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Abstract—Community detection and community search are
both critical tasks in graph mining, each serving unique purposes
and presenting distinct challenges. The former aims to partition
the graph vertices into densely connected subsets, while the
latter adopts a more ego-centric approach, focusing on a specific
node or group of nodes to identify a densely-connected sub-
graph that contains these query nodes. However, many real-
world networks are characterized by uncertainty, leading to
the notion of uncertain or probabilistic graphs. The transition
from deterministic graphs to uncertain graphs introduces new
challenges. We present USIWO, an efficient and practical solution
for community search in unweighted uncertain graphs with edge
uncertainty. In addition to being accurate, the approach utilizes
an efficient data structure for storing only the relevant parts of
the network in main memory, eliminating the need to store the
entire graph, making it a valuable tool in finding the core of a
community on very large uncertain graphs, when there is limited
time and memory available. The algorithm operates through a
one-node-expansion approach, based on the concepts of strong
and weak links within a graph. Experimental results on several
datasets demonstrate the algorithm’s efficiency and performance.

I. INTRODUCTION

In the era of big data, complex networks have emerged as
a powerful tool to model relationships between entities within
data. These networks, often represented as graphs, consist of a
finite number of nodes and edges that connect them. However,
traditional graphs, where relationships between nodes are
deterministic, often fall short when modelling real-world phe-
nomena where uncertainty is inherent. In fact, numerous real-
world networks are characterized by uncertainty, which can
arise from various sources such as the data collection process
or pre-processing methods using machine learning [14]. This
has led to the development of “Uncertain Graphs” also known
as “Probabilistic Graphs”, which incorporate uncertainty into
the graph structure. This uncertainty can be associated with
one or several components of an uncertain graph: edges,
nodes, and attributes. Understanding these different types of
uncertainty is crucial as it directly impacts the potential ap-

plications of these graphs. For instance, uncertain graphs with
edge uncertainty are often used to represent noisy connections
between data, such as in Protein-Protein Interaction (PPI)
networks, social media, and brain activity representation [20].

While studying graphs that stem from real world networks,
two tasks have gained significant attention due to their poten-
tial to reveal hidden structures and patterns in the network:
community detection and community search. These tasks,
while sharing similarities, serve unique purposes and present
distinct challenges. Community detection aims to partition the
graph vertices into subsets, taking the edge structure of the
graph into account. The goal is to create groups where there
are many edges within each community and relatively few
between them. However, this approach can face limitations
when applied to large, dense networks due to their focus on the
overall structure of the graph that cannot fit in main memory.

In contrast, community search adopts a more ego-centric
approach, focusing on a specific node or a group of nodes.
The aim here is to find a densely-connected sub-graph, or
“community”, that contains all query nodes. This task is less
concerned with the overall structure of the graph and more
with the immediate surroundings of the query nodes. Thus,
while community detection provides a broad view of the
graph’s structure, community search offers a more localized
perspective, making it a valuable tool for exploring specific
areas of interest within a (especially large) graph. It can be
noted however that community search can be called iteratively
on unprocessed nodes until all communities are discovered.

Although these issues have been widely researched on
deterministic graphs, transitioning to uncertain graphs intro-
duces new complexities, as it necessitates the redefinition of
existing problems and the development of novel algorithms.
A significant challenge persists due to the absence of defini-
tive algorithms for correctly partitioning uncertain graphs in
polynomial time without certain shortcomings [20]. Moreover,
naive methods for community search or clustering in uncertain
graphs, such as using edge probabilities as weights or setting
a threshold value to the probabilities of the edges, have been
shown to generate low-accuracy results in practice [12].

Given these challenges, local community search, which is
executable on large graphs, presents a promising avenue for
community detection in uncertain graphs, as it allows for
analysis on large-scale networks without the need to partition
the entire graph. This approach can offer significant benefits

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM ’23, November 6-9, 2023, Kusadasi, Turkey
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0409-3/23/11. . . $15.00
https://doi.org/10.1145/3625007.3627337

mailto:permissions@acm.org
https://doi.org/10.1145/3625007.3627337


across a broad spectrum of application domains. For instance,
in biology, it can aid in the detection of functional modules,
thereby facilitating critical clinical diagnoses of diseases like
cancer. As interest grows in dense sub-graphs such as k-core
and k-truss in uncertain graphs, the challenge of extending
community models and search techniques to uncertain graphs
becomes increasingly more important [14]. In response to
these needs, we aim to contribute to the field by proposing a
new algorithm for community search in unweighted uncertain
graphs that have independent probabilities on edges. This
algorithm, called USIWO, builds upon the notion of “Edge
Strengths” that we introduced in [6], [26]. We adapt this notion
to accommodate uncertain graphs, thereby offering a practical
solution for community search in uncertain graphs.

