program terminates at state P(s0), we
say that p is executed with strict success. If the final state is in sO.R, we say that the program is
executed with broad success. In the other cases, we say that we have observed a failure.

Emror: Let m be a milestone of program p, let PAST,, be the past relation at m, and let s, be

the program state at m. We say that there is an error at m for initial state s0, if s, is different
from PAST,,(s0).

Fault: To define a fault, we should observe the path that program p has followed until milestone
m. There is a fault in this path if the actual past function of p (PAST,)) atmilestone m is different

from its expected function.
3. PRINCIPLES OF THE PREVENTIVE METHODOLOGY

Preventive methodology is based on the idea that it is better to practice offensive rather than defen-
sive programming. We apply this idea during the program design as well as program test phases.
First, we built the program so that by its own structure it avoids failure. Second, to test its reliabil-
ity, we insert several kinds of errors and verify, at execution, if the program terminates correctly
within an acceptable time.

In the following sub-sections we first recall theoretical results, hybrid validation [Mili, 85]
and executable assertion [Jaoua and Mili, 90] methods; second we give some characteristics of the
preventive method.

3.1 Theoretical results of forward error recovery

In [Jaoua, 87], we find sufficient conditions for coherence and recoverability relatively to a difunc-
tional specification R (defined in section 2), in the case of an initialised iterating program.

Let p=(i; L: w) be an initialised iterating program, and R the difunctional specification
of program p. Then state s is correct relatively to specification R, vis-a-vis initial state s0, at
milestone (v,L) if:

s.R = s0.R and se dom([w] N R).
([w] denotes the function of statement w.)

Remarks:
(1) The condition s.R =s0.R says that we may replace sO by s without modifying the final

result of the program.
(2) The condition s € dom([w] N R) implies that, if the execution of w continues from state S,

W may terminate in a correct state relatively toR. []

The current state s at milestone (v,L) is recoverable relatively to R and vis-a-vis the initial
state s0, if:
s R=s0R. (1)

We also find that every routine that is correct relatively to the specification:
J=RoR!oXdom{w]AR) (2
is a correct recovery routine.

The condition s.R =s0.R is called critical information because it is a sufficient condition
for s to be recoverable; the condition s € dom([w] N R) is called non-critical information,

because even if we loose it, we may recover s by any routine r which is correct relatively to J.
3.2 Hybrid validation

The hybrid validation method consists of taking the following actions [Mili, 85]:
a) Proving that the critical information is preserved throughout the execution of the program (by
Hoare logic, for exemple).
b) Protecting critical information by one of the following solutions:
- saving the variables that are involved in the critical information in high-security memory
[Schlichting and Schneider, 1980],
- protecting the state against suspicious-looking modifications, by means of watchdog proces-
sor techniques [Mahmood et al, 1983].
¢) Ensuring that the non-critical information information is recovered whenever it is damaged,
using forward error recovery techniques.

Given the boolean function (detect) which returns true if and only if the current state is not
in dom([w] N R), and given the recovery routine (recover) which is correct with respect to the
specification J, we augment the iterative program (i; while t do b) as follows:

p = begin
1; (* initialisation *)
while t do
begin
b; (* loop body *)
if detect then recover (* added feature *)
end

end;

Such a program is said to be H-valid (H stands for : hybrid).
3.3 Executable assertions

In [Jaoua and Mili, 1990], we use executable assertions for error detection and damage assess-
ment, so that, for an iterative program (i; while t do b), we obtain the following reliable version:

i

§ :=5; (* save the current state *)
L : while to do

begin

b;

if not a((§, s)) thenrecover; (* if an error is detected then recover *)

§ :=s; (* save the current state *)

end;

where (recover) is a recovery routine, and a(§,s) is an executable assertion correct relatively to a
specification

A =FUTURE o R! 0 R 0 FUTURE",
where R is a difunctional specification of the program p, and FUTURE is the future of the while-
statement at milestone (v,L).

Remark: FUTURE = [while t do b], i.e. the functional abstraction of the iterative statement (while
tdo b).

