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Abstract—Medical images acquired under suboptimal condi-
tions often suffer from quality degradation, such as low-light,
blurring, and artifacts. Such degradations obscure the lesions and
anatomical structures in medical images, making it difficult to
distinguish key pathological regions. This significantly increases
the risk of misdiagnosis by automated medical diagnostic systems
or clinicians. To address this challenge, we propose a multi-
Color space-based quality enhancement network (MSQNet) that
effectively eliminates global low-quality factors while preserving
pathology-related characteristics for improved clinical observa-
tion and analysis. We first revisit the properties of image quality
enhancement in different color spaces, where the V-channel in
the HSV space can better represent the contrast and brightness
enhancement process, whereas the A/B-channel in the LAB space
is more focused on the color change of low-quality images. The
proposed framework harnesses the unique properties of different
color spaces to optimize the image enhancement process. Specif-
ically, we propose a pathology-preserving transformer, designed
to selectively aggregate features across different color spaces and
enable comprehensive multiscale feature fusion. Leveraging these
capabilities, MSQNet effectively enhances low-quality RGB med-
ical images while preserving key pathological features, thereby
establishing a new paradigm in medical image enhancement.
Extensive experiments on three public medical image datasets
demonstrate that MSQNet outperforms traditional enhance-
ment techniques and state-of-the-art methods, in terms of both
quantitative metrics and qualitative visual assessment. MSQNet
successfully improves image quality while preserving pathological
features and anatomical structures, facilitating accurate diagnosis
and analysis by medical professionals and automated systems.

Index Terms—Low-Quality Medical Image, Quality Enhance-
ment, Multi-Color Space, Pathology-Preserving, Transformer

I. INTRODUCTION

Medical images are utilized extensively by clinicians and
computer-aided diagnostic systems for early disease detec-
tion and diagnosis [1], [2], owing to their safety and cost-
effectiveness [3]. However, medical images captured under
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improper conditions often have significant variations in quality.
Low-quality images always suffer from low- contrast, low-
brightness, artifacts, etc. [4], [5]. These low-quality factors
result in visually poor images and hamper subsequent high-
level clinical applications, ranging from disease diagnosis
and lesion segmentation to tissue structure detection [6]–[8].
Therefore, it is necessary to enhance low-quality medical
images, which not only improves their visual qualities but also
benefits clinical observation and analysis.

Fig. 1. Illustration of the degradation of lesion characteristics and anatomical
structures caused by current image enhancement methods. The input images
(left) contain retinal lesions, skin lesions, and polyps. As the enhancement
procedure progresses from shallow to deep (from left to right), the lesion
features and anatomical details gradually degrade and disappear. This can
significantly hinder accurate diagnosis and clinical decision-making.

Recent advancements in deep learning, especially the re-
fined designs of deep neural networks, have shown significant
superiority over traditional methods in improving the visual
quality of natural and medical images [9]–[13]. Despite these
achievements, most deep learning-based approaches [14], [15]
rely heavily on aligned low/high-quality image pairs for train-
ing. This reliance poses a critical challenge in medical imag-
ing, where obtaining a substantial number of such image pairs
in real-world scenarios is impractical due to the limitations
in operational procedures and ethical constraints. To alleviate
the scarcity of image pairs, several unsupervised learning
methods [16], [17] have been proposed. Unfortunately, these
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methods often exhibit instability and fail to effectively high-
light local details, which are crucial for decision-making in
medical imaging. Ideally, high-quality medical images should
exhibit uniform illumination, clear lesion visibility, and well-
preserved anatomical structures. As shown in Figure 1, exist-
ing enhancement methods often degrade pathological features,
significantly impairing the visibility of lesions and anatomical
structures in the enhanced images. This degradation not only
compromises diagnostic reliability but also hinders down-
stream clinical analysis tasks. Taking all of the above into
consideration, the main challenges in enhancing the quality of
medical images are as follows:
1) Data Efficiency: How can robust quality enhancement be
achieved with limited medical image pairs, thus alleviating the
data scarcity problem?
2) Feature Retention: How can it be ensured that the en-
hancement process does not degrade lesion characteristics and
anatomical structures that are essential for accurate diagnosis?

To address these challenges, this study focuses on bridging
the gap between effective image enhancement and reliable
clinical applicability. We propose a semi-supervised frame-
work for low-quality medical image enhancement, which not
only enhances image quality but also preserves critical lesion
features, even in scenarios with limited image pairs. Specifi-
cally, inspired by image fusion methods, such as MATR [18],
which has shown exceptional performance in medical image
fusion by integrating metabolic information from SPECT
images with anatomical details from MRI, highlighting its
potential for supporting diagnosis and treatment planning.
Furthermore, in non-medical domains, the YDTR method [19]
effectively integrates complementary features from infrared
and visible images using a Y-shape dynamic Transformer,
demonstrating its generalization capability and broad appli-
cability across diverse imaging tasks. Considering the color
spaces that form part of the human visual system, we first
analyze the effects of different color spaces, including LAB
and HSV, on image quality enhancement [20], [21]. For the A
and B channels of the LAB color space, the distances between
colors and perceptual differences are uniform. This property
enables the model to control and predict color variations more
easily when color enhancements are performed. For the HSV
color space, the detailed analysis in Section IV reveals that
the H and S channels remain unchanged between the low-
quality and enhanced images, indicating that image quality
enhancement affects only the V channel. We then integrate
the representations and advantages of different color spaces
to improve image quality. More specifically, we construct
the VAB color space based on the HSV and LAB color
spaces of the original RGB image, which more effectively
addresses issues such as low-contrast and low-brightness.
Finally, to effectively utilize the complementary information
from different color spaces (RGB and VAB) while preserving
essential pathological features, we propose the pathology-
preserving transformer (P 2Trans) component. P 2Trans is
designed to selectively aggregate multi-level global features
from the VAB space, ensuring that the enhancement process of
RGB medical images remains sensitive to clinically significant
structures, such as exudates, skin lesion boundaries, polyps,

etc. By integrating P 2Trans into the enhancement pipeline,
the proposed framework achieves a dual objective: improving
the visual quality of RGB medical images and preserving
essential pathological features for downstream clinical analysis
tasks. In other words, P 2Trans helps establish a novel
paradigm in medical image enhancement by aligning visual
improvements with diagnostic relevance. Our contributions can
be summarized as follows:
1) We propose MSQNet, which leverages multi-scale features
from different color spaces to enhance image quality, maintain-
ing pathological features while eliminating low-quality factors.
2) We construct the VAB color space by combining the
advantages of LAB and HSV for medical image quality
enhancement.
3) The interaction between color spaces integrates global and
local representations, providing complementary information.
Based on VAB and RGB spaces, a pathology-preserving
transformer is designed to perform feature-level interaction
and aggregation.
4) Extensive experiments show that MSQNet generates su-
perior quality enhancements and achieves state-of-the-art per-
formance across medical image datasets. Its effectiveness is
further validated in downstream tasks, highlighting its broad
clinical applicability. The source code for MSQNet is publicly
available at https://github.com/HouQingshan/MSQNet.