The remainder of this paper is organized as follows: Section
II reviews the work that is related to performing community
mining or community search on uncertain graphs. Necessary
preliminary concepts are presented in Section III. Section IV
introduces and discusses our proposed algorithm, USIWO, for
community search in uncertain graphs. In Section V we evalu-
ate the performance of USIWO in generating communities and
compare it with several other algorithms. Finally, Section VI
lists possible directions for further research in this field and
concludes with a summary of the findings.

II. RELATED WORK

In this section, we take a close look at the relevant literature
and existing methodologies focused on uncertain graphs with
an emphasis on two key areas: Community Mining, and Com-
munity Search. Although these tasks are different in nature,
there is a strong parallel between them since one could perform
partitioning by iteratively applying a community search algo-
rithm on a query node, removing the found community from
the network, and repeating this process until the entire network
is partitioned into communities. Each community detected
by the algorithm corresponds to a cluster in the network.
Therefore, while our literature review discusses community
mining algorithms (often referred to as clustering by misuse of
language), the techniques used in these algorithms are highly
relevant to our primary focus on community search.

It is important to note that in addition to uncertain graphs,
other models like Fuzzy graphs and Fuzzy Granular Social
Networks can be used to model uncertainty in networks
[9]. However, uncertain graphs use probabilities to represent
uncertainty, whereas Fuzzy Graphs use membership functions,
and Fuzzy Granular Social Networks leverage granules.

A. Community Mining a.k.a. Clustering

Potamias et al. [21] and Liu et al. [17] laid the ground-
work for uncertain graph partitioning, with subsequent studies
employing various approaches. For their part, Liu et al. [17]
introduced the concepts of “Purity” and “Size Balance” in
an information theoretic framework to propose the method
coded-k-means for accurate clustering, but the method proved
ineffective for small-world graphs and needed prior knowledge
about cluster numbers. Hu et al. [13] introduced URGE

(Uncertain Graph Embedding), a method of embedding un-
certain graphs into a set of low-dimensional vectors that carry
important information about the nodes’ proximity. Li et al. [16]
proposed AUG-I and AUG-U for uncertain graphs with node
attributes. These attributes are incorporated to reduce edge
uncertainty, and distance metric learning is used to transform
the uncertain attributed graph into a deterministic weighted
graph. AUG-I and AUG-U showed better performance in
comparison to the coded-k-means algorithm [17].

Ceccarello et al. [3] proposed MIN-PARTIAL, an algorithm
to partition an uncertain graph into k clusters. The main idea
is that nodes within a cluster have higher connectivity than
nodes between clusters. MIN-PARTIAL iteratively produces a
partial k-clustering to cover maximal subsets of nodes, given
a threshold on the minimum connection probability of a node
to its cluster center, eventually creating full k-clusterings. The
algorithm’s effectiveness is compared with other contenders
(MCL [24] and GMM [8]). As MIN-PARTIAL [3] provided
weak approximation guarantees and required significant com-
putational overhead, Han et al. [11] proposed an improved
version that addresses these points; however they only compare
its performance with Ceccarello’s work. Martin et al. [19] pro-
posed a maximum-likelihood method for inferring community
structure in uncertain networks, which involves modeling the
probability of observing each edge in the network as a function
of the underlying community structure. The base assumption
is that the probability of an edge between two nodes is higher
if they belong to the same community.

All the methods above, target the uncertain network as a
whole and may not be scalable when the network is large and
does not fit in main memory.

B. Local Community Search

Unlike Community Mining, which focuses on partitioning
the entire graph, Community Search is more targeted and
looks for a specific community that includes the user’s query
node. Community Search is sometimes referred as Local
Community Detection [1]. These methods, cited below, are
closely related to ours, and they follow the same greedy
expansion methodology of USIWO.

