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Abstract. State-of-the-art knowledge distillation (KD) methods aim to
capture the underlying information within the teacher and explore effec-
tive strategies for knowledge transfer. However, due to challenges such
as blurriness, noise, and low contrast inherent in medical images, the
teacher’s predictions (soft labels) may also include false information, thus
potentially misguiding the student’s learning process. Addressing this, we
pioneer a novel correction-based KD approach (PLC-KD) and introduce
two assistants for perceiving and correcting the false soft labels. More
specifically, the false-pixel-aware assistant targets global error correction,
while the boundary-aware assistant focuses on lesion boundary errors.
Additionally, a similarity-based correction scheme is designed to force-
fully rectify the remaining hard false pixels. Through this collaborative
effort, the teacher team (comprising a teacher and two assistants) pro-
gressively generates more accurate soft labels, ensuring the “all-correct”
final soft labels for student guidance during KD. Extensive experimen-
tal results demonstrate that the proposed PLC-KD framework attains
superior performance to state-of-the-art methods on three challenging
medical segmentation tasks.

Keywords: Knowledge Distillation · Medical Image Segmentation · La-
bel Correction.

1 Introduction

Knowledge distillation (KD) [3], as a popular model compression technique, has
been widely applied in various fields of deep learning. This traditional paradigm
concentrates on transferring knowledge from a heavy model (teacher) to a light
one (student), which aims to obtain a student closer to the teacher but with fewer
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parameters. Existing KD methods focus on capturing underlying knowledge from
the teacher and devising effective transfer strategies, e.g., response-based [3,9,16],
feature-based [7,15,6], and relation-based [6,11,4,13,14] approaches. However, in
challenging tasks such as medical image segmentation, the sophisticated teacher
network inevitably produces false predictions, thereby potentially misleading the
student during the KD process. Intuitively, correcting teachers’ false predictions
(soft labels) can enhance student learning. Unfortunately, none of the existing
KD works has delved into this aspect. A straightforward strategy is to forcibly
correct these false predictions to fixed correct values, but it leads to a sub-optimal
model since it ignores the reasonable confidence of soft labels which is crucial for
knowledge transfer during KD. In this work, we offer a principled investigation
of how the correction of soft labels can be applied in KD. After a thorough
analysis, we pinpoint three factors contributing to the teacher’s unsatisfactory
performance, ranging from easy to difficult: 1) global false pixels produced by
the teacher network, 2) blur boundary pixels due to the low contrast between
lesions/tissues and the background, and 3) hard pixels that are difficult for
segmentation models to discern. Taking these into consideration, three questions
naturally arise: 1) how to encourage the teacher network to concentrate on false-
predicted pixels, 2) how to enhance teachers’ awareness of lesion boundaries,
thereby averting misguided boundary guidance, and 3) how to correct hard pixels
that can not be corrected easily, ensuring the “all-correct” soft labels?

To overcome these challenges, we propose aProgressive soft LabelCorrection
Knowledge Distillation framework, termed PLC-KD, for medical image segmen-
tation. In particular, the PLC-KD framework encompasses three components
for enhancing soft labels: 1) the False-pixel Image Generation (FIG) module
for generating synthetic images utilizing pixels mispredicted by the teacher net-
work, 2) the Boundary Transform (BT) operation for generating images with
easily discernible lesion boundaries, and 3) the Similarity-based Correction (SC)
scheme for forcibly correcting hard false pixels. To this end, a teacher team is
established, comprising a teacher with two assistants. Firstly, the teacher net-
work generates an initial probability map (soft label), serving as the foundation
for guiding the student. Subsequently, the false-pixel-aware assistant, trained
on the FIG-generated false-pixel images, aims to global error correction, while
the boundary-aware assistant, trained on the BT-generated boundary trans-
form images, further refines segmentation boundary details. The entire teacher
team collaborates to generate as accurate soft labels as possible. Finally, the SC
scheme is applied to forcefully correct the remaining hard false pixels. Following
such corrections, the obtained “all-correct” soft labels are available to guide the
student’s learning, thus leading to better students.

To the best of our knowledge, this is the first work to rethink knowledge
distillation from the perspective of soft label correction. In summary, our con-
tributions can be outlined as follows. (1) We provide an insightful view to study
vanilla KD by correcting the teacher’s soft labels and propose a novel PLC-KD
framework to correct the teacher’s soft labels progressively and hence promote
better students. (2) We establish a collaborative teacher team to generate soft
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labels for student learning. The two assistants, trained specifically with gener-
ated false-pixel and boundary transform images, aim to enhance the capabilities
in both global error correction and boundary refinement, which ultimately leads
to accurate soft labels. (3) Our PLC-KD framework has undergone rigorous
quantitative and qualitative evaluations on three medical image segmentation
benchmark datasets. The results prove that PLC-KD significantly outperforms
the previous best methods.