II. RELATED WORKS

A. Non-Learning-Based Image Quality Enhancement
The traditional non-learning-based medical image quality

enhancement methods rely mainly on hand-crafted priors.
For example, contrast-limited adaptive histogram equalization
(CLAHE) [22] is widely applied to medical images as an
effective image enhancement method. It adjusts the local
contrast of an image by redistributing the lightness values of
the pixels, resulting in improved visibility of structures in the
image. Mitra et al. [23] further enhanced the capabilities of
CLAHE by combining it with the Fourier transform to improve
the contrast of cataractous color fundus images, which often
suffer from poor contrast and hazy appearance. In the field
of retinal image enhancement, Cao et al. [24] presented a
method for overcoming blurring caused by factors such as
refractive medium turbidity and imperfect imaging conditions.
Their approach involves a combination of low-pass filtering to
remove noise and an α-rooting operation to enhance the local
contrast and sharpness of the retinal images while preserving
the global luminance. Similarly, Cheng et al. [25] proposed
a structure-preserving guided retinal image filtering (SGRIF)
method for restoring fundus images and improving contrast.
SGRIF leverages the structural information of retinal images
to guide the filtering process, effectively enhancing image
quality while maintaining the integrity of retinal structures. In
addition, Wang et al. [26] proposed a low-light image enhance-
ment method based on a virtual exposure strategy and image
fusion, which generates multiple virtual exposure images and
employs multi-scale fusion techniques to effectively enhance
image brightness and details.

Despite the effectiveness of these traditional enhancement
methods for specific medical images, their reliance on global
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image statistics and hand-crafted priors severely limits their
applicability and generalizability. These methods often strug-
gle to adapt to the diverse characteristics of medical images
acquired under different conditions and from various imag-
ing modalities. Moreover, the hand-crafted nature of these
methods requires extensive domain knowledge and manual
tuning of parameters, making them less flexible and harder to
optimize for specific tasks. As a result, interest in learning-
based approaches that can automatically learn the optimal
enhancement strategies from large datasets of medical images,
potentially overcoming the limitations of traditional methods,
is increasing.

B. Learning-Based Image Quality Enhancement

1) Unpaired data-based medical image enhancement: Tra-
ditional image enhancement methods rely on paired high-
and low-quality image data [27], [28]. For example, Wang et
al. [28] proposed a low-light image enhancement framework
based on Retinex theory, which decomposes the input image
into an illumination map and a reflection map, and adjusts
brightness and details separately, significantly improving im-
age quality under low-light conditions. However, numerous
challenges are often faced in acquiring such data in clinical
settings. In recent years, enhancement techniques based on
unpaired data, combined with the advantages of deep learning,
have provided a series of novel approaches for addressing
the scarcity of paired data. For example, You et al. [29]
introduced Cycle-CBAM, which is a CycleGAN-based method
for enhancing fundus images. This approach learns to trans-
form low-quality fundus images into high-quality images via
unpaired data. Similarly, Ma et al. [16] proposed StillGAN for
medical image quality enhancement, which takes into account
both structure and illumination indicators and imposes related
constraints. However, the cycle consistency constraint of the
GAN model has limitations in preserving detailed retinal struc-
tures when processing unpaired fundus images, which may
compromise the accuracy of medical diagnosis. Park et al. [30]
proposed contrastive unpaired translation (CUT), which is an
unpaired image translation network that employs contrastive
learning to enhance the quality of unpaired image-to-image
translation. This approach inspired the development of I-
SECRET, a medical image enhancement method introduced
by Cheng et al. [31]. I-SECRET combines contrastive learn-
ing with a semi-supervised learning framework to guide the
enhancement of fundus images based on region importance.
In another study, Cheng et al. [17] introduced a medical image
enhancement method called LED. This method first learns a
degradation mapping from unpaired high-quality images to
low-quality images via a data-driven degradation framework.
Subsequently, it learns a reverse enhancement process in a
paired manner via a conditional diffusion model. Nevertheless,
during the learning procedure of degradation mapping, some
essential lesion information may be inadvertently degraded,
potentially impacting clinical diagnosis.

2) Synthetic data-based medical image enhancement: Med-
ical image enhancement has long been constrained by the
scarcity of high-quality paired data. To address this predica-

ment, researchers have begun exploring enhancement tech-
niques based on synthetic data. By integrating advanced algo-
rithms and domain knowledge, these techniques can generate
realistic synthetic paired data, opening new avenues for train-
ing deep learning models. The application of synthetic data is
expected to reduce the reliance on clinical data and accelerate
the progress of medical image enhancement techniques. Raj
et al. [32] and Shen et al. [33] utilized degradation models
that consider factors such as blurring, noise, and uneven
illumination to generate synthetic low-quality medical images.
These approaches address the scarcity of the high- and low-
quality medical image pairs required for training deep learning
frameworks. However, medical image enhancement methods
based on synthetic data still have limitations, such as the
differences between synthetic and real data, the difficulty in
preserving pathological features, and the simplification of the
degradation process. Li et al. [15] presented the structure-
consistent restoration network (SCR-Net) to address qual-
ity degradation in fundus images of cataract patients. By
leveraging synthetic data for training, SCR-Net overcomes
the scarcity of paired high- and low-quality fundus images.
This approach enables the network to effectively improve
the visual quality of fundus images obtained from cataract
patients, resulting in clearer and more detailed representations
of the retinal structures. Liu et al. [34] introduced the pyramid
constraint enhancement network (PCE-Net) to address the
issues associated with quality deterioration in retinal fundus
images. The incorporation of a pyramid constraint enables
PCE-Net to provide reliable image enhancement in clinical
settings, mitigating the reliance on large volumes of clinical
data. While the aforementioned methods have made significant
strides in improving overall image quality, they fall short in
effectively addressing the critical issue of pathological feature
degradation.

III. VAB COLOUR SPACE INVESTIGATION

Using a fundus image as an example, this section demon-
strates the necessity of the VAB color space in preserving
lesion structures and details by analyzing its intensity his-
togram in both the RGB and VAB color spaces. We focus
on comparing the histogram distribution characteristics of the
two color spaces in this fundus image, thereby revealing the
unique advantages of the VAB space.

Fig. 2. Comparative analysis of a color fundus image (left) using intensity
histograms in the RGB space (middle) and VAB space (right) highlights the
superiority of VAB in capturing and preserving pathological details.

As shown in Figure 2(middle), the histogram in the RGB
space has a distinct peak in the low-intensity range (0-50),
indicating the presence of many dark pixels in the image. This
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may be due to the imaging conditions and uneven illumination
of the fundus image. Although the RGB space can reflect
the overall brightness distribution of the image, the darker
regions may obscure important lesion details, which is not
conducive to further analysis and diagnosis. In contrast, the
histogram in the VAB space (Figure 2 (right)) exhibits a more
balanced distribution characteristic. Although the number of
pixels in the low-intensity range (0-50) is lower in the VAB
space than in the RGB space, the VAB space clearly has
advantages in the medium- to high-intensity range (50-200),
with a richer pixel distribution and more prominent detail
information. In Particular, in the medium-intensity range (120-
180), there are significant peak regions in the VAB histogram,
which are speculated to correspond to important structures
or features related to lesions. This finding indicates that the
VAB space may effectively separate the key information in the
fundus image and reduce the interference of factors such as
illumination.

The above preliminary analysis demonstrates that, compared
with the RGB space, the VAB color space has unique advan-
tages in representing pathological fundus images. It can better
preserve and highlight the detailed features of lesion areas at
different intensity levels, providing more valuable information
for computer-aided diagnosis of fundus diseases.

IV. METHODOLOGY

Before introducing our framework, we first define the no-
tations used in this paper. The training dataset D = {X,X}
contains two subsets: subset X = {(Xi

RGB , R
i
RGB)

N
i=1} with

reference images and subset X = {(X i
RGB)

M
i=1} without

reference images. Here, Xi
RGB and X i

RGB represent the ith
images in subsets X and X , respectively, whereas Ri

RGB

is the high-quality reference image corresponding to Xi
RGB .