Halim et al. [10] proposed a density-based approach, called
DBCLPG (Density-Based Clustering of Large Probabilistic
Graphs), that starts with a single query node, well chosen,
as a cluster. It then greedily adds nodes from the shell set
(called the cluster neighbors) to the current community, based
on a condition to only add “reliable” nodes. The reliability
of a node is determined by a threshold edge weight (Tw).
For each candidate node v, the number of common neighbors
between v and the cluster are computed and added to the sum
of edges’ probabilities (which is the expected degree) between
the cluster and v. If this value (called the CP or cluster
periphery of the node) is higher than Tw, the node is added to
the cluster. The process is repeated until no node in the shell
set satisfies the condition. The cluster is then removed from the
graph and the procedure is repeated for the remaining graph.
This approach is effective for identifying dense communities



in uncertain networks, but it may not perform well on networks
with complex structures, due to the assumption of high local
density for cluster formation. Moreover, the method differs
from a typical community search as the process starts from a
well chosen node with the aim of partitioning the graph. In
addition, to choose an optimal node to start with, the approach
needs the full adjacency matrix, making it not local.

Zhang and Zaı̈ane [27] propose an algorithm called UR+K,
which starts with a single node and expands the community
by adding neighboring nodes that are considered to be part
of the community, using the metrics UR and K. These
neighboring nodes that have the potential to be inside the
community are referred to as candidate nodes. K measures
the closeness of the relationship between a candidate node
and an existing community. A high K value indicates that
the candidate node is closely related to the community and is
more likely to be part of it. K is used in the first few steps
of the local community detection algorithm to help choose
which neighboring node should be added to the community.
UR, on the other hand, stands for the uncertain version of
modularity R, introduced by Clauset in [4], is proposed for
evaluating local communities in uncertain networks. UR is
calculated based on the expected number of edges within the
community and the expected number of edges connecting the
community to the rest of the network. A high UR value
indicates a sharp boundary between the community and the
rest of the network, meaning that the community is well-
defined. The algorithm starts by placing the start node in
the community and its neighbors in the shell set. At each
step, candidate nodes in the shell set are sorted based on
their metric (K or UR) values, and the first node that can
increase the community’s metric is added to the community.
This process continues until there are no remaining nodes in
the shell node set that can increase the community’s metric,
and the resulting set of nodes is considered to be a local
community. The hyper-parameter λ determines how many
steps K is considered as the main metric before switching to
UR. The paper shows that UR +K outperforms other local
community detection algorithms (including ULouvain, the
weighted variant of Louvain [2] considering edge probabilities
as weights) on real-world and synthetic networks.

III. PRELIMINARIES

We now lay the groundwork for the concepts and termi-
nologies that will be frequently referenced throughout this
paper. We begin by explaining the notion of “Edge Strength”
or “Link Strength” that is introduced in [6], [26]. Each edge
is assigned a strength value in the range of (−1, 1), with
stronger edges corresponding to larger weights. The strength
of the connection between two nodes is calculated based on
the number of neighbors they share, which is referred to as
their support value. More specifically, the support of an edge
between two nodes is the number of triangles, or size-three
cliques, that include both nodes:

Definition 1: (Support) Given a graph G = (V,E), the
support of the edge eu,v is the number of mutual neighbors of

u and v or the number of triangles that eu,v belongs to, and
it is defined as follows:

sup(u, v) = |w ∈ V, eu,w, ev,w ∈ E|

The strength of the link between two nodes is then calculated
based on their support value and the maximum support value
of any link involving either node:

Definition 2: (Link’s strength) Given a graph G=(V,E)
and a vertex u ∈ V , the strength su,v of the link connecting
u to a node v ∈ VN (u), where VN (u) is the set of neighbors
of u, is defined as follows:

su,v = sup(u, v)(
1

supu,max
+

1

supv,max
)− 1

where supu,max is the maximum support of u and any node
in VN (u): supu,max = maxw∈VN (u){sup(u,w)}.

The concept of Link Strength, which leads to the SIWO
objective function, forms the foundation of the work pre-
sented in [6]. This approach enables community discovery
in a network through a greedy optimization process, which
iteratively performs two main phases until a local maximum
of the SIWO measure is reached. However, approaches that
take the whole graph into account are often impractical in real-
world scenarios where the input graph is too large to fit into
the main memory. To address this, we adapt these concepts
to be applicable to uncertain graphs and propose a method
that utilizes the new definitions in an ego-centric manner. The
result is a local community search algorithm for uncertain
graphs, which we refer to as USIWO.

