
Estimating True And False Positive Rates In Higher Dimensional Problems and
its Data Mining Applications

Andrew Foss
University of Alberta

Department of Computer Science, Alberta, Canada
{afoss,zaiane}@cs.ualberta.ca

Osmar R. Zaı̈ane

Abstract

If we can estimate the accuracy of our observations then
we can estimate the true and false positive rates over a se-
ries of samples in high dimensional data mining problems.
To date such issues have been largely neglected and previ-
ously no algorithm has been provided to facilitate the com-
putations involved.In high dimensional data mining tasks,
increasing sparsity leads to decreasing true positive rates.
Estimating this effect allows the estimation of the true size
of membership of a class or cluster allowing us to identify
the top candidates for these false negatives, while tracking
the likelihood of false positives. These estimates of true and
false positive rates can also help researchers avoid unnec-
essary costs by collecting only the number of samples that
are really needed. We propose an algorithm for these com-
putations designated the Statistical Error Rate Algorithm
(SERA) and give an example of its use.

1. Introduction

In every classification projects, one has to take account
of false positives (FP) and false negatives (FN). This issue
becomes especially acute in very-high dimensional experi-
ments such as those employing microarrays. While, we will
discuss this problem with frequent references to microar-
rays, the implications are entirely general to any problem
with N samples and D dimensions with particular relevance
where D is large.

In this paper, ‘targets’ are features or points that we seek.
Features will refer to dimensions or attributes which show
some pattern, for example, indicating up or down regulated
genes. In the microarray scenario, there are usually a small
number of samples, which are treated as points and a large
number of genes which are treated as dimensions. In other
data mining contexts, the targets could be data points each
of which has values over a set of attributes. This is illus-

trated in Figure 1. Thus the semantics depend on the cir-
cumstances but the algorithm presented is entirely general.

While a dataset contains a set of T targets, we observe
the set O. The true positives are T ∩ O, the false negatives
are T\(T ∩O) and the false positives are O\(T ∩O). False
positives are also called type I errors while false negatives
are type II errors.

In the data mining community we often assume that our
data is free of error. This allows us to trust our results.
If we obtain a result such as a cluster containing a set of
points P , we typically report P as the target cluster mem-
bers. However, in any real world scenario, this approach
is unsafe. Virtually all data is noisy and this noise leads to
both false positives and false negatives. As dimensionality
increases, this problem becomes increasingly acute as spar-
sity increases exponentially with dimensionality and, thus,
the likelihood of observing a cluster similarly declines un-
der standard approaches.

Targets

Targets

F
e
a
tu

r
e
s

Samples

D
im

e
n
s
io

n
s

Points

Figure 1. Examples of targets in different data
mining scenarios. On the left, the targets are
features showing significance across sam-
ples. On the right the targets are points clus-
tered or classified based on similarity on a
set of dimensions.

For example, let us imagine a survey made of 100 stu-
dents. Each is asked 50 questions. Suppose 20 of the stu-
dents do genuinely belong to a group that should give sim-
ilar or identical answers on a subset of the questions. What
chance have we of observing a subspace cluster of all 20?
Answers may be misrecorded or misinterpreted. If we find
a group of 18, we should ask what is the likely true size of
the group? Which of the students not clustered but closely
similar should be included? Obviously such questions are
important but, surprisingly, have received little attention.

Once one has a series of samples S with dimensional-
ity D such as a number of microarray tests of patients with
the same disease and we are looking for a target set of acti-
vated genes out of thousands measured, the statistical prob-
lem becomes non-trivial. This paper provides an algorithm
for computing the answer to this problem and presents how
this answer can be applied to improve research results and
reduce research costs. Specifically, the problems of both
false positives and false negatives are addressed.

1.1 Related Work

Storey and Tibshirani [19] discuss extensively the prob-
lem faced by researchers using microarrays. The essence
is that there are typically thousands of genes being tested
and a confidence level has to be established for significance
for each gene. Traditional p-value cutoffs of 0.01 or 0.05,
widely employed in science by convention, lead to a poten-
tial

FP = pD (1)

false positives. With dimensionality D large, FP becomes
unacceptably large.