The variables N and M represent the number of samples
in subsets X and X , respectively. Given the medical image
training set D, MSQNet is trained to learn a model f(·; θ)
that performs quality enhancement on medical image test sets.
Table I provides a summary of the key notations used in this
study.

A. Overview of the MSQNet Framework
Low-quality medical images often contain various types of

quality defects that interfere with the accurate identification
of lesions and anatomical structures. However, most existing
image quality enhancement methods suffer from severe feature
degradation during processing, making it difficult to achieve
an effective balance between improving image quality and
preserving important details. This imbalance can lead to the
loss of key detail information in the processed images or the
over-enhancement of artifacts. To better balance the relative
relationship between quality enhancement and detail restora-
tion during training, we consider the advantages of different
color spaces and integrate the complementary information
from these spaces. With this motivation, we propose MSQNet
for low-quality medical image enhancement, which consists of
two main stages: 1) construction of the VAB color space, and
2) dual-branch image quality enhancement. Figure 3 shows
the pipeline of the MSQNet framework.

TABLE I
DESCRIPTION OF IMPORTANT NOTATIONS

Notation Description

Image notations

X i
RGB, X̂ i

RGB

Ri
RGB

X i
RGB, X̂ i

RGB

Low-quality RGB image with reference and corresponding enhanced one;
The reference of X i

RGB;
Low-quality RGB image without reference and corresponding enhanced one

X i
V AB, X̂ i

V AB

Ri
V AB

X i
V AB, X̂ i

V GB

Low-quality VAB image with reference and corresponding enhanced one;
The reference of X i

V AB;
Low-quality VAB image without reference and corresponding enhanced one

Discriminators

DRGB

DV AB

Discriminator for distinguishing between X̂ i
RGB and Ri

RGB;
Discriminator for distinguishing between X̂ i

V AB and Ri
V AB

Feature map notions
F i

RGB

F i
RGB

F i
V AB

M i
S

V i
A, V i

C

F i
C/F

i
C ′, F i

A

F i
T

Low-quality factors in low-quality RGB image;
Feature maps of low-quality RGB image;
Feature maps of low-quality VAB image;
Similarity matrix between Q and K;
Attention vector, and Critical similarity vector;
Critical VAB feature map, and Aggregated feature map of F i

RGB and F i
C ′;

Fused feature map of F i
RGB and F i

V AB

Key operations
Unfold(·), Fold(·)
Gt(·), Rp(·), Ep(·)

Unfold and Fold operations;
Gather, Reshape, and Expansion operations

B. Construction of the VAB Color Space

To integrate the advantages and representations of different
color spaces and further construct the VAB color space, we
analyze the effects of the HSV and LAB color spaces on the
quality enhancement task.
Effect of the HSV Color Space on Quality Enhancement.
According to the Retinex model, the relationship between the
enhanced image X̂i

RGB and the low-quality image Xi
RGB can

be represented as follows:

X̂i
RGB = Xi

RGB/
(
F i

RGB + δ
)

(1)

where δ indicates a small constant to prevent the denominator
from being zero and F i

RGB represents the low-quality factor
in Xi

RGB .
The low-quality RGB image can be decomposed into three

separate channels based on the pixel values:
L = max

c∈{R,G,B}
Xi

RGB (pc)

M = median
c∈{R,G,B}

Xi
RGB (pc)

S = min
c∈{R,G,B}

Xi
RGB (pc)

(2)

where p denotes an individual pixel. Furthermore, the low-
quality image Xi

RGB can be represented in the HSV color
space as follows:

 V
(
Xi

RGB

)
= L

S
(
Xi

RGB

)
= (L− S)/L

H
(
Xi

RGB

)
= C1 + C2(M − S)/(L− S)

(3)

where V (Xi
RGB), S(Xi

RGB), and H(Xi
RGB) represent the

V, S, and H channels of the low-quality image Xi
RGB ,

respectively. C1 and C2 indicate constant values. Based on
equation 1, the enhanced image X̂i

RGB in HSV space can be
expressed as equation 4. For clarity, we omit the constant δ
from equation 1 and simply use F i

RGB to represent F i
RGB+δ.
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Fig. 3. Overview of the MSQNet framework. Generally, the training of MSQNet consists of two main stages. In the first stage, a new color space, VAB, is
constructed by considering the advantages of multi-color spaces. Then, the low-quality RGB images X i

RGB and Xi
RGB and RGB reference image Ri

RGB
are transformed into the low-quality VAB images X i

V AB and Xi
V AB and VAB reference image Ri

V AB . In the second stage, X i
RGB /Xi

RGB are fed into
the main branch for original RGB image quality enhancement, whereas X i

V AB /Xi
V AB are fed into an auxiliary branch for guidance information extraction

from the VAB color space. A pathology-preserving transformer component is employed to perform multi-scale feature interaction and aggregation between
the VAB and RGB color spaces.


V
(
X̂i

RGB

)
= L/F i

RGB = V
(
Xi

RGB

)
/F i

RGB

S
(
X̂i

RGB

)
=

(L/Fi
RGB−S/Fi

RGB)
(L/Fi

RGB)
= S

(
Xi

RGB

)
H

(
X̂i

RGB

)
= C1 +

C2(M/Fi
RGB−S/Fi

RGB)
(L/Fi

RGB
−S/Fi

RGB)
= H

(
Xi

RGB

)
(4)

where V (X̂i
RGB), S(X̂

i
RGB), and H(X̂i

RGB) represent the V,
S, and H channels of the enhanced image X̂i

RGB , respectively.
We can observe that the H and S channels remain consistent
between the low-quality image Xi

RGB and the enhanced image
X̂i

RGB . The quality enhancement focuses exclusively on the
V channel, resulting in a positive effect.
Effect of the LAB Color Space on Quality Enhancement.
In contrast to the RGB color space, the LAB color space
presents the following advantages [20]. The A and B channels
in the LAB color space are designed to align more closely
with the human visual system’s perception. This ensures
that color adjustments made in this space do not introduce
additional color loss, which is crucial for medical image
quality enhancement tasks. Moreover, the LAB color space
separates luminance and color information, with the L channel
representing luminance and the A and B channels representing

color. This separation makes it significantly easier to perform
precise color adjustments and achieve optimal color balance
via the A and B channels.

As illustrated in Figure 3, by combining the advantages of
both the HSV and LAB color spaces for quality enhancement,
we ultimately construct the VAB color space to guide the
quality enhancement of RGB medical images.

C. Dual-branch image quality enhancement

To obtain a higher-quality medical image X̂i
RGB from

a low-quality medical image Xi
RGB , we design an end-to-

end quality enhancement framework, which includes a main
quality enhancement branch, an auxiliary branch for extract-
ing guidance information from the VAB color space, and a
pathology-preserving transformer component for encouraging
multi-scale feature interaction and aggregation.

As shown in Figure 3, low-quality RGB images X i
RGB

and Xi
RGB are accepted as inputs to train the main quality

enhancement branch in a semi-supervised manner. The loss
Lm of the main branch is formulated as follows:
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Fig. 4. Illustration of the pathology-preserving transformer component.