3.4 The preventive methodology

In the two methods just described, we always check if the current state is erroneous (with the
function (detect) or with the conditional statement (1f not(a(§,s)) then recover). In both cases, the
recovery routine and the function (detect) are designed to be independant from each other. We may
think that it is interesting to find the non verified predicates while we are detecting errors, since
such information may be used by the recovery routine to minimise the recovery time. This idea is
rejected because it leads us to waste time in searching the cause of the errors. It also goes against
the proposed forward recovery methods. Now, if we compare the specifications of the detect func-
tion and the recovery routine, we find a great similarity: in the hybrid validation method, because
we assume that it is very easy to verify that critical information is preserved by the recovery rou-
tine, the essentiel task of this routine may be specified by the following specification J':
J' = {(s,s') :s'e dom([w] N R)},
while the function detect is specified by:
[detect] = I(s ¢ dom([w] N R))
in the executable assertions method,
T ={(s,s'): af8,s') = true},
while the function detect is specified by:
[detect] = I(not(a(s s))).

In both cases the great symmetry of J' and [detect] leads us to believe that it is better to use
for recovery the time we spend detecting errors. This principle is all the more interesting as the
recovery routine may accelerate problem resolution whenever it is executed. Even if it seams very
intrigue, in practive, for all tested applications we find that our fault tolerant programs make a
speedy recovery without using detecting function. In the following we outline the steps of the pre-
ventive method.

Let p=(i;w) be an iterating program, where w = while tdo b, and let R be the specification
of p. The reliable version of p is the following program p':
p' = begin
i
while t do
begin
b;
recover
end;

end;

First we calculate the critical information, by solving the equation s. R = sO.R. Then,
applying Hoare's logic, for example, we verify that the critical information is preserved. We may
also implement some mechanism such as watchdog processor [Mahmood and al., 1983], or hight
security memory [Schlichting and Schneider, 1980] to protect this information. Another solution
consists to avoid manipulating the variables which are involved in the critical information, by using
intermediate variables.

Second, (recover) must be chosen as the best routine which is correct relatively to the
specification J.

Third, we use a "three steps testing" strategy:

a) Testing the program without (recover),

b) Testing the program with (recover) and without injecting errors,

c) Testing the program with (recover) and with injected errors on non-critical informations.

Remark: Generally, in step b), we verify whether the program is correct relatively to its specifica-
tion, during execution. We also verify, whether (recover) routine is not erroneous. The original
part of the program (i.e. without (recover)) and (recover) appear to mutually control each other. []

4. RELIABILITY EVALUATION AND EXPERIMENTATION

The application of hardware reliability theories to software is often regarded skeptically (for exam-
ple, see [Zelkowitz, 1978]. In [Conte and al., 1986], the software reliability is defined as: "the
probability that there is no failure over n runs:

R(n) =1 -(dy/n)

where (d,) is the number of defects over n runs".

The weakness of this definition of reliability is that it only measures the external behavior
of the program. For example, even if we calculate the probability R(n) at the end of the testing
step, it is not possible to deduce that the software will have the same reliability after its release. A
solution is to find some criteria to recognize the end of the testing step, so that we will know
exactly the future behavior of the software, with all its possibilities and limitations (in time, and in
the kind of data it may process). In this work we defend the following ideas:

10

a) Building fault tolerant software with the preventive method increases its reliability.

b) Because the proposed programs are self-controled relatively to their own specification, if we
assume that the specification is correct, then during the testing step, we find more existing
errors than in the case of non recoverable programs.

c) We must adopt an offensive testing strategy: i.e. we do not test normal programs, but we
inject several kinds of errors in the programs, and we verify if these programs terminate
correctly within an acceptable time.

d) The preventive method permits the program to have a controled behaviour at the testing phase
end: i.e. we never find unexpected defects after the testing phase.

From the third idea, we propose the following new definition of u-reliability of a fault tolerant
program which measures its resistance to injected errors:

Definition 1: We say that a program p is u-reliable, for a time interval of length t and the input
i, if and only if, whenever we introduce errors in its non-critical informations with probability u,
than it terminates correctly its execution in a time shorter than t. []

Definition2: We say that a program p is relatively u-reliable, for a time interval of length t(n),
and for q differents inputs, if and only if, whenever we introduce errors in its non-critical infor-
mation with probability u, it terminates correctly its execution in a time shorter than t(n), for each
execution, where n is the size of inputi. []

Definition 3: We say that a program p is absolutely u-reliable, for a time interval of length t(n)
and a specification R, if and only if, for each input i of dom(R), whenever we introduce errors
in the non-critical information of p with probability u, it terminates correctly its execution in a
time shorter than t(n), where n is the size of the inputi. []

Remark: These definitions give us an approximate idea of the reliability level of the program.
However, we are beginning to study a more accurate mathematical calculus of reliability, based on
probabilistic errors. []

Using a particular problem, in the following subsection, we give a detailed description of all the
program construction steps using the preventive method.