The initial means of handling this was to tighten the cri-
teria. The Šidák correction for multiple comparisons [22]
tightens the criteria for the probability of a false positive at
the feature level (αc) to yield a desired probability at the
experimental level (αe). Assuming all the features are inde-
pendent, the correction is

αc = 1− D
√

1− αe (2)

The Bonferroni correction [1, 8] noted that, for αc small,
using approximations a simpler form of Equation 2 can be
derived, that is

αc =
αe

D
(3)

The usual application of these corrections is to choose αc

such that αe ≤ 0.05 or FP < 1 (with reference to Equa-
tion 1). If D is large, this approach is extremely conserva-
tive. That is, αc is so small to likely cause many false neg-
atives [19]. While false positives are expensive to handle,
false negatives can mean the whole work fails. To reduce

this, some authors have applied this correction less strin-
gently (e.g. [14, 11, 9]). Lee et al. [18] reported their re-
sults at several threshold levels but this makes it difficult to
interpret.

Holms proposed a step-down approach that is less con-
servative [15]. The features are first ranked by their proba-
bility of being targets. Then the threshold probability is also
varied according to the ranking such that for feature rank k,
the threshold probability p is

p =
αe

D − k + 1
(4)

This also assumes the features are independent. A simi-
lar approach that has been shown to allow for some feature
dependencies is the False Discovery Rate (FDR) correction
[6, 7].

To improve on this, the q-statistic was proposed [20, 19].
The q value is similar to the p value except that it mea-
sures significance in terms of the false discovery rate (FDR)
rather than the false positive rate (FPR). The FPR is the rate
at which non-target features, sometimes referred to as truly
null, are designated significant, i.e. observed as targets. The
FDR differs in that it is the rate that features designated sig-
nificant are not targets. With certain provisos the FDR can
be written as the probability Pr(feature i is non-target | fea-
ture i is significant) and the FPR as Pr(feature i is signifi-
cant | feature i is non-target). This is a more sophisticated
way of tightening the criteria for acceptance of a feature as
significant where the number of significant features is much
less than the number of non-target ones.

In addition, Westfall and Young proposed a bootstrap-
ping method [24] that does not involve any assumption of
independence. The disadvantage to this method is that it is
typically expensive to compute and strictly empirical [10].

Elsewhere [12] we have proposed using standard p-value
levels but dividing the samples in two or more groups. This
reduces the likelihood of false positives by the power of the
number of groups. Working with labelled genome data, this
method yielded classification results better than or equal to
the best achieved so far.

These approaches per se do not explicitly model the es-
timated impact of the noise or errors in the data, if known,
or, if not known, apply the conventional assumed error rate
(5%) to estimate the impact on the statistical model, given
the experimental parameters such as the number of samples
and the number of features (points and dimensions). The
approach proposed here is to estimate, given known or esti-
mated error rates,

1 the expected number of false positives, and

2 the true number of targets given the observed number.

In the following, we present an algorithm to make this
estimate and then propose and illustrate how this output can

be leveraged to overcome the difficulties of false positives
and negatives.

The contributions of this paper are

1 A new approach to statistical analysis of true and
false positive rates in multi-sample, multi-dimensional
problems.

2 An algorithm for applying this in data mining applica-
tions.

3 A new method for identifying target genes in microar-
ray experiments with diagnostic labelling, which could
be applied in any similar problems.

In the next section the statistical basis of this approach is
explained and the algorithm presented. Then sample results
using the algorithm are given and an example of its appli-
cation in a real world situation. Finally, we conclude and
present a proposal for reducing research costs especially for
microarray and similar applications.

2. Methodology

As has been often mentioned in the literature, if we have
a 5% chance of a false positive (FP) and a large number
of features then we will have many false positives. 10,000
genes will be expected to give 500 FPs. Lee [17], in the
context of microarray studies, argues that this is a reason for
replicating the tests on each chip. This doubles the cost but
greatly reduces (without eliminating) the FP rate. Another
way of eliminating FPs is developed here based on a single
round of microarray testing.

The question we address is how many targets (true pos-
itives) or non-targets (false positives) will be seen consis-
tently if we test many samples? That is, if we have s sam-
ples, how many will appear with a measured value consid-
ered non-null on every sample? From this we can answer
the questions, ‘how many samples do we really need?’ and
‘how can we eliminate false positives?’.