Lm = λ1EXRGB
[∥RRGB − fm (XRGB | θRGB)∥1]

+ ERRGB
[logDRGB (RRGB)]

+ EXRGB
[log (1−DRGB (fm (XRGB | θRGB)))]

(5)

where fm(·; θRGB) represents the mapping function of the
main branch quality enhancement with parameter θRGB ,
DRGB(·) represents a discriminator for distinguishing between
the enhanced image X̂ i

RGB and the reference image Ri
RGB ,

and λ1 and λ2 are the regularization weights that balance the
losses of the main branch.

Given the transformed low-quality VAB images X i
V AB

and Xi
V AB , as well as the reference VAB image Ri

V AB ,
as inputs, the auxiliary branch is jointly trained to produce
the enhanced VAB images X̂i

V AB and X̂ i
V AB and to extract

guidance information. The loss La of the auxiliary branch can
be formulated as follows:

La = λ2EXV AB
[∥RV AB − fa (XV GB | θV GB)∥1]

+ ERV AB
[logDV AB (RV AB)]

+ EXV AB
[log (1−DV AB (fa (XV AB | θV AB)))]

(6)

where fa(·; θV AB) is the mapping function of the auxiliary
branch with parameter θV GB . Combining all the losses, the
final loss for MSQNet can be defined as follows:

LMSQNet = Lm + λ3La (7)

Owing to the auxiliary branch possessing a stronger ability
to remove specific low-quality factors (e.g., low-light and
artifacts) and maintain more complete biomarkers than the
main branch dose, we design a pathology-preserving trans-
former (P 2Trans) component to assist the main branch in
learning specific low-quality representations more effectively
from the VAB color space. As shown in Figure 4, we take the
feature maps F i

RGB ∈ RH×W×C and F i
V AB ∈ RH×W×C ,

inherited from the main and auxiliary branches, as inputs
of the P 2Trans component. The query (Q), key (K), and
value (V ) matrices are obtained by applying the unfold
operation to the feature maps F i

RGB and F i
V AB from the

main and auxiliary branches, respectively. Specifically, Q is
derived from F i

RGB , whereas both K and V are derived
from F i

V AB , i.e., Q = Unfold(F i
RGB) ∈ RD×HW , and

K = V = Unfold(F i
V AB) ∈ RD×HW . Specifically, we first

obtain the similarity matrix M i
S ∈ RHW×HW = Q ⊙ K by

calculating the relevance between Q and K. To obtain the
anatomical structure features without low-quality factors from
the auxiliary branch, we calculate the critical VAB feature map
F i
C′ ∈ RH×W×C via equation 8.

F i
C′ = Fold

(
F i
C

)
= Fold

(
Gt

(
V,Ep

(
V i
A

)))
(8)

where V i
A is the attention vector obtained via index selection

on M i
S , which contains the most relevant positions of the aux-

iliary branch with respect to the main branch. Ep(·) represents
the dimension expansion operation performed to make the
dimensions of V i

A and V consistent. Gt(·) denotes the gather
operation used to obtain the unfolded critical VAB feature
map F i

C . Furthermore, we concatenate F i
C′ and F i

RGB and
feed them into a convolutional layer to obtain the aggregated
feature map F i

A. In the end, we fuse the complementary
information from the two branches in our framework by
combining F i

A with the critical similarity vector V i
C obtained

through maximum selection on M i
S . The final output F i

T of
the pathology-preserving transformer block can be represented
as follows:

F i
T = F i

A ⊗ Ep
(
Rp

(
V i
C

))
(9)

where ⊗ indicates the element-wise multiplication, and Rp(·)
and Ep(·) denote the reshaping and dimension expansion
operations, respectively.
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V. EXPERIMENTS

A. Datasets and Performance Metrics

In our experiments, we evaluate the effectiveness of
MSQNet by comparing it against existing quality enhancement
methods on four different types of medical image benchmark
datasets:
(1) Retinal fundus dataset: The retinal fundus dataset from
the EyeQ, DDR, IDRiD, and DRIVE datasets, which includes
8,347 synthesized paired images and 1,876 unpaired low-
quality fundus images. We randomly split 10% from the train-
ing dataset for validation. The testing dataset includes 4,559
low-quality images. Importantly, synthetic paired images are
generated from the EyeQ dataset via the algorithm introduced
by Shen et al. [33].
(2) Messidor dataset: The Messidor dataset [35] contains
a total of 1200 fundus images, sourced from three different
ophthalmology departments. Each image is provided with a
label indicating the severity of diabetic retinopathy (DR). Sim-
ilarly, the synthetic images are generated using the algorithm
proposed by Shen et al. [33].
(3) Skin lesion dataset: The skin lesion dataset is con-
structed based on the ISIC Challenge Dataset 2017 [36],
which includes 2,750 images. All the skin lesion images are
randomly divided into three partitions: 1,679 for training, 186
for validation, and 885 for testing.
(4) Endoscopy dataset: Specular highlights and uneven illu-
mination can seriously affect the visual quality of endoscopic
images. Three clinicians selected 912 images based on the
work of Bernal et al. [37] from the public CVC-EndoSceneStill
dataset [38] for endoluminal scene enhancement. We randomly
split these images into 450, 100, and 362 images for training,
validation, and testing, respectively.
Performance Metrics. Two types of evaluation metrics are
selected to quantify the quality enhancement performance of
the relevant datasets. Specifically, the peak signal-to-noise
ratio (PSNR) and structural similarity index measure (SSIM)
are used as full-reference metrics to evaluate the differences
between enhanced images and high-quality reference images.
Additionally, the image quality assessment score [31] is
adopted as a non-reference metric to focus on the overall
quality enhancement effect across various medical datasets.

B. Implementation Details

The proposed MSQNet framework is implemented via the
PyTorch library, and all the experiments are conducted on a
hardware platform equipped with four NVIDIA Quadro RTX
GPUs, each with 24 GB of memory. All training images
are resized to 512 × 512, followed by combinations of
horizontal flipping, random rotation, and vertical flipping. All
the considered methods are trained from scratch. We train
MSQNet via the Adam optimizer with a weight decay of 0.1
and an initial learning rate of 1×10−4. The MSQNet is trained
for 150 epochs with a batch size=32. Learning rate warmup is
adopted in the first 60 epochs, and then the cosine annealing
schedule is applied in the following epochs to automatically
adjust the learning rate. The weight parameters in Lm, La

and LMSQNet are experimentally set to λ1 = λ2 = 5, and

λ3 = 1. For the loss Lm/La of the main/auxiliary branch,
the weight coefficient λ1/λ2 effectively controls the content
consistency between the enhanced RGB/VAB images and their
corresponding RGB/VAB reference images. As a result, λ1/λ2

should maintain a certain value to ensure alignment between
the enhanced and reference images.

C. Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of MSQNet, we compare
it with representative state-of-the-art medical image quality
enhancement methods on various datasets. The comparable
methods include the following: 1) Three traditional methods,
e.g. LIME [39], latent structure-drive [41], and distribution
fitting [40]. 2) Supervised deep learning-based methods, e.g.
SCR-Net [15], PCE-Net [34], ArcNet [42], cGAN [43], and
RFormer [14]. 3) A semi-supervised deep learning-based
methods, e.g. I-SECRET [31]. 4) Unsupervised deep learning-
based methods, e.g. StillGAN [16], CutGAN [30], LED [17],
and Cycle-CBAM [29].

