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Uncertainty in various domains implies the necgsgit data mining techniques and
algorithms that can handle uncertain datasets. Maugies on uncertain datasets have
focused on modeling, query ranking, discoveringdient patterns, classification models,
clustering, etc. However despite the existing ne®il, many studies have considered
uncertainty in sequential data. This paper intredutlAprioriAll, a method to mine
frequent sequences in the presence of uncertaintyansactions. UAprioriAll scales
linearly in time relative to the size of the datase

1. Introduction

1.1. Producing Hard Copy Using MS-Word

Statistical studies on uncertain data have receattyacted significant
attention due to the fact that data produced afidated in modern applications
are often uncertain or noisy. Uncertainty happessahbse of the limitations in
the equipment, privacy reasons, information conwgarsr extraction, etc.

In a probabilistic transactional database, an fem transaction can have a
probability attached to it indicating its existetiincertainty of appearing in the
transaction. This is a common form of uncertaintfled existential uncertainty.
As an example of this assume a health-related ds¢alin which data is
extracted from hand-written or text-based medioatords using machine
learning approaches [1]. Each attribute in thisbase describes a fact about the
patient, and may be inaccurate for several reasmhsding inaccuracy in the
information extraction method.

Sequential Pattern Miningr SPMis a well known and important problem
in data mining and has been addressed by manyest{@H5]. However mining
frequent sequences from uncertain datasets isastilbpen problem. In this



paper, we propose a solution for the aforementigrelem by introducing a
new algorithm called UAprioriAll.

UAprioriAll is designed to enable mining frequerggsiences in datasets
with existential uncertainty. The proposed alganthisesexpected suppords
the measure of frequentness of transactions angkeegs. Expected support is a
metric that measures the expected frequency dakamset/sequence in uncertain
datasets. It is memory efficient and very fastdmpute [6].

In this paper, we briefly overview the studies e tfield of uncertain
datasets in Section 2, then introduce and desailveproposed algorithm in
Section 3. We discuss the experiments designedvatuate the proposed
algorithm in Section 4.

2. Related Works

Frequent sequential pattern mining 8PM [2-5] deals with datasets in
which each transactions is considered to be agedcwith an id. Each id may
be associated with a sequence of transactionsd@firgtion of the problem is as
follows.

Given a set of sequences where each sequencetsafsislist of elements
and each element consists of a set of items, arah@ user-specified minimum
support threshold, sequential pattern mining isfitml all of the frequent
subsequences, i.e., the subsequences whose oceufrequency in the set of
sequences is no less than the minimum support.

Uncertain datasets have attracted much attentimemtly [6]. Some studies
have addressed the SPM problem for specific andelitypes of uncertain
datasets [2,3]. The main difference between relatexks and our study is the
nature of the problem and the data modeling. In model, each item has a
probability of existence in each transaction, whimoplies that the spaces of the
models in the previous work are subspaces of owteino

The data model that we propose for a realistic wapbf uncertainty in
sequential datasets is existential probabilistitagizts. In such datasets, each
item exists within a transaction with a probabiliBquation 1 shows the general
form of our datasets. Each dataBewith size|D| is a set ofD| sequences;S
where each sequence of sgeontainsS transactions;.

D={S;:i=1.|D[} )
Si =< t{i,j}:j = 1.. |Sl| >
tajy = WjePrjn)k = 1.0t



Our novel algorithm, UAprioriAll, his algorithm hathree phases: a) U-
Litemset; b) U-Transformation; c) U-Sequence.

2.1. Ulltemset: Mining Single Sequences

In this phase, the sequences of size 1 (contaimihg one transaction) are
evaluated. Each single sequence (itemsets) is ohaakea candidate, if its
expected support is above the minimum thresholthdrprobabilistic datasel®
the expected support is computed by Equation 2.

E(s(x)) = ZepyP(x €S)
P(x €S)=1- Myes(1—p(x €T))
P(x €T) = nP(i em)

{i ex}

)

We mine theprobabilistic frequent patternsusing a UApriori based
technique [7]. These itemsets are put in a setahll Next, each of the patterns
in setL; is mapped to a unique integer number api$ transformed using this
map. Set; is the output of this phase.