11

4.1 Problem definition

We propose to write a program (called Pseudo-merge) which realises a special merge of two sorted
arrays T1 and T2 into a third array T3: we assume that the last element of the second array is
always greater than the last element of the first array, and that we always ignore all the elements of
T2 which are greater than the last element of T1.

Example: Let T1=(2,7,9, 11, 20], and
T2 =11, 3, 6, 8, 9, 15, 56, 67],
then T3=0[1,2,3,6,7,8,9,9, 11, 15,20]. []

For all the following ten tests, we will take as inputs the same values of T1 and T2 as those
of the example, when the result is correct we obtain the same value of T3 as the example else we
obtain a different value.

In the following sub-sections we propose a formal description of space S and specification
R of Pseudo_merge:

4.1.1 Space definition (8)

S is the Cartesian product of several sets. We represent the product
integer x integer x ... x integer (n times)

by "array [1..n] of integers";
we also represent (real x integer x char) by

Set

A: real;

B: integer;

C: char

end

If we use this formalism, we find
S = Set
T1: array [1..n] of integer; (first input array)
T2: array [1..m] of integer; (second input array)
T3: array [1..p] of integer; (output array)

12

sub
sorted (T1[1..n));

sorted (T2[1..m]);

T1[n] <=T2[m];

T2[k+1] >= T1[n];

k(s) < m(s)

End;
where sub ... end section contains the restrictions that set S must verify, n, m and p represent
respectively the number of the elements of T1, T2 and T3, and k is the greatest index such that
T2[k] < T1[n], and sorted (T[1..m]) the following predicate:
sorted (T[1..m}) is true if and only if T[1] <= T[2] <= ... <= T[m].

4.1.2 Relational specification (R)
4.1.2.1 Notations

Let "union", and "perm" be the following predicates:

(union (T1[al..b1], T2[a2..b2]) = T3[a3..b3]) is true,
if and only if the set of the elements of T3 between the indices a3 and b3 is equal to the union of
the elements of T1 located between al and bl and the elements of T2 located between a2 and b2,
and

perm (T1[al..b1], T2[a2..b2] is true,

if and only if the set of the elements of T1 located between al and b1 is equal to the set of the ele-
ments of T2 located between a2 and b2. For a variable v of the space S, v(s) represents its input
value, and v(s'), its output value.

4.1.2.2 Problem specification (R)

The specification of the problem R is equal to the conjunction of two elementary relations:
R=R1 M R2,
where
R1 = {(s,s") :
p(s’) = k(s) + n(s)
&

perm (T3(s") [1..k(s) + n(s)], union (T1(s) [1..n(s)], T2(s) [1..k(s)])

}

13

is a difunctional relation because, when we calculate R1 0 R1-1 o R1, we find exactly R1, and

R2 = {(s,s") : sorted(T3(s") [1..p(s")]) }
is a unary relation on the output states, so R2 is difunctional [Jaoua et al., 1990]. Because R is
the conjunction of two difunctional relations, we deduce that R is also a difunctional [Jaoua et al.,
1990].

4.2 Critical information calculus

Critical information is formulated by:
(s0s)e RoR-1
where s0 is the initial state and s the current state.
R=R1MNR2
=> R = {(s,8"): p(s") = k(s) + n(s)
&
perm (T3(s") [1..k(s) + n(s)], union (T1(s) [1..n(s)], T2(s) [1..k(s)])
&
sorted (T3(s") [1..p(s"]D
}.
We first calculate:
RoR!={(s,s'):3s":(s,s") e R &(s",s") e R,
={(s,s') :Js":(s,s")e R&(s',s") e R},

= {(s,s"): 3 s™
p(s") = k(s) + n(s)
&
perm (T3(s") [1..k(s) + n(s)], union (T1(s) [1..n(s)], T2(s) [1..k(s)])
&
sorted (T3(s") [1..p(s™)])
&
p(s") = k(s") + n(s"
&
perm (T3(s") [1..k(s") + n(s")], union (T1(s") [1..n(s")], T2(s") [1..k(s")])
&

sorted (T3(s") [1..p(s")])