As reported in Table II, poor quality enhancement perfor-
mance is observed when traditional methods are used. Com-
pared with the traditional methods, considerable improvements
are obtained by all deep learning-based methods. According to
the full-reference metrics, the proposed MSQNet framework
demonstrates superior quality enhancement performance and
generalizability, consistently outperforming all other tradi-
tional and deep learning-based quality enhancement methods.
MSQNet consistently outperforms the previous best method,
I-SECRET, across all three datasets. On the retinal fundus
dataset, MSQNet achieves a PSNR of 30.47 and an SSIM of
0.937, which exceed those of I-SECRET by 3.11 and 0.029,
respectively. Similarly, on the skin lesion dataset, MSQNet
obtains a PSNR of 30.59 and an SSIM of 0.906, outperforming
I-SECRET by 2.06 and 0.014, respectively. Finally, on the
endoscopy Dataset, MSQNet achieves a PSNR of 35.37, which
exceeds that of I-SECRET by 2.69. The overall results imply
that the proposed MSQNet framework can better enhance the
quality of different medical image datasets than can I-SECRET
in terms of full-reference metrics. In terms of the non-reference
metric IQAS, it is also observed that our method outperforms
all other comparable methods, implying that the proposed
MSQNet framework can better enhance the overall quality of
different medical image datasets. On the retinal fundus dataset,
MSQNet achieves an IQAS of 0.698, which exceeds that of
I-SECRET by 0.034. On the skin lesion dataset, MSQNet
achieves an IQAS of 0.724, outperforming I-SECRET by
0.021. On the endoscopy dataset, MSQNet achieves an IQAS
of 0.776, outperforming I-SECRET by 0.042, even with a
training set of only 450 images. These results demonstrate
the superiority of MSQNet for enhancing low-quality images
with limited data, and its ability to leverage unlabeled data
effectively across various medical image domains.

Figure 5 presents the qualitative comparisons on different
types of medical image datasets. It can be observed that the
low-quality images suffer from various issues such as uneven
illumination, blurry details, and poor contrast. Deep learning-
based methods such as PCE-Net, ArcNet and Cycle-CBAM
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TABLE II
COMPARISON WITH STATE-OF-THE-ART QUALITY ENHANCEMENT METHODS ON THREE BENCHMARK DATASETS.

Retinal Fundus Dataset Skin Lesion Dataset Endoscopy Dataset
Methods Types PSNR↑ SSIM↑ IQAS↑ PSNR↑ SSIM↑ IQAS↑ PSNR↑ SSIM↑ IQAS↑
LIME [39] Traditional 13.54 0.868 0.346 12.93 0.824 0.387 14.86 0.854 0.425
Fu et al. [40] Traditional 9.76 0.564 0.235 10.24 0.633 0.312 11.75 0.692 0.397
He et al. [41] Traditional 15.56 0.759 0.368 16.32 0.732 0.425 17.32 0.776 0.473
SCR-Net [15] Supervised 26.37 0.876 0.653 26.72 0.882 0.675 31.64 0.923 0.745
PCE-Net [34] Supervised 22.44 0.872 0.573 24.70 0.895 0.582 23.63 0.803 0.618
ArcNet [42] Supervised 21.24 0.796 0.562 20.23 0.856 0.549 22.05 0.856 0.663
cGAN [43] Supervised 26.35 0.894 0.634 26.38 0.851 0.645 27.33 0.908 0.704
RFormer [14] Supervised 24.37 0.862 0.607 25.36 0.865 0.614 26.42 0.874 0.636
StillGAN [16] Unsupervised 25.38 0.896 0.619 25.27 0.864 0.627 29.25 0.916 0.726
CutGAN [30] Unsupervised 22.76 0.872 0.576 25.32 0.836 0.597 26.45 0.854 0.659
LED [17] Unsupervised 26.23 0.860 0.658 27.58 0.822 0.684 32.69 0.924 0.742
Cycle-CBAM [29] Unsupervised 21.56 0.843 0.534 24.26 0.874 0.536 25.27 0.832 0.627
I-SECRET [31] Semi-supervised 27.36 0.908 0.664 28.53 0.892 0.703 32.68 0.931 0.734
MSQNet(Ours) Semi-supervised 30.47 0.937 0.698 30.59 0.906 0.724 35.37 0.926 0.776

Fig. 5. Visual comparisons of medical image enhancement between MSQNet and other comparable SOTA methods.

exhibit limited ability to improve the uneven illumination
of low-quality endoscopy images, resulting in unsatisfactory
enhancement results. I-SECRET, SCR-Net, and LED yield
over-smoothed results and fail to recover clear skin lesion
boundaries, leading to a loss of important diagnostic details.
StillGAN, on the other hand, yields over-enhanced results
and fails to restore more fine-grained content and structural
details of endoscopy images, which may hinder accurate
interpretation.

In contrast, the proposed MSQNet demonstrates superior
performance in enhancing the quality of various medical im-
ages. For the endoscopy images, MSQNet effectively improves
the illumination uniformity, contrast, and sharpness while
preserving the essential structural details. In the case of skin le-
sion images, MSQNet successfully restores clear lesion bound-
aries and enhances fine-grained textures, which are crucial for
accurate diagnosis. The retinal fundus images enhanced by
MSQNet also exhibit improved clarity, contrast, and visibility

of important anatomical structures. These improvements can
be attributed to MSQNet’s ability to encourage the encoder
to learn more fine-grained and structural details by leveraging
unidirectional feature guidance derived from the VAB space.
The integration of multi-scale contextual information further
enables MSQNet to capture both local and global features
effectively while alleviating the feature degradation of lesions
and anatomical structures. Consequently, low-quality medical
images can be significantly enhanced, facilitating better visual
interpretation and potentially aiding in accurate diagnosis.
To further evaluate the generalization of MSQNet, we also
perform 5-fold cross-validation on the Messidor dataset. The
experimental results on the Messidor dataset are summarized
in Table III. MSQNet outperforms other comparable methods,
achieving the best performance across different metrics, such
as PSNR (29.82 ± 0.47), SSIM (0.908 ± 0.019), and IQAS
(0.706). These results further demonstrate the generalization
of MSQNet compared to other methods on different fundus
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datasets.

TABLE III
PERFORMANCE COMPARISON OF STATE-OF-THE-ART METHODS ON THE

MESSIDOR DATASET USING 5-FOLD CROSS-VALIDATION.

Method PSNR↑ SSIM↑ IQAS↑
LIME [39] 12.36 0.852 0.338
Fu et al. [40] 11.32 0.573 0.263
He et al. [41] 16.23 0.764 0.374

SCR-Net [15] 26.45 ± 0.16 0.879 ± 0.008 0.641
PCE-Net [34] 24.53 ± 0.36 0.859 ± 0.023 0.582
ArcNet [42] 22.94 ± 0.26 0.848 ± 0.012 0.556
cGAN [43] 26.21 ± 0.23 0.871 ± 0.015 0.625
RFormer [14] 23.56 ± 0.08 0.862 ± 0.004 0.613

StillGAN [16] 26.18 ± 0.45 0.865 ± 0.035 0.649
CutGAN [30] 24.82 ± 0.21 0.887 ± 0.012 0.617
LED [17] 26.08 ± 0.21 0.868 ± 0.029 0.652
CycleCBAM [29] 23.29 ± 0.37 0.853 ± 0.027 0.583
I-SECRET [31] 26.89 ± 0.34 0.883 ± 0.021 0.658

MSQNet (Ours) 29.82 ± 0.47 0.908 ± 0.019 0.706

As shown in Table IV, we also analyze the computational
complexity of MSQNet by comparing metrics such as param-
eters, floating-point operations (FLOPs), inference time, and
GPU memory usage during the training stage. Although its
computational complexity is not the most optimal compared
to other methods, MSQNet achieves a good balance between
efficiency and performance. For example, it has only 24.07M
parameters and 236.39G FLOPs, demonstrating certain ad-
vantages over methods like PCE-Net, StillGAN, and LED.
While its inference time (1.572 seconds) and GPU memory
usage (16,031M) are slightly higher than those of comparable
methods, the significant improvements in quality metrics offset
these drawbacks. Moreover, the analysis of computational
complexity provides valuable insights for future optimization,
such as refining the model structure and reducing parameters
to further enhance the overall efficiency of MSQNet.