The underlying statistical question is, essentially, ‘given
n coins with a weighted probability of coming up heads of
p and d tosses of each, what is the probability of seeing at
least the same k coins coming up heads in every round of
tosses?’ If there is no error or noise then p = 1.

In a typical high dimensional problem such as a micro
array (MA) study where there are both target and non-target
features, we can ask two questions both of the form ’given
n genes with a probability of testing positive p and d sam-
ples, what is the chance that k unique genes are positive in
every sample (that is, consistently up or down regulated)?’
There are two questions because, typically, we have a small
number of target genes which are being sought and which
we can expect to observe at some high likelihood pt, even

though we do not initially know which they are, and then a
very large number of other genes from which we may get
false positives due to error or noise with a probability of
pf = 1 − pt, making the reasonable assumption that both
will be subject to the same error rate or noise level.

The error rate can sometimes be known. For example,
microarray manufacturers provide estimates and, in general,
controlled experiments can be made on known quantities.
However, this is often difficult or expensive so, in most sit-
uations, the error rate or degree of stochasticity is unknown.
While this might appear to be a major hurdle, given the im-
portance of the issue to science, the research community has
long since adopted a convention of assuming an error rate of
5%, which means that if a measure is made with better than
95% certainty, it is accepted. In terms of probability one
seeks p < 0.05 or, sometimes, p < 0.01. Other p-values
may be used when there is good reason to do so. In the al-
gorithm provided in this paper, any confidence level can be
input.

Our approach assumes that the stochastic processes re-
sulting in errors due to the samples or the measuring tech-
nology are independent between features. We are not as-
suming anything about the correlations between features,
only that their variances are independent. The algorithm
given assumes that the error rates are the same for all fea-
tures or points, but it could readily be modified if a distribu-
tion of these was known.

Since this problem has been framed in terms of coin
tosses, we can derive a statistical formulation to evaluate
the probability. The problem is related to the binomial dis-
tribution. The binomial distribution deals with a sequence
of n tosses of a weighted coin. The probability of getting
exactly k successes in n trials is given by the Probability
Mass Function:

Pr(k) =
(

n

k

)
pk(1− p)(n−k) (5)

In the problem addressed in this paper, we are tossing n
labelled weighted coins a sequence of d times and we want
to know how often the same set of at least k coins come
down ‘heads’ every time.

This is best expressed as an algorithm. Suppose we want
to compute how many ways we have of getting at least k
heads on every throw of n weighted coins. On the first
throw of all the coins, as per Equation 5, we have

(
n
k

)
ways

of getting k heads with a probability pk(1− p)(n−k). Since
we are interested in ‘at least’ k heads, we have to compute
the probability of k + 1 heads, k + 2 heads, etc. up to all
n coins being heads. This is expressed as the Cumulative
Distribution Function:

Pr(X ≥ k) =
n∑

j=k

(
n

j

)
pj(1− p)(n−j) (6)

Algorithm 1 SERA – Statistical Error Rate Algorithm
Input: Samples s, number of features n, number of sig-
nificant features observed k, probability p of seeing a sig-
nificant feature in a sample.
Output: Probability of seeing k significant features
Note: choose(a, b) computes

(
a
b

)

/*Main Function*/
ComputeProbability(n, s, k, p) {
{Mx, Px} ← BuildMatrix(p) /*Algorithm 2*/
return Compute(n, s, k)
}

Compute(n, s, k) {
val ← 0
for w ← 0 to n− k incrementing by 1 do

val ← val + choose(n, n − w) × Px(n, w) ×
CompLine(n,w, s− 1)

end for
return val
}

CompLine(n,w, s) {
/*if we’ve seen this parameter combination before*/
/*return the stored value, otherwise compute and store*/
if AlreadyComputed(n,w, s) then

return GetStored(n, w, s)
end if
val ← 0
for v ← 0 to n− k incrementing by 1 do

val ← val + Mx(v, w)×
CompLine(n,Max(w, v), s− 1)

end for
SetStored(val, n, w, s)
AlreadyComputed(n,w, s) ← true
return val
}

Algorithm 2 Build Look up Value Matrix
Input: Number of features n, number of significant fea-
tures observed k, probability p of seeing a significant fea-
ture in a sample.
Output: Mx,Px which store the precalculated values
Note: choose(a, b) computes