R o Rl = {(s,s") : k(s") + n(s") = k(s) + n(s)
&
union (T1(s) [1..n(s)], T2(s) [1..k(s)]) =
union (T1(s") [1..n(s")], T2(s") [1..k(s"])
b
=> the critical information is:
k(s0) + n(s0) = k(s) + n(s)
&
union (T1(s0) [1..n(s0)], T2(s0) [1..k(sO)]) =
union (T1(s) [1..n(s)], T2(s) [1..k(s)])

4.3 The non fault tolerant program Pseudo_merge

14

(D

)

Here, we only show the program procedure Pseudo_merge, we assume that initially, T1(s0) and

T2(s0) are in S:
pseudo_merge()
{
k1=k2=k3=0; /* k1, k2 and k3 respectively index T1, T2 and T3 */
while (k1<N)
{/* We store the smallest of T1[k1] and T2[k2] in T3[k3] */
if (T1[k1] <= T2[k2]
{
T3[k3] = T1[k1];
kl+=1;
}
else
{
T3[k3] = T2[k2];
k2 +=1;
}
k3 +=1;

15

The critical section that manipulates the critical information is empty, because we never modify
T1 or T2, but we only compare or store their values. Hence the program preserve critical informa-
tion, by construction. For more safety, we may use two copies of T1 and T2 as intermediate
arrays.

4.4 Detect function construction
The function detect is specified by:

s € dom(fw] N R)

where [w] is the functional abstraction of the iterative statement.

[w] = {(s,s") : perm (T3 [k3(s)..k3(s"],
union (T1(s) [k1(s)..k1(s")], T2(s) [k2(s)..k2(s")])
&
sorted (T3(s") [k3(s)..k3(s")]
&
T3(s") [1..k3(s) - 1] = T3(s) [1..k3(s) - 1]
&
k3(s") = k3(s) + k1(s") + k2(s") - k1(s) - k2(s)
&
T2(s) [k2(s") + 1] >= T1(s) [k1(s")]

&

kil(s) =n
&

k2(s") <m
&

0<=kl(s)<=n
&
0 <=k2(s) <=m-1

&

0 <=k3(s) <=n+m-1
)
=>
[w] N R={(s,s":
p(s') = k(s) + n(s)
&
perm (T3(s") [1..k(s) + n(s)], union (T1(s) [1..n(s)], T2(s) [1..k(s)])

&
sorted (T3(s") [1..p(s")])
&
T3(s") [1..k3(s) - 1] = T3(s) [1..k3(s) - 1]
&
perm (T3(s") [k3(s)..k3(s"],
union (T1(s) [k1(s)..k1(s"], T2(s) [k2(s)..k2(s")])
&
sorted (T3(s") [k3(s)..k3(s")]
&
k3(s") = k3(s) + k1(s") + k2(s") - k1(s) - k2(s)
&
T2(s) [k2(s") + 1] >= T1(s) [k1(s)]
&
kl(s) =n
&
k2(s") = k(s)
&
0<=kl(s)<=n
&
0 <=k2(s) <=m-1
&
0 <=k3(s) <=n+m-1
3
=> D=dom(w] N R) = {s:
perm (T3(s) [1..k3(s) - 1],

union (T1(s) [1..k1(s) - 1], T2(s) [1..k2(s) = 1] (1)
&
sorted (T3(s) [1..k3(s) - 1]) 2)
&
k3(s) = k1(s) + k2(s) 3)
&
0 <=kl(s) <=n @)
&
0 <=k2(s) <=m-1 5)

=> the specification of the function detect is:

DT = {(s,s") : detect(s") = (s ¢ D}.