TABLE IV
THE COMPARISON OF DIFFERENT DEEP LEARNING-BASED METHODS IN

TERMS OF COMPUTATIONAL PERFORMANCE METRICS.

Methods Params (M) FLOPs (G) Inference
time(s)

GPU memory
usage (M)

SCR-Net [15] 89.29 137.29 1.462 2,906
PCE-Net [34] 26.65 343.45 0.103 9,554
Arc-Net [42] 54.42 72.81 0.084 4,730
cGAN [43] 54.41 72.61 0.605 2,774
RFormer [14] 21.11 183.25 0.228 18,193
StillGAN [16] 78.64 268.35 1.083 16,490
CutGAN [30] 11.38 256.53 0.081 8,948
LED [17] 113.68 996.37 244.424 10,850
CycleCBAM [29] 11.38 227.46 0.076 9,556
I-SECRET [31] 11.76 228.76 0.089 9,168
MSQNet (Ours) 24.07 236.39 1.572 16,031

Finally, to show the effectiveness of MAQNet from a subjec-
tive perspective, we invite two ophthalmologists to participate
in a user study. Specifically, we randomly select 100 low-
quality fundus images from the test set of the EyeQ dataset and
enhance these images using MSQNet and other comparable
methods. The experts re-evaluate the enhanced images based
on two key factors: the mitigation of low-quality factors
and the preservation of pathological features. As shown in

the table V, the number of enhanced images re-classified as
high-quality by the ophthalmologists is significantly higher
for MSQNet compared to other methods. This indicates that
MSQNet excels not only in removing low-quality factors but
also in preserving pathological features, thereby improving the
diagnostic utility of medical images.

TABLE V
THE QUALITY RE-CLASSIFICATION OF ENHANCED FUNDUS IMAGES IN

THE USER STUDY.

Ophthalmologist 1 Ophthalmologists 2Methods low-quality high-quality low-quality high-quality
Low-quality Image 88 12 90 10
LIME [39] 72 28 74 26
Fu et al. [40] 78 22 81 19
He et al. [41] 67 33 69 31
SCR-Net [15] 36 64 37 63
PCE-Net [34] 47 53 46 54
ArcNet [42] 51 49 53 47
cGAN [43] 39 61 35 65
RFormer [14] 42 58 38 62
StillGAN [16] 36 64 39 61
CutGAN [30] 45 55 43 57
LED [17] 40 60 39 61
CycleCBAM [29] 48 52 49 51
I-SECRET [31] 31 69 29 71
MSQNet (Ours) 27 73 25 75

D. Ablation Studies

In this section, we perform a series of ablation studies to
investigate the effectiveness of the P 2Trans component and
the VAB color space within MSQNet.

1) Ablation Studies on P 2Trans: To analyze the effective-
ness of P 2Trans in guiding multiscale feature interaction and
aggregation, and to assess its ability to preserve lesions and
anatomical structures, we compare MSQNet with its variant
MSQNet w/o P 2Trans (MSQNet is trained independently
without the P 2Trans component.).

Fig. 6. Effect of P 2Trans on the enhancement results.

The low-quality medical images shown in Figure 6 exhibit
uneven illumination, blur, and artifacts that obscure important
anatomical and pathological details. MSQNet w/o P 2Trans
generates relatively smooth enhanced images, which improves
the overall visibility, but the images still lack sharpness in the
boundaries and details. For example, the boundaries of polyps
in the colonoscopy images and hemorrhages in the fundus
images are degraded, and fine structures such as tiny vessels
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in the fundus images are also not well-preserved. In addition,
MSQNet w/o P 2Trans introduces undesired artifacts into the
enhanced skin lesion image. In contrast, under the guidance
of P 2Trans, the images enhanced by MSQNet exhibit clear
details of lesions and anatomical structures across the fundus,
colonoscopy, and skin lesion images. These comparison results
suggest that P 2Trans can effectively guide multiscale fea-
ture interaction and aggregation, preserving more information
about lesions and anatomical structures while avoiding the
introduction of undesired artifacts during the quality enhance-
ment process.

2) Ablation Studies on Key Parameter for Feature Fusion
Between RGB and VAB Color Spaces: P 2Trans plays a
critical role in the multi-scale global feature fusion between the
RGB main branch and the VAB auxiliary branch. Therefore,
we further conducted an in-depth investigation into the impact
of the hyperparameter λ3 on the feature fusion between the
RGB and VAB spaces.

TABLE VI
THE EFFECT OF THE KEY PARAMETER λ3 FOR IMAGE QUALITY

ENHANCEMENT ON RETINAL FUNDUS DATASET.

Method Value of λ3 PSNR↑ SSIM↑ IQAS↑
MSQNet 0.3 25.42 0.867 0.629
MSQNet 0.5 26.75 0.873 0.647
MSQNet 0.7 31.26 0.942 0.706
MSQNet 1.0 30.47 0.937 0.698
MSQNet 1.3 29.46 0.924 0.684
MSQNet 1.5 28.21 0.916 0.672

As shown in the table VI, λ3 directly influences the balance
between the contributions of the main branch and the auxiliary
branch during the training process. When λ3 takes small values
(e.g., λ3 = 0.3 or 0.5), the influence of the auxiliary branch is
limited, potentially leading to degraded pathological features
or incomplete removal of low-quality factors. This weakens
the guidance provided by the VAB color space for removing
specific low-quality factors and preserving pathological de-
tails. Consequently, quality enhancement performance metrics
such as PSNR, SSIM, and IQAS are relatively low. As λ3

increases (e.g., λ3 = 0.7 and 1.0), the contribution of the
auxiliary branch becomes more pronounced, enhancing feature
fusion across different color spaces and providing stronger
guidance to the main branch. This improvement is reflected
in the enhancement of all performance metrics. Under this
setting, the auxiliary branch effectively guides the main branch
in removing specific low-quality artifacts while simultaneously
preserving critical pathological details, resulting in optimal
image quality. However, when λ3 further increases (e.g.,
λ3 = 1.3 or 1.5), the performance exhibits a declining trend.
This may result from an overemphasis on the auxiliary branch,
which degraded the main branch’s ability to capture the unique
characteristics of RGB images (e.g., specific brightness and
color information in the RGB space). Consequently, the overall
feature fusion process becomes imbalanced, leading to reduced
enhancement effects and slight degradation in performance
metrics, such as PSNR and SSIM.

3) Ablation Studies on Different Color Spaces: The selec-
tion and construction of a color space are crucial factors for
low-quality medical image enhancement. To investigate the
effects of different color spaces on MSQNet, we experiment
with various color spaces to observe their effects on MSQNet’s
enhancement performance, as reported in Table VII. These
results reveal the following several interesting points:

TABLE VII
EFFECTS OF THE DIFFERENT COLOR SPACES FOR IMAGE QUALITY

ENHANCEMENT ON RETINAL FUNDUS DATASET.