(
a
b

)

BuildMatrix(p, n, k) {
/*Reset temporary value vectors*/
∀n, k Px ← pk(1− p)(n−k)

for w ← n to k decrementing by 1 do
fac ← choose(n,w)
ptemp ← probabilityPx(n, w)
for v ← n to k decrementing by 1 do

if (w + v ≥ n + k) then
Mx(w, v) ← fac

else if (w ≤ v) then
fac ← choose(v, w)
Condition1(w, v, fac)

else
Condition2(w, v)

end if
end for

end for
return Mx, Px
}

Condition1(w, v, val) {
tot ← val
j ← w − 1
i ← 1
while (j >= k) do

tot ← tot + choose(v, j)× choose(n− v, i)
j ← j − 1
i ← i + 1

end while
Mx(w, v) ← (tot× ptemp))
}

Condition2(w, v) {
tot = choose(n− v, w − v)
j ← v − 1
i ← w − v + 1
while ((j ≥ k)) do

tot ← tot + choose(v, j)× choose(n− v, i)
j ← j − 1
i ← i + 1

end while
Mx(w, v) ← (tot× ptemp))
}

On the second round, we have to check, for each of the
first possible sets of throws, the chance of a match with all
possible k or more heads combinations in the second throw,
i.e. where k or more coins have heads in both rounds of
throws. This has to be continued for all of the d rounds. It
is immediately clear that there is a tree of computations with
a fixed branching factor. This suggests an intractable com-
putation for large values of the parameters as the number of
computations increases exponentially.

Fortunately, we can greatly accelerate the computation.
Firstly, it can be seen that the comparison between each pair
of rounds involves the same computations, so a matrix of
values can be prebuilt and used for lookup (Algorithm 2).
At the same time, as the calculation proceeds, we can build
a vector of probability values for different values of n and
k.

Further, we can formulate the problem using a recursive
algorithm and the return value from each call depends only
on the parameters passed. Thus we can keep a log of return
values and calling parameters and look up the result in this
vector whenever we find a parameter match (Algorithm 1).
Since the redundancy is high, the problem of exponential
blowup is avoided. The principal cost in the calculation
turns out to be the computations of

(
n
k

)
for the lookup ta-

ble where n > 1000 primarily because high precision math
libraries are required that take a great deal more computing
power on a 32bit machine. If a table of these values was pre-
computed on a very fast computer or computing cloud, then
the remaining computations for any given problem would
return very quickly.

We have not found in the literature any previous algo-
rithm that provides this computation so we are unable to
offer a comparison.

3. Results

As discussed above, there are two separate applications
of this algorithm. One is to estimate the false positive rate.
That is, given n points or features that are non-target and
therefore have a low probability of being false positives,
how many will be seen consistently? For example, in a mi-
croarray experiment with n features, assuming they are (al-
most) all non-target, how many will show as significantly
regulated on every sample. In a clustering application, out
of n points with d dimensions being considered, how many
false positives can we expect to see? Here we assume that,
in order for a false positive to appear in a d dimensional
cluster, it has to be falsely given significance on all d dimen-
sions. This would apply explicitly to applications like pro-
jection clustering [2, 16] and, arguably, implicitly to other
algorithms.

The second application is regarding the target features
that we expect to observe with high probability. If we ob-

Table 1. The number of target features desig-
nated significant in every sample by an appli-
cation and the number that can be inferred to
exist at a 95% confidence level for different
numbers of samples (e.g. 1 sample, 5 sam-
ples, etc.).

Designated Inferred Targets for No. of Samples
Significant 1 5 10 20 30

5 6 8 9 10 10
10 12 14 16 16 17
15 17 20 22 23 23
20 23 27 28 29 30
25 28 32 34 35 36
30 34 38 40 41 42
50 55 62 64 65 66
100 109 120 122 124 125

serve m, how many really exist? Answering that allows us
to estimate the true positive and false negative rates.

