
An Unsupervised Approach to Cluster Web Search Results
based on Word Sense Communities

Jiyang Chen, Osmar R. Zaı̈ane and Randy Goebel
Department of Computing Science

University of Alberta, Canada T6G 2E8
{jiyang, zaiane, goebel}@cs.ualberta.ca

Abstract

Effectively organizing web search results into clusters
is important to facilitate quick user navigation to relevant
documents. Previous methods may rely on a training pro-
cess and do not provide a measure for whether page clus-
tering is actually required. In this paper, we reformalize
the clustering problem as a word sense discovery problem.
Given a query and a list of result pages, our unsupervised
method detects word sense communities in the extracted
keyword network. The documents are assigned to several
refined word sense communities to form clusters. We use
the modularity score of the discovered keyword community
structure to measure page clustering necessity. Experimen-
tal results verify our method’s feasibility and effectiveness.

1 Introduction

Existing search engines often return a long list of search
results, ranked by their relevance to the given query. Since
web pages, on different aspects (meanings) of the same
query, are usually mixed together, users have to go through
the long list and examine titles and content sequentially to
locate pages of interest to their information need. For ex-
ample, when the query “jaguar” is submitted to a search en-
gine looking for information aboutthe Mac system, the user
might have to sift through a large number of pages aboutau-
tomobileor animals. The sought for pages might be buried
very deep. While the underlying retrieval model and rank-
ing function is vital for search engines, organization and
presentation of search results is also capital, and could sig-
nificantly affect the utility of a search engine. However,
compared with the vast literature on page ranking and re-
trieval, there is relatively very little research on how to im-
prove the effectiveness of search result organization [14].

A possible solution to this problem is to (online) clus-
ter search results into different groups so that users can se-

lect their required group at a glance. Previous approaches
to document grouping usually require high quality train-
ing data to build a classifier, which is infeasible due to the
dynamic nature of the web and the need of a realtime an-
swer. Some clustering approaches for search engine results
exist. However, since clustering methods always generate
groups of documents, even when unnecessary, a measure is
required to indicate when page clustering is helpful. In this
paper, we apply community detection ideas on the problem
of page clustering based on discovered senses of a given
query. Our work has the following contributions:

• An unsupervised method to identify query senses and
cluster web pages using a community mining approach
on a network of extracted keywords.

• The use of the modularityQ measure of the discovered
word sense community structure to assess whether
page clustering is required for search results.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Section 3 introduces the word
sense community definition. We describe our approach in
four phases in Section 4 and report experimental results in
Section 5, followed by conclusions in Section 6.

2 Related Work

In general, there are two ways to organize the informa-
tion returned by search engines. The first, and the most
popular approach, is to rank results by perceived relevance.
However, this method is highly inefficient since there are
usually thousands of retrieved pages for a typical query,
and most users just view the few top results, possibly miss-
ing relevant information. Additionally, a query might have
different meanings. The inherent ambiguity in interpreting
a word or phrase in the absence of its context means that
a large percentage of the returned results can be irrelevant
to the user [4]. The second way to organize documents is

by clustering: query result pages are organized into groups
based on their similarity between each other. The idea of
clustering search results has already been applied in indus-
try and commercial web services such as Vivisimo [13],
Kartoo [3] and Koru [7]. Zamir et al. [16] proposed to clus-
ter query result pages based on the snippets or contents of
returned documents using the Suffix Tree Clustering (STC)
algorithm. In [4], the authors proposed a monothetic clus-
tering algorithm to assign documents to clusters based on
a single feature, which is used as cluster labels. Zeng et
al. [17] proposed a supervised learning approach to extract
relevant phrases from the query result snippets, which are
used to group search results. Wang et al. [14] proposed an
approach to learn from search logs for a more user-oriented
partitioning of the search results. All these methods are able
to find document clusters but the effectiveness in practical
search engine result partitioning is questionable. In addi-
tion, the performance of supervised classifiers is limited by
the training data, which is hard to achieve for the dynamic
web. Moreover, none of the proposed methods measures
clustering necessity (i.e. document clustering is not neces-
sary if the original search result contains no ambiguity).