Method Color Space PSNR↑ SSIM↑ IQAS↑
MSQNet only RGB 22.46 0.856 0.584
MSQNet RGB+HSV 25.46 0.878 0.642
MSQNet RGB+LAB 24.57 0.842 0.625
MSQNet RGB+V 26.42 0.893 0.651
MSQNet RGB+VAB 30.47 0.937 0.698

1) When considering the RGB+VAB color space, MSQNet
achieves remarkable quality enhancement performance, with
a PSNR of 30.47, an SSIM of 0.937, and an IQAS of 0.698.
These results verify the effectiveness of incorporating the VAB
color space for performance improvement over using only the
RGB color space, which yields a PSNR of 22.46, an SSIM of
0.856, and an IQAS of 0.584.
2) Compared with using only the RGB color space, incorporat-
ing an additional HSV or LAB color space enables MSQNet
to achieve varying degrees of performance improvement. With
RGB+HSV, MSQNet achieves a PSNR of 25.46, an SSIM of
0.878, and an IQAS of 0.642, whereas RGB+LAB results in
a PSNR of 24.57, an SSIM of 0.842, and an IQAS of 0.625.
The HSV and LAB color spaces can guide low-quality image
enhancement from different aspects. LAB can provide richer
color information for the main branch, which has a better
effect on the color balance of medical images. In contrast,
HSV supplements richer structural information for the main
branch, enabling MSQNet to effectively eliminate artifacts
and blurring in low-quality images and preserve fine-grained
details of lesions and anatomical structures.
3) RGB+V outperforms RGB+HSV by margins of 0.96 in
PSNR, 0.015 in SSIM, and 0.009 in IQAS. This suggests that
the V channel in the HSV color space contributes more to
image quality enhancement than the H and S channels do. The
V channel represents brightness information, which is crucial
for improving the overall clarity and contrast of low-quality
images, especially those with uneven illumination. In contrast,
the H and S channels do not play a positive role in enhancing
image quality.
4) MSQNet with RGB+V performs worse than MSQNet with
RGB+VAB dose, achieving a PSNR of 26.42, an SSIM of
0.893, and an IQAS of 0.651 compared with the RGB+VAB
results of 30.47, 0.937, and 0.698, respectively. The results
further indicate that the A and B channels are critical for
enhancing image quality, especially in color balancing for
low-quality images, as the performance gap between RGB+V
and RGB+VAB is still significant, with differences of 4.05 in
PSNR, 0.044 in SSIM, and 0.047 in IQAS.
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Fig. 7. Qualitative comparison of the enhancement results obtained by
MSQNet under different color spaces.

As shown in Figure 7, we also conduct a qualitative com-
parison and analysis of the enhancement results obtained by
the MSQNet framework under different color spaces. Figure 7
shows that, compared with a single color space, multiple color
spaces can assist the MSQNet framework in achieving superior
quality enhancement effects. Specifically, the combination of
the RGB and HSV color spaces achieves the best visual
results. The HSV color space can effectively assist MSQNet
in enhancing the details of lesions and anatomical structures
in low-quality fundus images. Furthermore, the combination
of RGB and HSV can also effectively enhance and optimize
the color information in low-quality images.

E. Applications

The primary objectives of medical image quality enhance-
ment methods are to facilitate downstream clinical tasks and
improve the reliability of clinical diagnosis. To evaluate the
effect of MSQNet, we employ it as a pre-processing step for
various downstream image analysis tasks, such as vessel seg-
mentation, skin lesion segmentation, and polyp segmentation.
For vessel segmentation, we utilize CE-Net [44] as the baseline
model, whereas UNet3+ [45] is used as the baseline for both
the skin lesion and polyp segmentation tasks.

1) Vessel Segmentation: To validate the effects of the
enhancement methods on the vessel segmentation task, we
train vessel segmentation models using the same CE-Net
architecture on both low-quality fundus images and enhanced
fundus images obtained via different enhancement methods.
The trained models are then evaluated on the testing set and
corresponding enhanced images. As shown in Figure 8, the top
row displays a low-quality fundus image and its corresponding
quality enhancement results obtained via comparable methods
and MSQNet. The middle and bottom rows illustrate the
heatmaps and segmentation results of the vessel segmentation
models, respectively. With the assistance of MSQNet, the
vessel segmentation model is able to identify more complete
and fine-grained vessel structures. Furthermore, the quanti-
tative vessel segmentation results are reported in the first
column of Table VIII. MSQNet achieves the highest DSC of

0.592 and IoU of 0.785, outperforming other enhancement
methods and demonstrating its effectiveness in improving
vessel segmentation performance.

2) Skin Lesion Segmentation: To evaluate the effects of
the enhancement methods on the skin lesion segmentation
task, we train skin lesion segmentation models using the same
UNet3+ architecture on both low-quality skin lesion images
and enhanced skin lesion images. The trained models are
then evaluated on the original low-quality testing set and
the enhanced testing sets. As shown in Figure 8 and the
second column of Table VIII, the lesion segmentation model
captures more specific lesion boundaries and achieves better
segmentation results for the enhanced images obtained by
MSQNet. Quantitatively, MSQNet yields the highest DSC
of 0.597 and IoU of 0.712, surpassing other enhancement
methods and showing its ability to enhance skin lesion images
for improved segmentation performance.

TABLE VIII
EFFECTS OF THE MSQNET FRAMEWORK ON MULTIPLE DOWNSTREAM

MEDICAL IMAGE ANALYSIS TASKS.

Vessel Seg. Skin lesion Seg. Polyp Seg.
Methods DSC ↑ IoU ↑ DSC ↑ IoU ↑ DSC ↑ IoU ↑
Low-quality image 0.483 0.678 0.462 0.573 0.634 0.712

SCR-Net [15] 0.564 0.760 0.576 0.692 0.723 0.796
PCE-Net [34] 0.556 0.748 0.558 0.662 0.703 0.774
ArcNet [42] 0.551 0.743 0.548 0.651 0.688 0.762
cGAN [43] 0.568 0.762 0.567 0.675 0.733 0.814
RFormer [14] 0.561 0.752 0.559 0.672 0.714 0.787

StillGAN [16] 0.562 0.758 0.563 0.677 0.718 0.792
CutGAN [30] 0.558 0.746 0.546 0.648 0.702 0.781
LED [17] 0.565 0.766 0.565 0.672 0.726 0.803
Cycle-CBAM [29] 0.553 0.747 0.552 0.653 0.694 0.769
I-SECRET [31] 0.573 0.764 0.587 0.702 0.728 0.805

MSQNet(Ours) 0.592 0.785 0.597 0.712 0.749 0.837

3) Polyp Segmentation: To demonstrate the benefit of the
enhancement methods for the polyp segmentation task, we
train polyp segmentation models using the same UNet3+ archi-
tecture on both low-quality endoscopy images and enhanced
endoscopy images. The trained models are then evaluated on
the low-quality endoscopy test images and the corresponding
enhanced images. As shown in Figure 8 and the third column
of Table VIII, MSQNet improves the quality of the endo-
scopic images by reducing blurring and uneven illumination.
Consequently, the large number of false positives produced
by the polyp segmentation model is alleviated, and the best
performance for the polyp segmentation task is achieved.
MSQNet (Ours) obtains the highest DSC of 0.749 and IoU
of 0.837, outperforming other enhancement methods and val-
idating its effectiveness in enhancing endoscopy images for
polyp segmentation.