3.1. False Negatives and the True Positive
Rate

Some sample computations are shown in Table 1. The
first column is the number of points or features observed
and the other columns indicate the estimated true number
of targets for various numbers of dimensions or samples,
respectively. An error rate of 5% is assumed. For example,
for 10 samples, if we see 10 features testing positive on all
the samples, then, at the 95% confidence level, we can ex-
pect there are 16 target features, so we observe about 62%.
If we observe a total of 30 features, then the real number
is about 40 so 75% of the likely target features have been
observed.

Once the number of false negatives has been estimated,
from which the false positive rate can be estimated, fea-
tures which were not significant (or unclustered points, etc.)
but which had a high similarity to those selected as targets
can be added. For example, suppose 75 points are detected
in a 20 dimensional subspace cluster but we estimate there
should have been 100. All of the 75 points are clustered
because they have similar or identical values for the 20 di-
mensions. Other points may have such similarity but on
fewer dimensions and could be ranked on the number of
dimensions on which they were similar. The top 25 could
then be incorporated into the cluster. Since measurement
error/noise has likely caused some points to fall below the
chosen similarity threshold, these are the points that most
likely represent the missed cluster members. It is important
to note that whether one is looking for sets of features or

sets of points, the same statistical approach can be applied.
Naturally, the number of points clustered in the above

example is a function of the heuristics, such as thresholds,
employed. The assumption is that a threshold which seems
‘reasonable’ to a researcher will likely correspond to the
conventional 5% error rate. This assumption is the founda-
tion of the 5% convention throughout the research commu-
nity.

Researchers can use our algorithm on their own set of pa-
rameters so we just give examples of usage here to illustrate
the utility.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 200 400 600 800 1000 1200

Non-target Features

S
in

g
le

 F
a
ls

e
 P

o
s
it

iv
e
 P

ro
b

a
b

il
it

y

10 Samples

20 Samples

30 Samples

Figure 2. False Positive likelihood for a single
feature to test positive on all samples with in-
creasing number of non-target features (e.g.
genes) tested (0.4 = 40%). Probability of a FP
for a single feature on a single sample = 5%
(0.05).

3.2. False Positives

If we have a large number m of non-target features in our
test arrays, then we can expect some FPs. The question is
how many and at what size of m can any be expected?

For example, if there are 20 samples and we are looking
to see if a single non-target feature tests positive in every
sample then up to m = 200, the likelihood is vanishingly
small (Figure 1). At m = 1000, the probability is about 8%
and rising fairly quickly. Thus if we have a microarray with
more than 1000 genes on it some FPs are quite possible.
For 10 samples the likelihood is over 35% while for 30, at
m = 1000, the likelihood is under 1%. This is illustrated in
Figure 2.

Obviously therefore, one strategy for eliminating false
positives is to have a large number of samples. However,
for microarrays, each sample can cost thousands of dollars
to collect and process. Another alternative for the genome
researcher is proposed in this paper taking advantage of the
fact that we can estimate the number of FPs to be expected.
This is outlined in the Proposal below (Section 4).

For the data mining researcher, the utility is in help-
ing correct for false negatives while tracking false positives
since both impact effectiveness. The algorithm can be in-
corporated into clustering and other algorithms as a post-
processor. For example, after producing a clustering result,
the algorithm can be used to estimate the number of false
negatives for each cluster or class. Suppose the estimated
number is m. Then the m points nearest to the cluster could
be incorporated. Another approach is to use it to estimate
the overall error rate. An example of how these can be done
is given in Section 3.3.2.

The following section gives a real world example in the
high noise, very high dimensional application of microar-
ray analysis. This example is of particular interest because
it appears that no other approach to this data has yielded a
small set of target genes. Where genes have been positively
associated with cancers, the number of genes involved is
very small. The preprocessing is particular to microarray
data but the subsequent computations have very general ap-
plication.

3.3. Colon Tumour Dataset

3.3.1 Direct Analysis

This dataset [4] has 62 Affymetrix oligonucleotide arrays
from biopsies of colon tumours, 40 are labelled positive
and 22 are labelled negative. Our interest is in determining
which genes are associated with the malignant condition.
Values for 2000 genes are provided for each sample.