We now turn our attention to the formal definition of
uncertain graphs. The simplest and most widely used definition
of uncertain graphs, introduced in [21], is akin to:

Definition 3: An uncertain graph G = (V,E, p) where
p : E → (0, 1] can be viewed as a probability space
whose outcomes are sub-graphs G

′
= (V,E

′
) of G where

any edge e ∈ E is included in E′ with probability p(e)
independently. These possible outcomes are also referred to
as “Possible Worlds”, each representing a potential realization
of the uncertain graph [22].

In USIWO, we start by putting a query node inside a
community. We then identify the shell set of this community.
The shell of a community C, denoted by shell(C), is the set
of nodes that are not in the community but are connected to
at least one node in the community. Formally, it is defined as:

Definition 4: (Shell set) Given an uncertain graph G =
(V,E, p), the shell of the community C is defined by:

shell(C) = {v ∈ V, v ̸∈ C s.t. ∃u ∈ C, p(eu,v) > 0}

We then proceed by finding the best candidate node inside
the shell set. We expand the community by adding the node
that has the strongest connection to the current community. We
iteratively repeat this process until the addition of the best can-
didate node is considered to be too insignificant for the current
community. To determine how strong a connection is, we adopt
a similar definition of link strengths and support values. The
support of an edge between two nodes in a deterministic graph



is the number of triangles, or size-three cliques. However, in an
uncertain graph, the process of counting these cliques becomes
more complex. Rather than counting the shared neighbors, we
must compute their expected count. To illustrate how we can
modify the support value formula to account for probabilistic
cases, consider the following probabilistic structure:

1

0.2

0.2

u

w

v

To count the expected number of triangles between u and v,
we need to check all possible worlds. In all possible worlds,
there is an edge between u and w, so we only need to consider
the other two edges. There are 4 possible worlds corresponding
to the existence and non-existence of these two edges:

u

w

v
(I)

u

w

v
(II)

u

w

v
(III)

u

w

v
(IV)

We can observe that among these four possible worlds, only
one of them (I) contains a triangle between the three nodes.
With u, v, w there are a maximum of 23 = 8 possible worlds
regardless of their edge probability, and only one possible
world will have the 3 edges occurring (i.e. a triangle). The
probability of that possible world occurring is the product of
the probabilities of the 3 edges: P = 1 × 0.2 × 0.2 = 0.04.
Since only one possible world will have the 3 edges occurring
(i.e. a triangle), the expected number of triangles Ew[Nu,v]
between nodes u and v related to w is defined as follows:

Ew[Nu,v] = (pu,w × pw,v × pu,v)

Where pi,j is shorthand for p(ei,j), or the probability assigned
to the edge between i and j in the graph. Having defined this
notion, we can now define the probabilistic support. In a prob-
abilistic graph, the support value of an edge, corresponding
to the expected number of triangles between the two linked
nodes, is defined as follows:

Definition 5: (Probabilistic Support) Given an uncertain
graph G = (V,E, p), the support of the edge eu,v is the
expected number of mutual neighbors of u and v or the number
of triangles that eu,v belongs to, and it is defined as follows:

sup(u, v) =
∑

w∈VN (u)∩VN (v),w/∈{u,v}

Ew[Nu,v]

Where VN (u) denotes the neighborhood of the node u
defined as the nodes in the graph for which there is a non-zero
probability of an edge between them and u. It is important to
note that the nodes w contributing to the summation must be
part of the shared neighborhood of both nodes u and v. This
is because if a node w is not a mutual neighbor of u and v,

either pu,w or pv,w would be zero, rendering the entire term
zero in the summation. Therefore, only those nodes w that
are mutual neighbors of u and v contribute non-zero terms
to the summation, reflecting their role in the formation of
potential triangles involving u and v. The strength of the link
between two nodes is calculated similarly to the deterministic
case based on their support value and the maximum support
value of any link involving either node. The link strengths are
scaled in such a way that they take a value in [0, 1]:

Definition 6: (Probabilistic Strength) Given an uncertain
graph G = (V,E, p), and a vertex u ∈ V , the strength of the
link connecting u to a node v ∈ VN (u) is defined as follows:

su,v =
sup(u, v)

2
(

1

supu,max
+

1

supv,max
)

Where supu,max = maxw∈VN (u){sup(u,w)} is the maximum
support of u and any node in VN (u).

Another important concept is the notion of Peripheral
Nodes. In the context of community detection, these nodes
often represent outliers or unique entities that are only loosely
connected to a community. Since our method involves count-
ing triangles, peripheral nodes that are not a part of any
triangle should be considered at the last stage of our algorithm
for potential addition to the found community.