3 Detecting Word Sense Communities

TheContextual Hypothesis for Sensestates that the con-
text in which a word appears is usually related to its sense
[10]. For example, a web page discussing Jaguar as acar is
likely to talk about other types of cars, car companies, etc.
Whereas, a page on Jaguar thecat, is likely to contain infor-
mation about other kinds of animals. Naturally, the words
or phrases that frequently appear together with Jaguar the
car, e.g.,engine, Fordandvehicle, are very unlikely to also
appear frequently in web pages about Jaguar the cat, and
vice versa. Moreover, there are extremely few pages that
discuss both senses of Jaguar in detail at the same time.
Therefore, the sense of the word Jaguar and other words that
frequently appear together with this particular sense can be
used to cluster search result pages for this particular query
“jaguar”, which is the intuition of our approach.

We define a word sense community asa group of key-
words or phrases that co-appear frequently in a set of
search result pages for a particular query. There are sev-
eral possible definitions for “keyword co-appearance”, e.g.,
within a given distanced, in the same paragraph, etc. In
this paper, we define two words to “co-appear” if they are
located in the same sentence. Consider a graph, where each
node represents a keyword/phrase and the edge between two
nodes represents their co-appearance, the edge weight is the
frequency of the two keywords co-occurring in one sen-
tence, we extend the Modularity metric [8] to its weighted
version and then adapt a hierarchical algorithm [1] on this
keyword graph to detect word sense communities.

4 Our Approach

We use the word sense communities discovered by the
modularity approach on our word/phrase network to cluster
search results. Given an input query, the general procedure
of our approach can be described in four phases.

4.1 Keyword Extraction

The first step to extract word sense communities from
web pages is to build the keyword network, weighted by
the frequency of the sentence co-appearance between key-
words. Given a queryq, we sendq to the Google search
engine and retrieve the topk returned web pages. We parse
the content of text pages (such as pages ending with.html,
.php, etc.) and ignore multimedia pages. Irrelevant infor-
mation such as HTML tags and javascript code is stripped
and only text is recovered.

We use Minipar [5], a broad-coverage English parser, to
parse the clean text. Minipar is able to transform a com-
plete sentence into a dependency tree and classify words
and phrases into lexical categories. We only use nouns
as keywords in our approach and ignore other lexical cat-
egories such as verbs, adjectives, adverbs and pronouns,
since they can be used in various contexts thus usually do
not belong to one particular word sense community. All re-
trieved keywords are then stemmed using the Porter Stem-
ming Algorithm [12] and stopwords are removed. Note that,
although keyword extraction is slow since Minipar parsing
is time-consuming (500 words/second on a normal PC [9]),
it should be done offline during web page crawling by the
search engine crawler, therefore the running time of our ap-
proach during query time is not affected.

After text parsing and stemming, each page is repre-
sented as a list of pairs of keywords, which have been lo-
cated in a same sentence. Assume we havek such lists
representingk result pages for queryq, in order to find
important keywords in these documents to build the key-
word network, we measure the importance of keywords by
the Inverse Document Frequency (IDF), which is calculated
by dividing the number of all documents by the number of
documents containing the keywords. We then select those
keywords that have IDF score higher than a given thresh-
old tidf to be nodes of the keyword network. Two nodes
are connected if we find a pair of corresponding keywords
in the lists and the weight of the edge is the pair frequency.
The query words are removed since they certainly belong to
all sense communities.

4.2 Find Word Sense Communities

In order to find word sense communities from the
weighted keyword network, we extend the modularity to

2

its weighted version. Given an undirected networkG =
(V, E), |V | = n, |E| = m, let Axy be an element of the
adjacency matrix ofG.

Axy =

{

w if vertices x and y are connected
0 otherwise

wherew is the edge weight. Also,Pxy =
wxwy

2W
wherewx

is the total weight of all edges connect tox andW is the
total weight of the network.Qweighted equals to:

Qweighted =
1

2W

∑

xy

[Axy − Pxy]φ(Cx, Cy)

Assume nodex belongs to communityCx, theφ function
φ(Cx, Cy) is 1 if Cx andCy are the same community and 0
otherwise. See [1] for details ofQ transformation.