For this analysis, the 40 positive samples are assessed for
being consistently different than the negative cases. That
is, the negative samples provide the standard levels against
which the positive samples are to be tested. For each gene
a count is made of how often it is up or down regulated
over the samples. The data was normalised in a standard
way by taking the log2 of the values divided by their mean
value over all attributes for each sample [10]. Minus and
plus superscripts are used to identify the groups. The mean
x̄−i and standard deviation σ−i of the negative samples for
feature i were computed for each gene and the values for
the positive genes x+

i were converted such that

x+′
i =

(x+
i − x̄−i)
σ−i

(7)

This gives normalized deviations of the positive group
from the negative group means. In order to accumulate the

Table 2. The top genes from the Colon Tumour database.
Rank No. Score Label

1 376 40 Hsa.3056 X59871 gene 1 Human TCF-1 mRNA for T cell factor 1 (splice form C)
2 764 38 Hsa.3067 X05276 gene 1 Human mRNA for fibroblast tropomyosin TM30 (pl)
3 492 37 Hsa.2311 T97199 3’ UTR 1 120285 INTEGRIN BETA-4 SUBUNIT PRECURSOR (HUMAN)
4 580 37 Hsa.1207 T51571 3’ UTR 1 72250 P24480 CALGIZZARIN
5 1891 37 Hsa.36161 H29546 3’ UTR 2a 52669 NEUROTENSIN RECEPTOR (Homo sapiens)

set of genes in the positive samples that are consistently up
or down regulated, genes were checked for being greater
or less than the mean of the other group by some small
amount, here at least 0.05σ. For the experimental group,
only one gene (40 samples) was consistently different in the
same direction than the control group. Applying the algo-
rithm shows that 4 other genes are likely to be target genes,
rounding to the nearest integer. Thus we can predict that the
top 5 genes are strong candidates for being associated with
this disease condition. These genes are given in Table 2.
The highest scoring gene appears in a cluster of genes that
may be implicated in Leukemia [13]. The likelihood of a
false positive is small, as can be inferred from Figure 2.

Alon et al. applied clustering to this dataset [3] based
on a deterministic-annealing algorithm and showed that this
clustering could separate the two classes but was not effec-
tive in identifying a few genes that likely play a fundamen-
tal role in this disease condition. After clustering, Alon et
al. removed the 500 most significant genes and found that
their algorithm still gave a successful clustering of the two
classes. The various approaches to multiple test corrections
can regulate the number of targets identified by adjusting
thresholds but cannot identify the correct number.

Suppose no gene had scored 40 over 40 samples. This
would indicate that there may be less than 5 target genes. To
further investigate, we could take the highest scoring gene.
Suppose that gene had a score of 20. Then if we apply the
algorithm on the basis of one positive on 20 samples then
we get a result, after rounding, of 3 anticipated false nega-
tives.

Clearly the method adopted for any particular applica-
tion contributes to the error rate. For example, different
clustering methods will yield different sized clusters. In
the example above, the number of genes detected is influ-
enced by the choices made in selecting them. Thus we
do not know exactly what our overall error rate is with-
out labelled data to test against, in this case genome level
labelling. However, we can certainly improve on the raw
result by making the conventional assumption of a 5% error
rate as we have above, and using that to derive the number
of false negatives and positives.

3.3.2 Application to Classification and Clustering

A number of different types of algorithms have been used
to classify or cluster this dataset [12, 3, 5, 21, 23]. Accu-
racy rates compared against the diagnostic labels range up
to 92%. That means, for the group of 40 positive samples,
these algorithms classified up to 36 correctly. Our algorithm
FASTGENE [12] achieved the highest score but the differ-
ences were small. Naturally we considered why we had not
achieved 100% accuracy. A number of the genes appeared
to be misclassifying the remaining samples. However, it is
interesting to ask how many out of 40 should we expect to
see, given that there must be a non-zero error rate inherent
in the data as well as consequential to the heuristics of the
classifier?

In order to apply SERA, we need an estimate of the num-
ber of dimensions relevant to the detection of the samples. If
we knew this then we can find the error rate. Alternatively,
if we assume an error rate then we can get an estimate of the
number of relevant dimensions. First, let us take the result
of the last section, that is that there are 5 relevant dimen-
sions. Then, SERA shows that finding 36 out of 40 indi-
cates only about a 1% error rate so is actually an excellent
experimental result. If the error rate is, in fact, higher, then
the number of relevant dimensions is less.