=> We propose the following function detect:

char detect ()

{

int al,a2,a3;
char error;
al=a2=a3=0; error=0;
while (! error && al<=k1 && a2<=k2 && a3<=k3 && (al<=N) && (a2<M))
{
if (T3[a3] <=T3[a3+1]) /* we verify condition (2) else
we detect an error */
{ /* we verify condition (1) else we detect an error */
if (T3[a3]==T1[al]) {al +=1; a3 +=1;}
elseif (T3[a3]==T2[a2]) {a2 +=1; a3 +=1;}
else error = 1;

}

else error = 1;
}
/ * we verify the conditions (3), (4) and (5) * /
return (error | | (k1!=al) | | (k2!=a2) | | (k3!=a3));

4.5 The recovery routine construction

We first begin by calculating the specification of the recovery routine J:

J=RoR-1oI(dom([w]NR))

and we find:

J {(s,s"): perm(T3(s ") [1..k3(s '}-1], union(T1(s)[1..k1(s }-1], T2(s)[1..k2(s "}-1]))
& k3(s") = k1(s") + k2(s")
& sorted(t3(s") [1..k3(s)-1]
& 0<=kl(s") <=n
& 0 <=k2(s") <=m-1
& /* critical conditions */

(1)
(2°)
(39
4
(5

17

18

We assume that critical conditions (i.e. the preservation of critical information) are always
verified by the program. Hence every recovery routine which is correct relatively to J' (J without
critical conditions) is a correct recovery routine. Here we present one such recovery routine
(recover).

recover ()
{ /* Recover studies the current state of the program, and changes it into a correct state; i.e. a
state that verifies conditions (1), (2", (3"), (4") and (5") */

int al,a2,a3;

char correct_state;

al=a2=a3=0; correct_state=0;

while (! correct_state && (al<N) && (a2<M))

{
if (T3[a3] <= T3[a3+1])
{
if (T3[a3]==T1[al]) {al +=1; a3 +=1;}
else if (T3[a3]==T2[a2]) {a2 +=1; a3 += 1;}
else correct_state = 1;
}
else correct_state = 1;
}

kl=al; k1=a2; k3=a3;

Remark: The logical structures of the proposed recovery routine and the function detect are
almost the same. We say even notice that the structure of the recovery routine is simpler than the
structure of error detection. While detect tries to check if the current state is erroneous, recover
tries to analyse the current state to map it into a correct state. []

4.6 Testing strategy

In the following, we give experimental results with a sample of injected errors in three versions of
"pseudo_merge" program: without error recovery and detection, with error detection and recovery,
and finally with recovery only. The programs were executed on IBM PS2, 16 Mhz with Quick C
2.0 compiler, Microsoft.

19

Test 1: We begin by testing the non fault tolerant original C program which must execute correctly
without error injection. Here, we do not use a recovery routine, or any function to detect errors.

Results of test 1:

The result is correct.
Run time: 110 milliseconds.

Test 2: We inject an error on the variable k1 with a probability 0.8, in the non fault tolerant initial
program.

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2[k2])
{
T3[k3] = T1[k1_;
k1l =kl + (((rand () % 100) <99 ? (rand () % 5) : 1);
/* error injection on the value of k1 with a probability 0.99 */
/* we add an erroneous value to k1 with a probability 0.90 */

}

else

{
T3[k3] = T2[k2];
k2 +=1;

}

k3+=1;

Remark: rand is the standard random function of the C language, it gives a random value between
0 and 32767. []

20

Results of test 2:

The result is not correct.
Run time: 110 milliseconds. []

Test 3: We inject errors on k1 with a probability 0.99, but we detect and recover existing erroneous
states of the program.

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2[k2])
{
T3[k3] = T1[k1];
kl = k1 + (((rand () % 100 < 99) ? (rand () % 5) : 1);
}
else
{
T3[k3] = T2[k2];
k2 +=1;
}
k3 +=1;
if (detect ()) recover ();
/* detection and error recovery */

Results of test 3:

The result is correct.
Run time: 170 milliseconds. []

21

Test 4: Same error injection as in test3, but this time we systematically recover the current state of

the program without trying to detect errors.

pseudo_merge ()

{

k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2[k2])
{
T3[k3] = T1[k1];
kl =kl + (((rand () % 100) < 99) ? (rand () % 5) : 1);
)
else
{
T3[k3] = T2[k2];
k2 +=1;
}
k3 +=1;
recover ();
/* We always recover the current state of the program */

Results of test 4:

The result is correct.
Run time: 110 milliseconds.

Remark: Without trying to detect errors, our program is faster (see the result of test 3), it runs in
exactly the same time as the non-fault-tolerant version of Pseudo_merge. []

22

Test 5: Error injections on the three indices k1, k2 and k3, with probability 99%, in the original
program, without error detection or recovery.