Any modularity-based clustering algorithm could be ap-
plied here. In this paper, we adapt a hierarchical clustering
algorithm to greedily optimize the modularity score [1]. It
starts as every node being a community of its own, then
at each step, it merges a pair of communities that increase
the overall modularity the most and stops when there is no
such pair. Since a high modularity score represents strong
community structure, the intuition of this algorithm is to
greedily optimize the overall modularity. Details of the al-
gorithms are as follows: Given a weighted keyword net-
work, three data structures are maintained.

• A sparse matrix containing∆Qij for each pairi, j

of communities with at least one edge between them.
Each row of the matrix is stored as a balanced binary
tree and as a max heap. The matrix is initialized as:

∆Qij =

{ 1
2W

−
wxwy

(2W)2 if i and j are connected
0 otherwise

• A max-heap H containing the largest element of each
row of the matrix along with the labelsi, j of the cor-
responding communities.

• A vector array with elementai = wi

2W

The algorithm then greedily merges pairs of communities
that give the highest modularity gain as follows:

• Pop the max-heap with the largest element of each row
of the matrix∆Q.

• Select the largest∆Qij , merge the two communities,
update∆Q (described blow), the heapH andaj (a′

j =
ai + aj), incrementQ by ∆Qij .

• Repeat until there is no∆Qij > 0

Merging communityi andj by updating∆Q as follows.

∆Q′

jk =















∆Qik + ∆Qjk if community k is connected to
both i and j

∆Qik − 2ajak k is connected to i but not to j
∆Qjk − 2aiak k is connected to j but not to i

4.3 Community Refinement

After we have discovered word sense communities from
the weighted keyword network, we refine the structure for
the following two situations:

• Delete noise communities, which are formed by key-
words that always co-appear no matter what the page
is about, e.g., we observe keywordstrademark, privacy
andpolicyalways form a strong community together.

• Merge communities that share the same word sense but
focus on different aspects of the sense, e.g., we observe
two communities for the sense ofJavaasthe program-
ming language, one focus on how to program, the other
represents topics on the Sun company and its business.

Fortunately, simple heuristics can be applied to solve the
problem. We observe that noise communities are usually
small in size. Therefore, we remove all communities that
have fewer nodes than5% of the total keywords (note that
this threshold is stable enough. Varying it from5% to 10%
does not affect the result). For merging communities, recall
that we assume that there is only one primary word sense
for a given query in one web page, thus if two communi-
ties share the same word sense, they are likely to be cov-
ered by the same page. Therefore, we calculate the overall
TF-IDF score (described in Section 4.4) of pages for these
two communities, and compare the two sets of pages whose
scores exceed a thresholdtmerge . If the size of overlapping
pages is more than half of one of the page set, we merge the
two communities in question. These heuristics work well as
shown by our experiments in Section 5.

4.4 Assign Documents to Labeled Communities

Our final step is to assign pages to communities and label
them. In order to assign a pagep to its most related word
sense community, we calculate the overall TF-IDF score of
p for all communities and assignp to the one that has the
highest score. If more than one candidate community has
the highest score, we categorizep asmiscellaneous. The
overall TF-IDF score ofp for communityc is defined as
the sum of TF-IDF scores of all keywords, which belong to
communityc, for p.

We use the dependency-based word similarity data1 [6]
to label the clusters. For a keywordw in communityc, we
sumw’s similarity ranking to all other keywords inc as an
overall ranking forw. We use keywords that have high over-
all ranking asc’s label. More accurate document cluster la-
beling methods are possible to apply here. However, cluster
labeling itself is a huge research topic and thus is beyond
the scope of this paper.