Of course, SERA is computing based on 36 out of 40
samples having proved positive on all 5 dimensions every
time. The actual algorithms will not necessarily require this
or even investigate in this way. However, implicit in any al-
gorithm is both the concept of a selected feature (or point)
being consistent in its significance, that is significant fre-
quently if not every time, and then a post processing stage,
as we discussed above, where the best candidates are se-
lected according to some threshold. This secondary stage
accommodates somewhat for the errors or noise. The ju-
dicious choice of such thresholds actually achieves the low
error rate indicated by SERA as it is a statistical assessment
of the likelihood of such a result.

4. Optimising Microarray Results and Min-
imising Costs: A Proposal

We have shown that the number of positives - e.g. tar-
get genes - seen in every sample is typically 50% - 75% of
the underlying number present. This helps us decide how
many of the genes which test positive in less than all of the
samples are to be accepted. We have also shown that false
positives can occur but the likelihood drops sharply with
increasing number of samples. While computing the likeli-
hood for n non-target genes for n > 1000 is beyond stan-
dard floating point routines on a 32-bit computer, higher
precision routines or more powerful computing resources
can be employed if needed.

From the above we can propose the following way of
eliminating false positives. Even though this involves a sec-
ond round of testing of the samples taken from patients, the
second round is much cheaper due to the small number of
genes tested for and the number of samples required can be
much reduced so lowering the overall cost.

Since we have an estimate of the number of possible
false positives fp, if fp is above some small value that
indicates a significant risk of assigning importance falsely
to a gene (e.g. fp > 0.5) and, given that we have iden-
tified a set of potential target genes G, new tests can be
performed on only the top |G′| ranking genes such that
|G′| ≥ |G|, G ⊆ G′.

More formally, let the genes testing repeatedly positive
across all samples be G∗. Let the estimate of the number
misclassified using the algorithm described here be Est(p)
based on the error rate p determined by the experimenters
from experiments or as sufficiently conservative to account
for all likely measurement errors. Then of the ranked set
of genes G the top g candidates that were not in G∗, where
g ≥ Est(p) along with G∗ are retested.

That is, retest those genes identified and those that came
close to being identified as implicated in the disease. The
probability of a false positive appearing twice declines ex-
ponentially with the number of retesting rounds and thus, in
most cases, are well below any meaningful threshold after a
second round.

This approach greatly reduces the retesting costs by min-
imizing the likelihood that any false positives will occur
across all the samples without the high cost of replication
tests using microarray chips. Such replication would only
be important if the number of samples was small.

Variations on this approach can be utilised in many ap-
plications.

5. Conclusions

This paper presents an algorithm which could prove use-
ful for both data mining researchers and those planning

genome and similar high-dimensional studies. The prob-
lem of false positives and negatives is a major issue for re-
searchers. As we have shown, the presented algorithm can
give both an estimate of the number of false positives, which
gives the true positive rate, and the likelihood of false pos-
itives. This algorithm can be incorporated into data mining
applications to adtake advantage of these results to improve
effectiveness.

We have also shown that this approach can lead to an
estimate of the number of target points or features in situa-
tions where other approaches can only give a general rank-
ing. Finally, medical researchers can use the estimates to
reduce costs and procedures by minimising the number of
samples that have to be taken.

References

[1] H. Abdi. N.J. Salkind (ed.): Encyclopedia of Measurement
and Statistics, chapter Bonferroni and Sidak corrections for
multiple comparisons. Sage, 2007.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.
Automatic subspace clustering of high dimensional data for
data mining applications. In Proc. of the ACM SIGMOD In-
ternational Conference on Management of Data, pages 94–
105, 1998.

[3] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra,
D. Mack, and A. J. Levine. Broad patterns of gene expres-
sion revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays. Proc. Natl.
Acad. Sci. USA, 96(12):67456750, 1999.

[4] U. Alon, N. Barkai, D. A. Notterman, K. Gish,
S. Ybarra, D. Mack, and A. J. Levine.
http://microarray.princeton.edu/oncology/affydata/index.html,
2007.