Definition 7: (Peripheral Nodes) In a deterministic or
uncertain graph, peripheral nodes are nodes that are connected
to the rest of the graph through a single edge.

By utilizing these definitions, we can follow a greedy
approach by starting with a query node, calculating the support
and strength values for edges between the community (initially
the query node) and nodes in the shell set (initially consisting
of the neighbors of the query node), adding the best node from
the shell set, and repeating until a stopping condition is met.

The distinctive approach of our algorithm lies in its utiliza-
tion of strength values on edges to normalize the number of
triangles containing that edge. This normalization, achieved
by using supu,max as the denominator in Definitions 2 and
6, aims to offer a consistent relative measure of strength
throughout the graph, regardless of the nodes’ degree. For
instance, a node with a high degree might have a number
of mutual neighbors with another node, but the strength value
may not be as significant when calculated using Definition
6. Conversely, for nodes with a smaller degree, even a few
mutual neighbors can be of significant importance.

IV. METHODOLOGY

In this section, we propose the detailed methodology of
our proposed USIWO algorithm for community search in
uncertain graphs. Building upon the foundational concepts and
definitions of support and strength values established in the
previous section, we outline the step-by-step process of our
approach. This includes the initialization phase, the iterative
process of node expansion, and the stopping condition.

USIWO begins by placing the query node in an empty
community. It then locally explores the network to identify
the most suitable node in the community’s neighborhood to



expand the community by one node at a time. This iterative
process continues until the desired community around the
given query node is found. The method involves five key steps,
as outlined in Algorithm 1:
Update Shell Set: The shell set, initially empty, is updated
after placing the query node u in the community C. All nodes
connected to u are added to the shell S. If the query node is a
peripheral node, its single neighbor replaces the query node.
The shell set is updated in subsequent rounds by removing the
node v that joined C in the previous round and adding nodes
directly connected to v that are not already in C. The nodes in
the shell set are called “candidate nodes”, since they represent
potential candidates for new nodes that may be added to the
community.
Assign Strength Values: Following Definition 6, the strength
value su,v is computed for each pair of nodes (u, v) where
u ∈ C and v ∈ S. This process is performed locally, meaning
it does not require access to the entire network. To avoid re-
calculation, we can also make sure we only calculate what is
needed in each step and store the calculated strength values
in a data structure.
Select Best Candidate Node: After edge strengths are de-
termined, the strength that each potential candidate node v
can bring to the current community is computed. This value,
denoted by s(C, v), is the sum of the strength values of all
edges between the community and v:

s(C, v) =
∑
u∈C

su,v

The node corresponding to the largest s(C, v) is declared the
best candidate.
Expand Community: The community is expanded by adding
the selected node, but only if its addition will result in a
significant increase in the overall strength of the community
(calculated by adding the strength values of all the edges
inside the community). This “significance” is determined by
the stopping threshold δ, which is a threshold that can be set
depending on how large we want the resulting communities
to be. Thus, for the best candidate node v, we check if
s(C, v) > δ. In that case, the algorithm returns to the first
step to update the shell set. If no new node can be added,
(i.e., there is no node v such that the sum of the strength
values between v and the nodes inside the community would
exceed δ), the algorithm proceeds to the final step.
Reform Community: The final step of the algorithm is to
add any peripheral node that has a neighbor in the current
community. Without this step, these nodes do not have the
chance to join the community, because the edge that connects
them to the rest of the graph cannot be a part of any triangle.

The proposed method of greedy expansion ensures that the
final detected community is a connected sub-graph and that a
node joins C only if it improves its strength. The process
repeats until an optimal community structure is obtained.
Although this greedy approach provides us with a community
“search” algorithm with the objective of finding the best
community around a given query node, it can be extended

to community mining by repeatedly applying the community
search process to random query nodes and removing the found
community from the network, defining it as a distinct commu-
nity (or cluster). This strategy offers a practical approach to
community detection in uncertain graphs, particularly when
dealing with large graph structures.