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2[k2])
{
T3[k3] = T1[k1];
kl =kl + (((rand () % 100 < 99) ? (rand () % 5) : 1);
}

else
{
T3[k3] = T2[k2];
k2 = k2 + (((rand () % 100 < 99) ? (rand () % 5) : 1);

}
k3 =k3 + (((rand () % 100 < 99) ? (rand () % 5) : 1);

}
Results of test 5:

The result is not correct.
Run time : 110 milliseconds. []

23

Test 6: The same errors as in test 5 are injected, but we only add the statement if detect then recov-
er, as we can observe in the following program:

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2[k2]
{
T3[k3] = T1[k1];
kl =Kkl + (((rand () % 100) < 99) ? (rand () % 5) : 1);

/* Error injection on the value of k1, with 0.99 probability */
}

else
{
T3[k3] = T2[k2];
k2 = k2 + (((rand () % 100) < 99) ? (rand () % 5) : 1);

/* Error injection on the value of k2, with 0.99 probability */
}

k3 =Kk3 + (((rand () % 100) < 99) ? (rand () % 5) : 1);

/* Error injection on the value of k2, with 0.99 probability */
if (detect ()) recover ();

/* Error detection and recovery */

Results of test 6:

The result is correct.
Run-time: 170 milliseconds. []

24

Iest 7: The same errors as in test 5 are injected, but we only add the statement: recover, as we can

observe in the following program:

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2[k2])
{
T3[k3] = T1[k1];
k1l =kl + (((rand () % 100) < 99) ? (rand () % 5) : 1);
}

else

{
T3[k3] = T2[k2];
k2 = k2 + (((rand () % 100) < 99) ? (rand () % 5) : 1);

}
k3 =k3 + (((rand () % 100) < 99) ? (rand () % 5) : 1);

recover ();

}

Results of test 7:

The result is correct.
Run time: 110 milliseconds.

Remark: Without trying to detect errors, this program is faster (see the result of test 6), it is also
the same run time as the non-fault-tolerant version of Pseudo_merge. []

25

Test 8: Error injections on the three indices k1, k2, k3 with 0.99 % and on the output array T3
with 90%, in the original program, without error detection or recovery.

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1{k1] <= T2[k2])
{
T3[k3] = ((rand () % 100) < 90) ? rand () : T1[kl];
/* Error injection on T3 with 0.90 probability */
k1 =kl + (((rand () % 100) <99 ? (rand () % 5) : 1);
/* Error injection on k1 */
}

else

{
T3[k3] = ((rand () % 100) < 90) ? rand () : T2[k2];

/* Error injection on T3 with 0.90 probability */
k2 = k2 + (((rand () % 100) < 99) ? (rand () % 5) : 1);
/* Error injection on k2 with 0.99 probability */
)
k3 =k3 + (((rand () % 100) < 99) ? (rand () % 5) : 1);
/* Error injection on k3 with 0.99 probability */

Results of test 8:

The result is not correct.
Run time: 110 milliseconds. []

26

Test 9: Same injected errors as in test 8, but we add the following statement: if detect then recov-

Cr.

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2{k2])
{
T3[k3] = ((rand () % 100) < 90) ? rand () : T1[k1];
kl =kl + (((rand () % 100 < 99) ? (rand () % 5) :1;
}

else

{
T3[k3] = ((rand () % 100) < 90) ? rand () : T2[k2];

k2 = k2 + (((rand () % 100) < 99) ? (rand () % 5) : 1);

)
k3 =k3 + (((rand () % 100) < 99) ? (rand () % 5) : 1);

if (detect ()) recover ();
/* If error detected then we recover the state of the program */

Results of test 9:

The result is correct.
Time: 280 milliseconds. []

Test 10: Same errors injected as in test 9 (and test 9), but we recover the current state of the pro-
gram without detecting errors.

27

pseudo_merge ()
{
k1=k2=k3=0;
while (k1<N)
{
if (T1[k1] <= T2[k2])
{
T3[k3] = ((rand () % 100) < 90) ? rand () : T1[k1];
kl =kl + (((rand () % 100) < 99) ? (rand () % 5) : 1);
}

else

{
T3[k3] = ((rand () % 100) < 90) ? rand () : T2[k2];
k2 = k2 + (((rand () % 100) < 99) ? (rand () % 5) : 1);
}
k3 = k3 + (((rand () % 100) < 99) ? (rand () % 5) : 1);
recover ();
/* Error recovery */

Results of test 10:

The result is correct.
Time: 160 milliseconds. []

Remark: Without error detection, this program is (7/4) times as fast as the program of test 9. For
t= 160 milliseconds the fault tolerant verison is 90%-reliable relatively to the current inputs.