[5] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman,
M. Schummer, and Z. Yakhini. Tissue classification with
gene expression profiles. Journal of Computational Biology,
7(3-4):559–583, 2000.

[6] Y. Benjamini and Y. Hochberg. Controlling the false dis-
covery rate: A practical and powerful approach to multiple
testing. Journal of the Royal Statistical Society B, 57:289–
300, 1995.

[7] Y. Benjamini and D. Yekutieli. The control of the false dis-
covery rate in multiple testing under dependency. Annals. of
Statistics, 29(4):1165–1188, 2001.

[8] C. Bonferroni. Il calcolo delle assicurazioni su gruppi di
teste. pages 13-60. Rome, 1935.

[9] R. B. Brem, G. Yvert, R. Clinton, and L. Kruglyak.
Transcriptional regulatory networks in saccharomyces cere-
visiae. Science, 296:752–755, 2002.

[10] S. Drăghici. Data analysis for DNA microarrays. Chapman
and Hall, 2003.

[11] W. G. Fairbrother, S. Yeh, R. F., P. A., and C. B. Burge. Pre-
dictive identification of exonic splicing enhancers in human
genes. Science, 297:1007–1013, 2002.

[12] A. Foss and O. R. Zaı̈ane. A hybrid classification and clus-
tering approach for medical diagnostics and other high di-
mensional data. Technical Report TR08-15, University of
Alberta, 2008.

[13] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasen-
beek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Down-
ing, M. A. Caligiuri, C. D. Bloomfield, and E. S. L. G.
et al. Molecular classification of cancer: Class discovery
and class prediction by gene expression monitoring. Sci-
ence, 286:531–537, 1999.

[14] I. Hedenfalk, D. Duggan, Y. D. Chen, M. Radmacher,
M. Bittner, R. Simon, P. Meltzer, B. Gusterson, M. Es-
teller, M. Raffeld, Z. Yakhini, A. Ben-Dor, E. Dougherty,
J. Kononen, L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gru-
vberger, N. Loman, O. Johannsson, H. Olsson, B. Wilfond,
G. Sauter, O. P. Kallioniemi, A. Borg, and J. Trent. Gene-
expression profiles in hereditary breast cancer. N. Engl.
J.Med., 344:539–548, 2001.

[15] Y. Hochberg and A. Tamhane. Multiple Comparison Proce-
dures. John Wiley and Sons, 1987.

[16] C. hung Cheng, A. W.-C. Fu, and Y. Zhang. Entropy-based
subspace clustering for mining numerical data. In Proc. Of
the 5th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 84–93, 1999.

[17] J. K. Lee. Analysis issues for gene expression array data.
Clinical Chemistry, 47:1350–1352, 2001.

[18] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-
Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M.
Thompson, I. Simon, J. Zeitlinger, E. Jennings, H. Mur-
ray, D. Gordon, B. Ren, J. Wyrick, J. Tagne, T. Volkert,
E. Fraenkel, D. Gifford, and R. Young. Transcriptional
regulatory networks in saccharomyces cerevisiae. Science,
298:799–804, 2002.

[19] J. Storey and R. Tibshirani. Statistical significance for
genome-wide studies. PNAS, 100:9440–9445, 2003.

[20] J. D. Storey. A direct approach to false discovery rates. J. R.
Stat. Soc. B, 64:479–498, 2002.

[21] F. T.S., C. N., D. N., B. D.W., S. M., and H. D. Support
vector machine classification and validation of cancer tissue
samples using microarray expression data. Bioinformatics,
16:906–914, 2000.

[22] Z. Šidák. Rectangular confidence regions for the means of
multivariate normal distributions. Journal of the American
Statistical Association, 62:626–633, 1967.

[23] J. Wang, T. Bo, I. Jonassen, O. Myklebost, and E. Hovig. Tu-
mor classification and marker gene prediction by feature se-
lection and fuzzy c-means clustering using microarray data.
BMC Bioinformatics, 4(1):60, 2003.

[24] P. Westfall and S. Young. Resampling based multiple test-
ing: Examples and methods for p-value adjustment. John
Wiley and Sons, 1993.