Below is a summary of the proposed algorithm in the form
of a pseudo-code:

Algorithm 1 USIWO: A local community search algorithm
Input: Uncertain Graph G = (V,E, p), query node(s) {q},
and the stopping threshold δ
Output: The community C of the query node(s) {q}

C = {q}, S = VN (q)
while S ̸= ∅ do

Calculate and store s(C, v) =
∑

u∈C su,v for all v ∈ S
Find the node u ∈ S which maximizes s(C, u)
if s(C, u) > δ then

C = C ∪ {u}
S = S ∪ (VN (u)− C)− {u}

else
break

end if
end while
C = C ∪ P where P is the set of peripheral nodes that are
connected to a node in C
return C

Furthermore, to make the algorithm truly local, we use
an efficient data structure to store the necessary parts of the
graph in memory. Most algorithms in the literature that are
designed for community detection or community search, load
the entire network into main memory in their first step, which
is not efficient for large networks. To address this, USIWO
only loads the necessary edges and calculates their strengths.
The original input file for uncertain graphs is reformatted
to facilitate this approach. Each line in the reformatted file
stores the neighborhood information of a node along with their
probabilities, making it easier to access the necessary nodes.

The selection of an appropriate stopping condition, com-
bined with the probabilistic support values, can yield optimal
results, provided a suitable threshold value is chosen. In
the experiments section, we provide evidence supporting this
claim and detail how we determined an appropriate threshold
value through a series of experiments.

V. EXPERIMENTS

The aim of the experiments is to assess the performance of
USIWO in comparison with other existing methods.

A. Datasets

Due to the scarcity of probabilistic networks with ground
truth available online, we have employed a method to convert
deterministic graphs into uncertain graphs. Our method is a
variation of the network generator proposed in [27]. This



generator was chosen for its ability to create large synthetic
uncertain graphs, allowing us to compare the output with the
ground truth. In particular, we use this method to convert LFR
[15] networks and real-world networks with ground truth to
uncertain graphs. The generation process is outlined below:
Inputs: The algorithm takes a deterministic network G with
the ground-truth communities as input. It also takes two
parameters: pintra and pinter. These parameters define the
range of possible probability values for intra-community links
and inter-community links respectively. Both pintra and pinter
are bounded between 0 and 1, where pintra defines the
lower bound for intra-community link probabilities and pinter
defines the lower bound for inter-community link probabilities.
Generating Probabilities: The process of converting deter-
ministic networks into uncertain networks begins by iden-
tifying the links as either intra-community links or inter-
community links based on the ground-truth communities. For
each intra-community link, a probability value is generated
using a uniform distribution, ranging between the pintra value
and 1. Similarly, for each inter-community link, a probability
value is generated using the same uniform distribution, but
between the pinter value and 1.
Assigning Probabilities: The generated probability values are
then assigned to their respective links, turning the determin-
istic network into an uncertain network while preserving the
community structure from the original deterministic network
and does not compromise the preset ground truth.
For the purpose of our experiments, we also introduce the
concept of “complexity” to describe different variations of
added uncertainty. The complexity of an uncertain graph is
determined by the parameters pintra and pinter, as well as
the method used to assign probability values to the edges. We
define four levels of complexity:
Complexity 1: Probability values are first generated uni-
formly at random in [0,1]. These values are then sorted in
descending order and assigned to intra-community edges and
inter-community edges, respectively. This ensures that intra-
community edges are always stronger and the ground truth is
not compromised.
Complexity 2: The lower bound for intra-community link
probabilities (pintra) is set to 0.6, while the lower bound for
inter-community link probabilities (pinter) is set to 0. This
creates a scenario where intra-community links (which are
given probabilities in range [0.6, 1]) are generally stronger
than inter-community links (with probabilities in range [0, 1]).
Complexity 3: Both pintra and pinter are set to 0.6, creating
a scenario where both intra-community and inter-community
links can be strong.
Complexity 4: In addition to the settings of Complexity 3, new
probabilistic edges are added between communities with a low
probability (0.01). This introduces additional uncertainty and
can potentially make community detection more challenging.
The complexity levels were designed to progressively in-
crease the difficulty of the community detection task, and
create multiple variations of uncertain networks from a given
deterministic network. Complexity 1 represents the simplest

scenario, where intra-community edges are always stronger
than inter-community ones. Complexity 2 introduces some un-
certainty by allowing inter-community edges to be potentially
as strong as intra-community edges. Complexity 3 further
increases the uncertainty by making the strength of intra- and
inter-community edges indistinguishable on average. Finally,
Complexity 4 represents the most challenging scenario, where
new low-probability edges are added between communities,
further blurring the community boundaries. This way, we
are able to examine the performance of community detection
algorithms under different uncertainty scenarios.