1http://www.cs.ualberta.ca/∼lindek/downloads.htm

3

DataSet Manual Label Dependency-based Keyword
ARI score

Q score
Our Method K-means Human h

River lake, river, water, ocean, forest
Amazon Warrior girl, battle, woman, artist, writer 0.888 0.693 1 0.367

Company computer, consumer, rate, database
Coffee coffee, fruit, tea, vegetable, sugar

Java Island island, mountain, city, coast, resort 0.889 0.728 0.964 0.403
Software software, interface, graphic, application

Car engine, car, video, audio, vehicle
Eclipse Solar sun, picture, moon, earth, light 0.931 0.765 0.955 0.428

Java software, interface, server, application
Animal animal, wildlife, forest, tiger, bird

Jaguar Car car, vehicle, truck engine, sedan 0.785 0.114 0.961 0.471
Mac database, software, interface, file, server

Salsa
Dance music, dance, teacher, jazz, musician

0.642 0.605 0.974 0.405
Sauce garlic, tomato, onion, sauce, lemon
Trade budget, tax, tariff, export, import

Reuter Crude oil, crude, supply, price, output 0.618 0.504 1 0.222
Money-fx currency, market, dollar, rate, franc

Table 1. Sense community-based clusters for six datasets (m iscellaneous clusters are omitted).

Dataset Manual Labels Page Set Size
amazon river, warrior, company 114

java software, island, coffee 119
eclipse car, solar, java 125
jaguar car, animal, mac 101
salsa dance, sauce 85

Reuters* Trade, Crude, Money-fx 946

Table 2. Experimental Datasets

5 Experiment Results

We constructed our datasets using the Google search en-
gine and partitioned the results manually to create ground
truth. At first, we submitted ambiguous queries to Google
and parsed top returned page results. Pages that do not con-
tain any keyword pairs were removed. We merged result
pages from several related queries to create datasets that
have strong word sense communities on purpose, e.g., the
amazondataset is merged by results from queries “ama-
zon river”, “amazon warrior” and “amazon company”, and
so is thejava (island, coffee or programming language)
andeclipse(Mitsubishi car model, obscuring of a celestial
body, or programming development platform) datasets. For
jaguarandsalsadatasets, we queried the word “jaguar” and
“salsa” only. Table 2 lists the labeled datasets. In order to
build ground truth to evaluate our results, we asked four
graduate students to manually classify all pages into pre-
defined clusters using a vote system, i.e., a page is classified
to the cluster which most people agree on. If votes are even,

we have a fifth person to make the final decision2. Pages
can also be labeled asmiscellaneousif they do not belong
to any of the pre-defined clusters.

For practicality, we kept the sets small to be manually
labeled. However, to test on a larger set, we used a subset of
the standard text data set Reuters-215783 and selected three
document categories with about the same size, to simulate a
query with three senses. (see Table 2). Totalling about 950
documents, each is treated as a parsed page.

5.1 Overall Performance

We have applied our method on the six datasets and show
the results in Table 1 (miscellaneous clusters are omitted).
We settidf = 0.05 andtmerge = 0.2 (details are omitted
due to lack of space). To evaluate how closely each commu-
nity in the result matches its corresponding community in
ground truth, we adopt the Adjusted Rand Index (ARI) [15]
as the performance metric for accuracy. We compare our
method with an effective variation of K-Means [2], which
is a common algorithm of document clustering [11], and
the labeling by one student (human h). For the K-Means
algorithm, every extracted keyword is treated as a feature,
thus one document is represented as a vector of keyword
TF-IDF scores. The distance between two documents is de-
fined as the squared Euclidean distance between two vec-
tors. From the table, we see that for datasets (amazon, java,
eclipse) that are merged by three different sense of the same

2http://www.cs.ualberta.ca/∼jiyang/WI2008/.
3http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

4

Specified Query Modularity ScoreQ
amazon river 0.269

amazon warrior 0.226
java coffee 0.155

java software 0.182
solar eclipse 0.268
eclipse java 0.202

Table 3. Modularity for different queries

query, our approach achieves high accuracy, which validate
our assumption that a word sense community relates to its
corresponding document cluster. For real datasets (jaguar,
salsa, reuter) with noise, our method still works measur-
ably well and detects the right number of clusters. Note that
we use the cluster number discovered by our approach ask

to feed the k-means algorithm. While our approach detects
k automatically based on senses of query words, other un-
supervised algorithms often rely on such critical parameter,
thus our approach is more appropriate for real time search
result page clustering, where such information is unavail-
able. Also note that our running time depends on the size of
thekeyword network, thus we are able to handle large docu-
ment sets very fast since the number of extracted keywords
is stable regardless of the number of pages.