5. CONCLUSION

In this paper we propose a preventive methodology to built fault tolerant programs. This method
may be viewed as an improvement of the hybrid validation methodology [Mili, 1985]. However, it
seams that the preventive method is more efficient when the recovery routine participates in the
problem resolution and when it is possible to measure the "distance” between the current state and

the final expected state of the program.

28

The ten experimental results which are presented in this paper are good indicators of the
preventive methodology strength. However, to find more affirmative conclusions, we are planify-
ing several experimentations, on different kinds of applications (small, medium and big). We are
also orienting our effort on mathematical proofs of absolutely u-reliable programs, and in a case by
case study of fault-tolerant programs complexity. We try to give exact answers to questions as:
"how much time does the program run during recovery ?", "is there some heuristics to find a better
recovery routine ?", "is it possible to find a natural program structure which is both fault tolerant
and as efficient as a non-fault tolerant version of the same program ?". Our purpose is to discover
the pertinent program parameters with which we may increase its fault resistance without adding
excessive human overhead during its development.

Acknowledgment

The authors are grateful to Dr. M. Beaudry (University of Sherbrooke) and A. Mili (University of
Tunis) for their comments and suggestions for improvement.

REFERENCES

[Anderson, 1981] Anderson ,T. & Lee, A. Fault Tolerance, Principles and Practice. Prentice Hall
International Series - 1981.

[Anderson, 1981] Anderson, T. Can Design Faults be Tolerated ? Colloquium sponsored by: Le
Centre de Recherche Informatique de Montréal (CRIM), Montreal Crim, 14 juin 1985.

[Avizienies, 1985] Avizienies, A. Fault Tolerance: an Qverview. Colloquium sponsored by: Le
Centre de Recherche Informatique de Montréal (CRIM), 14 juin 1985.

[Conte et al.] Conte, S.D., Dunsmore, H.E. and Shen, V.Y. Software Engineering Metrics and
Models. The Benjamin/Cummings Publishing Company Inc., 1986.

[Dijkstra, 1976] Dijkstra, E. A Discipline of Programming. Englewood Cliffs (NJ) : Prentice-
Hall, 1976.

29

[Gries, 1981] Gries, D. The Science of Programming. Springer Verlag, 1981.

[Jaoua, 1987] Jaoua, A.

Spécification Déterministe et non Démrrmmsm D1ssertat10n of Doctorat és Scwnces, Umversue
Paul Sabatier, Toulouse, France. Defended December 1987.

[Jaoua, 1990] Jaoua, A. & Mili, A. The Use of Executable Assertion for Error Detection and
Damage Assessement. Journal of Systems and Software, April 1990.

[Mahmood et al.] Mahmoud, A., McCluskey, E.J. and Lu, David J. Concurrent Fault Detection
using a Watchdog Processor and Assertions, June 1983. Private Correspondance. Stanford

University.

[Mili, 1985] Mili, A. Toward a Theory of Forward Error Recovery. IEEE Trans. on Soft. Eng.,
August 1985.

[Mili et al., 1987] Mili, A., Guemara, S., Jaoua, A. and Torres, P. On th f Ex 1
Assertions in Structured Programs. The Journal of Systems and Software, March 1987.

[Riguet, 1948] Riguet, J. Relations Binaires, Fermetures et Correspondances de Galois. Bulletins
de la Société Mathématique de France, 1948, pp. 114-155.

[Schichting and Schneider, 1980] Schichting and Schneider. Verification of Fault Tolerance
Software. Cornell University, Computer Science Department, Report TR-80-446, November
1980.

[Tarski, 1941] Tarski, A. On the Calculus of Relations. The Journal of Symbolic Logic 6(3),
September 1941, pp. 73-89.

[Zelkowitz, 1978] Zelkowitz, M.V. Perspectives on Software Engineering. ACM Computing
Surveys 10 (2), 1978, pp. 197-216.