1) Real-world Networks: For the experiments on the real-
world graphs, we consider three well-known networks with a
known community structure, namely, the Karate [25], Football
[7] and Dolphins [18] networks. These networks were also
used as potential graphs for experiments in works of [5] and
[27]. Each of these deterministic networks are then converted
to four uncertain networks using the explained method.

2) Synthetic Networks: To further evaluate the algorithms
on a network with ground truth, we used our conversion
method to convert an LFR network [15] with 2500 nodes into a
probabilistic network. The parameters for generating the LFR
network were set as follows: the power law exponent for the
degree distribution τ1 was set to 3, the power law exponent
for the community size distribution τ2 was set to 1.5. These
were selected in such a way that the network would have a
realistic degree distribution and community size distribution,
respectively. The fraction of inter-community edges incident
to each node µ was set to 0.2, and the average and maximum
degree of nodes were set to 10 and 30 respectively, to cause
the network to have a moderate density. Additionally, to test
scalability, we used the same parameters to generate a much
larger LFR network with 1 million nodes and 5,774,105 edges.
This time, we chose 1 percent of all edges and sampled their
intra-community edge probabilities and inter-community edge
probabilities from [0.7, 1.0] and [0.0, 0.3], respectively.

B. Optimal Threshold Value

Before testing the effectiveness of our method on the
converted graphs, we conducted a series of experiments to de-
termine the optimal threshold value for the stopping condition.
These experiments were performed in two stages. In the initial
stage of our experiments, we explored a range of threshold
values, incrementing by 0.1 from 0.1 to 1.5. We applied the
algorithm to several query nodes and evaluated the average
F1 measure against the threshold for three real-world graphs:
Football, Karate, and Dolphins. For each graph, one query
node was selected from each community. These experiments
suggested that an effective threshold value consistently fell
within the range of 0.8 to 0.9, regardless of the input graph
or the specific nodes chosen. To further refine our threshold
selection, we conducted a an additional set of experiments,
adjusting the threshold between 0.8 and 0.9 in increments of
0.01. The outcomes of these experiments led us to identify an
optimal threshold value of 0.82 within this range. This value



was then applied as the stopping condition for the USIWO
algorithm in all subsequent experiments.

C. Algorithms

When it comes to community search in uncertain graphs,
the number of direct competitors is limited. The most notable
method in this category is the UR+K method proposed by
Zhang and Zaı̈ane [27]. We ran the community search algo-
rithms, namely USIWO and UR+K, for each query node in
the uncertain graphs. The resulting communities were then
compared with the ground truth communities. We computed
the usual precision, recall, and F1 measures for the results
of each query node. The final reported metrics for these
algorithms are the averages of these individual results.

Given the scarcity of direct competitors in the field of
community search, we have also included in our compari-
son other algorithms that are primarily used for community
mining. This approach allows us to provide a more com-
prehensive evaluation of our method. We first considered
the DBCLPG method proposed by Halim et al. [10], which
has shown promising results in detecting communities in
uncertain graphs. Furthermore, we also included the Leiden
algorithm [23] in our comparison. The Leiden algorithm is
widely recognized as one of the most effective algorithms
for community detection in deterministic graphs, and it has
been shown to outperform the Louvain algorithm [2]. We
included both the weighted and unweighted versions of the
Leiden algorithm in our comparison. Even though the Leiden
algorithm is originally designed for deterministic graphs, for
the purpose of our experiments, we adapted it to work with
uncertain graphs. For the weighted version of the Leiden
algorithm, we treated the edge probabilities as weights. For
the unweighted version, we ignored the edge probabilities
altogether and treated all edges as if they do not have a weight.
This approach allowed us to apply the Leiden algorithm to
uncertain graphs and include it in our comparison.

For the community mining algorithms, which include the
two versions of the Leiden algorithm and DBCLPG, and for
each community found by these algorithms, we associated
each discovered community with all its contained query nodes.
We then proceeded as before, computing the precision, recall,
and F1 measure for each query node, then averaged these met-
rics to obtain the final results. Note that choosing bad starting
nodes, such as those on the boundaries of a community, could
potentially lead to poor results. By attributing the communities
found via the optimal starting node to all nodes inside that
community instead, this starting node issue is mitigated, which
gives these methods an advantage over USIWO and UR+K.