5.2 UsingQ to Measure need for Partitioning

Obviously, a list of result pages does not need cluster-
ing if it only contains one primary sense of the query. The
stronger its sense community structure is, the more con-
fusing the result could be. This can be measured by the
Q score, sinceQ indicates the strength of the community
structure: Q is close to0 if there is only one sense and
higher score means a page clustering is necessary. Typi-
cally,Q ≥ 0.3 indicates strong community structure[8].

In Table 1 and 3, we showQ scores for detected sense
community structure of various queries. For queries that are
indiscriminate, such asamazon, java, eclipse, jaguar and
salsa, Q scores for the sense community structure of corre-
sponding result pages are high compared to scores for more
specified queries in Table 3. For instancejava coffeeneed
not be partitioned given the lowQ score. Note that someQ
of specified queries are not low since there are still small-
scale communities inside, e.g., forsolar eclipse, we find
that there are two main communities, one of which focuses
on scientific analysis and the other discusses photography.

6 Conclusions

This paper proposed an approach for web page clustering
based on word sense community detection in documents.

Our unsupervised method bypasses the problem of handling
large result page sets by extracting and analyzing important
keywords and phrases only, also it is able to achieve high
clustering accuracy for real queries. The modularity score
Q can be used to measure whether a page clustering is re-
quired. Experimental results confirm the accuracy and ef-
fectiveness of the proposed approach. Possible future work
would be extending the approach to build a document hier-
archy based on merged topics and discovered senses.

References

[1] A. Clauset, M. E. J. Newman, and C. Moore. Finding
community structure in very lage networks.Phys. Rev. E,
70:066111, 2004.

[2] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu. An efficient k-means cluster-
ing algorithm: Analysis and implementation.IEEE Trans.
Pattern Anal. Mach. Intell., 24(7):881–892, 2002.

[3] Kartoo. http://www.kartoo.com/.
[4] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Kr-

ishnapuram. A hierarchical monothetic document clustering
algorithm for summarization and browsing search results. In
WWW, pages 658–665, 2004.

[5] D. Lin. Principar: an efficient, broad-coverage, principle-
based parser. InProceedings of the 15th conference on Com-
putational linguistics, pages 482–488, 1994.

[6] D. Lin. Automatic retrieval and clustering of similar words.
In Proceedings of the 17th international conference on Com-
putational linguistics, pages 768–774, 1998.

[7] D. N. Milne, I. H. Witten, and D. M. Nichols. A knowledge-
based search engine powered by wikipedia. InCIKM, pages
445–454, 2007.

[8] M. E. J. Newman and M. Girvan. Finding and evaluating
community structure in networks.Physical Review E, 69,
2004.

[9] P. Pantel and D. Lin. Discovering word senses from text. In
KDD, pages 613–619, 2002.

[10] H. Schütze. Automatic word sense discrimination.Comput.
Linguist., 24(1):97–123, 1998.

[11] M. Steinbach, G. Karypis, and V. Kumar. A comparison of
document clustering techniques.In Proceedings of Work-
shop on Text Mining, KDD’00, pages 109–110, 2000.

[12] P. Stemming. http://tartarus.org/ martin/PorterStemmer/.
[13] Vivisimo. http://www.vivisimo.com/.
[14] X. Wang and C. Zhai. Learn from web search logs to orga-

nize search results. InSIGIR, pages 87–94, 2007.
[15] K. Y. Yip and M. K. Ng. Harp: A practical projected clus-

tering algorithm.IEEE TKDE, 16(11):1387–1397, 2004.
[16] O. Zamir and O. Etzioni. Web document clustering: A fea-

sibility demonstration. InResearch and Development in In-
formation Retrieval, pages 46–54, 1998.

[17] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learn-
ing to cluster web search results. InSIGIR ’04, pages 210–
217, 2004.

5