2.2. U-Transformation: Simplifying the Dataset

In this phase, we transform the sequential dathaséd on set,. The
transformed dataset has two major differences thighoriginal dataset. First, all
the infrequent itemsets of the original datasedt tis the ones that are not
contained irL;, are removed from the transformed dataset. Se¢badrequent
itemsets are mapped into integer numbers &g.in

UC-Sequence: Mining the Sequences

In this phase, we mine the frequent sequences tihentransformed dataset
(output of U-Transformation) using an UApriori-likedgorithm. At each step,
the new candidate se€y) is filled up based on the frequent sequencehef t
previous level I, ;) by evaluatingl,; = Ly, for all two tuples that havk-2
items in common and then removes those that havequrent subsets. The
procedure starts from;lwhich was calculated in phase 2. We continuethl
setLy is empty.

To formL,, we choose& from Cy if the expected support ofis greater than
the minimum value. To calculate the expected suppased on Equation 2, we
need to calculate the value Bfx € S) for x which size is greater than 1.The
probability by which the firsk items of candidate € C,, (m>k) appears at least
once within the firsf items of the sequencee D is denoted by (c,s) and



computed by a recursive approach presented in Bqu8t The recursive
equation allows us to benefit from the dynamic paogming scheme.

P{ccs}= Pyepisplc € s) €)
Pijy(c ©5) = Pgj_ix-13(c ) xp(clk] € s[j]) +
P(i-1iy(c €)% (1 —p(c[k] € s[D)
P{j,k}(c Cs)= Oif k>j

Pynlc €)= 1— I (1-p(el1] € 1)

The recursive formula is achieved by dividing theolgem into two
mutually exclusive states. Staids whens containsc, and staté is otherwise.
The probability value is the addition of the protiibs of the two states. State
requires two events to happen, batfk] < s[j] and s[1..j-1] (the j-1 first
elements of) should contain at least one appearance[bfk-1] (the firstk-1
elements ot). Stateb also requires two eventsik] €s[j] andc being a subset
of s[1..j-1]. It is evident that states andb are mutually exclusive. The total
number of computations required can be assessgdjlmtion 4.

DCy(csyy = {Piinyes):lcl —k>Isl —j}
{lc|?> = |cl} 3 {lc]? = |cl}

2 2
= lcl-dsl = lel +1)

(4)

Computation[P(c € s)] = |s|.|c| —

Relying on the mathematical meaningfulness of tkgeeted support, the
purpose of UAprioriAll is to find all sequences thiaave higher expected
support than the predefined threshold. It is easdlyfiable that our algorithm is
sound. An induction using the downward closure lemfi] can prove the
algorithm completeness. In addition, the algoritiemminates when the skt is
empty, that is worst case happens at khgcth level, whereK,. is the
maximum length of the sequences. Therefore, taialectness can be proven
for UAprioriAll.

3. Experiments

As there are no uncertain sequential datasetsagbylalvailable similar to other
studies on uncertain data (such as in [8]), we usedhetic datasets in our
experiments. Each generated synthetic data is cieaized by two parameters:
the number of sequencésand the total number of items Our goal is to



investigate the effect df on the time consumption, so we $ab 20 andL is
varied from 50 to 10000.
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Figure 1-Time consumption of UAprioriAll with different support values

The number of transactions in each sequence isratmaically distributed
pseudo-random number from 1 to 0. We randomly sdlecitems within the

transaction, where all items have equal chanceg @&tistence probability
attached to each item within the transaction i@mdomly generated number

between 0 and 1.

To increase the reliability of the results, for leaalue ofL, 5 datasets were
generated and the method was applied 5 times tb dataset, and then
averaged. In this process, we usedShaling MethodThis method scales down
a large dataset by randomly eliminating some tretisas, to get a smaller
dataset with lower number of sequences.

The experiments were carried out on a machine 26 GHz clock speed
and 8 GB of RAM. In the implementation of the alfum we adopted a free

online Java implementation of Apriori [9].



The experiments include the time consumption ofalg@rithm based on
the minimum support. This measure is important beeadecreasing it may
cause a dramatic drop in performance and may affextconsistency in the
behavior of UAprioriAll. Setting the minimum supporin real world
applications depends greatly on the domain.

Figure 1 shows the time scalability of UAprioriAdlith different values of
minimum support. UAprioriAll grows linearly basednothe number of
sequences.

4. Conclusion

In this paper, we proposed a novel uncertain sdg@epattern mining
algorithm employing the expected support. UApridiridonsiders attribute level
(existential) probability, and mines the frequesdential patterns. We showed
the feasibility of our new algorithm in terms ofnéé consumption. Based on the
results of the experiments, UAprioriAll's runtime linearly scalable based on
the number of sequences in the dataset.
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