D. Results and Discussion

To evaluate the performance of our algorithm, we ran
USIWO on each node of the three real-world networks (Karate,
Football, and Dolphins), and on 100 nodes of the synthetic
network. We then computed and recorded the precision, recall,
and F1 measure, and computed the average of these mea-
sures across the nodes. Figures 1 and 2 plot the average F1

Fig. 1. Community search: F1 average scores computed over all nodes used
as query nodes on real world networks

Fig. 2. Community search: F1 average scores computed over 100 nodes used
as query nodes on a synthetic network

scores for each algorithm on each uncertain graph, and their
corresponding standard deviations. The average results over
existing graphs are shown in Table I. In terms of execution
time, all contenders are equivalent not withstanding the fact
that Leiden does not consider possible worlds. USIWO requires
three times the time needed for UR+K for a given query node
and the execution time depends on the size of the considered
community and not the network, typically not exceeding 1.5
seconds, when ran on a commodity laptop.

For the real-world networks, the USIWO algorithm outper-
forms other algorithms in terms of Recall, and F1 measure
on average and it is second in terms of Precision as shown
in Table I. However, in specific cases such as the Football
network at complexity level 4, the Weighted Leiden algorithm
surpasses USIWO with an F1 score of approximately 0.77,
compared to USIWO’s score of 0.65. Despite this, USIWO
shows its strength in consistently achieving high scores across
a range of networks and complexity levels.

For the small-scale synthetic network, USIWO demonstrates



outstanding performance, achieving an average precision of
nearly 1.00, a recall of 0.98, and an F1 score of 0.99. The
low standard deviation for the F1 score, 0.04, suggests that
USIWO’s performance is stable and reliable across different
query nodes. A scalability experiment is done on the 1M node
synthetic network. On this network, USIWO averaged 1.605
seconds per node (for 100 searches) with precision, recall,
and F1 scores of 1.000, 0.988, and 0.994, using only 200 MB
of RAM. In comparison, UR+K took 19.03 seconds per node,
achieving scores of 0.706, 0.555, and 0.598 in precision, recall,
and F1, respectively, while consuming around 5 GB of RAM.
Furthermore, Weighted and Unweighted Leiden, as well as
DBCLPG, faced memory errors and could not operate on this
network, mainly due to the way they handle the input graph.

Our results experimentally validate the fact that the strength
values calculated using Definition 6 effectively capture a
node’s relative importance relative to its other connections,
providing a perspective that is both consistent and reflective
of broader connectivity patterns of the involved nodes.

TABLE I
PERFORMANCE ON REAL-WORLD AND SYNTHETIC NETWORKS

Algorithm Precision (avg) Recall (avg) F1 (avg ± std)
Real-World networks
DBCLPG 0.78 0.46 0.49 ± 0.23
UR+K 0.75 0.42 0.44 ± 0.16
USIWO 0.83 0.80 0.78 ± 0.25
Unweighted Leiden 0.82 0.60 0.63 ± 0.21
Weighted Leiden 0.92 0.66 0.72 ± 0.23
Small-scale Synthetic Network
DBCLPG 0.71 0.56 0.60 ± 0.31
UR+K 0.72 0.60 0.64 ± 0.12
USIWO 1.00 0.98 0.99 ± 0.04
Unweighted Leiden 0.36 1.00 0.50 ± 0.21
Weighted Leiden 0.48 1.00 0.61 ± 0.20

VI. CONCLUSION AND FUTURE WORK

Complex networks are ubiquitous and important in many
applications. Many effective and efficient approaches have
been designed to better understand the structure of these
networks. Yet most target deterministic graphs and very little
has been done for probabilistic graphs despite their increas-
ing prevalence and importance. In this paper we present a
community search approach to identify the community a node
belongs to when dealing with networks with edges tagged with
existential probabilities. We demonstrate that, on most dataset
configurations, our approach USIWO outperforms others in
terms of accuracy. USIWO is also local, not requiring the
whole network, making it practical for large networks.

We aim to extend our research in several directions. First,
we plan to explore the applicability of our algorithm, USIWO,
to other types of uncertain graphs, such as weighted uncertain
graphs and attributed uncertain graphs, as well as graphs with
uncertainties on nodes in addition to edges. Second, while
our approach is local and by definition only explores locally
without loading the whole graph, we intend to further compare
the efficiency of our approach to others when dealing with
very large probabilistic networks. This may include developing

more efficient heuristics and more effective implementations
to handle the computational challenges posed by large-scale
uncertain graphs. Third, we intend to investigate further the
theoretical aspects of our approach, seeking to provide more
rigorous proofs and analyses of its performance and properties.
We believe these directions will significantly contribute to the
field of uncertain graph analysis and community search.
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