VI. DISCUSSION AND LIMITATIONS

A. Discussion

Although medical image quality enhancement methods have
made remarkable progress in recent years, they do not fully
exploit all available information due to the limited number
of high-quality medical images and feature degradation. We
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Fig. 8. Visual comparison of vessel, skin lesion, and polyp segmentation results on low-quality images and enhanced images obtained via different enhancement
methods. The top row shows the low-quality images and their corresponding enhanced results. The middle and bottom rows display the heatmaps and
segmentation results of the segmentation models, respectively.

highlight three critical questions that have been largely over-
looked in the context of medical image quality enhancement,
and we hope that this study inspires further research in the
field of medical image enhancement.

1) How can we enhance the interpretability of the medical
image quality enhancement model?

The advantage of MSQNet is that it simultaneously en-
hances the quality of medical images while avoiding the
degradation of lesions and anatomical structures. Preserving
fine-grained lesions and anatomical structures is highly im-
portance for enhanced medical images because they provide
intuitive illustrations for diagnosis by radiologists. As shown
in Figure 9 (top row), despite the visual enhancement achieved
by training MSQNet using only the RGB color space, a
major limitation is that the network struggles to preserve
and highlight fine-grained structural and lesion details in the
deeper layers. As the network depth increases, the fine-grained
lesion and structural details in the feature maps become
progressively more degraded. This makes it challenging to
identify the precise pathological markers needed for diagnosis,
such as microaneurysms in fundus images and polyp borders in

endoscopic images. The previous quality enhancement models
do not provide interpretability for the enhanced results.

In contrast, as illustrated in Figure 9 (bottom row), when
MSQNet is trained jointly with both the RGB and VAB
color spaces, it is able to much more effectively preserve
and highlight anatomical structures and lesion features in the
feature maps, even in the deepest layers. Guided by P 2Trans,
MSQNet integrates relevant multi-scale features from the VAB
color space. Consequently, discriminative features such as
edges, textures, and color variations of key diagnostic markers
are retained and highlighted.

2) What is the relationship between image quality and image
analysis tasks?

To investigate the relationship between image quality and
image analysis tasks, as well as the effects of various en-
hancement methods on downstream model training, we train
segmentation models on enhanced images obtained via vari-
ous enhancement methods. The experimental results indicate
that higher image quality is beneficial for downstream tasks
by removing artifacts, unbalanced illumination, and other
interference while preserving lesion characteristics for low-
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Fig. 9. Visualization of feature maps from shallow to deep layers during MSQNet training, comparing the use of only the RGB color space (top row) versus
the RGB+VAB color spaces (bottom row). Training with RGB+VAB more effectively preserves and highlights fine-grained structural and lesion details across
all layers, providing enhanced feature interpretability for improved medical image analysis and diagnosis.

quality images. As shown in Figure 10, taking the skin lesion
segmentation task as an example, the enhanced image obtained
by MSQNet enables the segmentation model to converge faster
and achieve a lower loss during training. This result indicates
that high-quality data essentially facilitate the downstream
model’s training as well, such that the downstream model
realizes better segmentation performance on unseen images.

3) How can information from unpaired images be fully
leveraged?

The existing quality enhancement methods suffer from a
major limitation: the insufficient availability of paired images.
To address this issue, an increasing number of unsupervised
quality enhancement methods leverage unpaired images to im-
prove image quality. However, training enhancement methods
that are based on unpaired images may introduce undesirable
artifacts or distortions. In our study, we construct the VAB
color space of low-quality images to leverage information fully
from these unpaired images. As shown in Figure 11, compared
with the feature map of the RGB color space, the feature map

Fig. 10. Effects of various enhancement methods on the training of skin
lesion segmentation model.

of the VAB color space highlights more fine-grained details
and structures, such as the optic disc and blood vessels in
fundus images, which are essential for accurate diagnosis and
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Fig. 11. Comparison of low-quality RGB and VAB images (a, c) and their
corresponding feature maps (b, d). Compared with the RGB feature map (b),
the feature map of the VAB color space (d) captures more fine-grained details,
demonstrating the potential of the VAB color space to assist in enhancing RGB
medical images for improved diagnosis and analysis.

analysis.

B. Limitations

Although MSQNet demonstrates significant advantages in
improving the usability and diagnostic performance of low-
quality RGB medical images, it is still subject to the following
two limitations in practical applications.
1) Adaptability to specific types of medical images: MSQNet
demonstrates promising performance in enhancing low-quality
RGB medical images by integrating multiple color spaces,
such as RGB, LAB, and HSV. However, its applicability
may be constrained by the inherent properties of color space
representations. For other types of medical images, such as
X-ray, CT, and MRI, the performance and generalization of
MSQNet require further investigation due to their grayscale
or modality-specific characteristics. For example, X-ray, CT,
and MRI images exhibit notable differences in texture and
contrast compared to RGB medical images. In contrast, relying
solely on designed VAB color space and P 2Trans may not
adequately capture the pathological features in these grayscale
images.
2) MSQNet processes multiple color spaces in parallel, which
increases both the number of parameters and the computational
complexity compared to existing lightweight enhancement
methods. In resource-constrained scenarios, such as portable
medical devices or low-cost diagnostic equipment, the in-
creased parameter size and computational complexity may
hinder its practical applicability.

Considering that MSQNet still relies on the supervised
guidance of paired medical images and the aforementioned
limitations, future research will focus on the following direc-
tions:
1) Exploring unsupervised frameworks for medical image
quality enhancement: Given that MSQNet relies on paired
high- and low-quality training images, future research could
focus on developing unsupervised enhancement frameworks to
mitigate dependence on paired datasets. Techniques such as

adversarial learning (e.g., GANs, diffusion models) and self-
supervised learning can be explored, leveraging the collabora-
tive optimization process between generators and discrimina-
tors to enhance medical image quality.
2) Extending quality enhancement to multi-modal medical im-
ages: MSQNet is primarily designed for optimizing the quality
of RGB medical images. However, other imaging modalities
(e.g., X-ray, CT, MRI, OCT) are equally critical for clinical
diagnosis. Future research should focus on developing a more
universal enhancement framework that is applicable across
various imaging modalities, thereby improving adaptability
and effectiveness in diverse clinical scenarios.
3) Development of lightweight enhancement frameworks: To
reduce the model parameters of MSQNet, future research
could focus on developing lightweight variants specifically
tailored for resource-constrained scenarios. By exploring tech-
niques such as network pruning and knowledge distillation,
the MSQNet could be further optimized to achieve a trade-off
between performance and computational efficiency.

VII. CONCLUSION

In this study, we propose MSQNet, a novel framework
designed for enhancing low-quality medical images by lever-
aging multi-color spaces. By combining the advantages of the
HSV and LAB color spaces, we introduce the VAB color
space, which broadens the scope of traditional image enhance-
ment techniques. Considering the potential risk of degrading
pathological features during the quality enhancement process,
we propose the pathology-preserving transformer (P 2Trans).
This component extracts and integrates multi-level global
information from the VAB color space, effectively guiding
the enhancement of RGB medical images while preserving
essential pathological features. P 2Trans ensures that image
quality enhancement aligns with the clinical diagnostic value
of the medical images. The experimental results demonstrate
the robustness of our method, which produces high-quality
enhancement results while preserving lesions and structural
integrity at a state-of-the-art level. Moreover, our method
positively effects various downstream tasks. With respect to
performance improvements in these tasks, our method exhibits
strong interpretability, enabling us to explain how quality
enhancement contributes to task performance.
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