2 Methodology

The proposed PLC-KD framework comprises a teacher team and a student
network S. The teacher team includes a teacher network T and two assistants:
a false-pixel-aware assistant network TAf and a boundary-aware assistant net-
work TAb, where TAf and TAb share the same architecture as T . TAf is trained
with images generated by the FIG module, endowing it with global error cor-
rection capabilities and complementing the mistakes made by T . While TAb

is trained with images generated by the BT operation, which concentrates on
the perception of segmentation boundaries. The entire teacher team collaborates
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to progressively generate more accurate soft labels. Under this framework, the
pipeline of knowledge distillation is composed of two major stages (see Fig 1).
First, we train the teacher networks T and assistants: TAf and TAb. Next, we
utilize the pre-trained teacher team to guide the learning process of the student
network. Notably, although both the “all-correct” ultimate probability map Y U

and the ground-truth mask Y contain fully accurate labels, Y U provides soft
labels that can transfer extra knowledge to the student.

2.1 PLC-KD Pipline

Stage 1: Train the teacher team. Initially, the teacher network T is directly
trained using ground-truth mask Y . Subsequently, the false-pixel image genera-
tion module is employed to construct false-pixel images and their corresponding
masks based on the false-predicted pixels by T , which are then utilized to train
the false-pixel-aware assistant network TAf . Notably, the FIG module comprises
two components, “False Pixel Queue Generation” and “False Pixel Image Con-
struction”, both of which are performed sequentially during training. Finally,
the boundary-aware assistant network TAb is trained with boundary transform
generated images.
Stage 2: Train the student network. The input image X first goes through
the teacher network T to obtain the initial probability map Y I . Assistants TAf ,
TAb, and the SC scheme, then progressively refine this probability map to ob-
tain the “all-correct” ultimate probability map Y U , which serves as the guidance
for the student network S. Note that the designed SC scheme computes the co-
sine similarity between the misclassified pixels and correctly predicted pixels.
Then, the value of the most similar and correct pixel from Y B is assigned to the
corresponding false pixel to obtain the ultimate probability map Y U .

2.2 False-pixel Image Generation (FIG)

To comprehensively rectify false predictions for the teacher network, we propose
the false-pixel image generation module, which involves “False Pixel Queue Gen-
eration” and “False Pixel Image Construction”, as illustrated in Fig. 1. Notably,
only the former operation is performed during the initial training phase until
the false pixel queues are filled. Subsequently, both operations are alternately
performed.

False Pixel Queue Generation. Given an input image X ∈ RH×W×C , the
pre-trained teacher network T produces a segmentation mask Y T . Afterward,
false predicted pixels are filtered out by comparing Y T with the corresponding
ground-truth mask Y , resulting in the false pixel mask F . The procedure can be
expressed as F = fT (X; θT ) F○Y , where fT (·, θT ) represents the teacher network
and its parameters, while F○ denotes the filtering of false pixels. Subsequently,
pixels corresponding to F in the original input image X are selected and divided
into false negative pixels P+ = {p+1 , p

+
2 , ..., p

+
m} and false positive pixels P− =
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{p−1 , p
−
2 , ..., p

−
n }. Finally, k pixels are randomly selected from P+ and P− and

added to the corresponding false negative pixel queue QP+ ∈ RM×D and false
positive pixel queue QP− ∈ RN×D, respectively, where M and N represent the
queue lengths, and D = 3 denotes the three RGB channels.

False Pixel Image Construction. Next, we elaborate on false pixel image con-
struction. To enhance the performance for false predicted pixels in the teacher
network T (i.e., pixels in queues QP+

and QP−
), we sample positive and neg-

ative pixels from QP+

and QP−
, respectively, for constructing synthetic im-

ages and their corresponding ground truth masks. Specifically, to simulate real
medical images, we initialize a blank image xr

i ∈ RH×W×C , and randomly se-
lect a ground-truth lesion mask as the lesion region with its pixel values ob-
tained randomly from QP+

. Conversely, other regions serve as background re-
gions, with pixel values randomly obtained from QP−

. In this way, we recon-
struct images Xr = {xr

1, x
r
2, ..., x

r
b} and their corresponding ground truth masks

Y r = {yr1, yr2, ..., yrb}, where b denotes the batch size. Subsequently, we employ
the false-pixel-aware assistant network TAf to learn from these reconstructed
images.

2.3 Boundary Transform (BT) Operation

The false-pixel-aware assistant network TAf effectively corrects errors produced
by T but overlooks the error-prone segmentation boundaries. To further enhance
the boundary perception of the teacher’s soft label, we propose a simple plug-
and-play boundary transform operation. As shown in Fig. 2(f), the grayscale
histogram distribution in the inner region exhibits significant discrepancy from
the background region, while the distribution of the boundary region is closer to
the background region, with potential overlap. Besides, convolution operations
can capture local patterns due to their inherent kernel design [1]. Hence, the pix-
els near the lesion boundary are more likely to be misclassified as background
regions. Inspired by this, we conjecture that swapping pixels near the lesion
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boundary with those from the lesion interior can promote the model’s ability to
perceive boundary pixels. In this way, for a given image X, we first detect the
boundaries of the ground truth lesion region (see Fig. 2(b)). To further identify
the boundary region, a dilation operation is applied to expand δ pixels from the
boundaries towards the interior of the lesion. Therefore, the remaining region
within the lesion is considered the inner region, as depicted in Fig. 2(c). To fur-
ther enhance the prediction accuracy of boundary pixels, we randomly sample an
equal number of pixels from the boundary and inner regions and exchange their
pixel values to create a transformed image X ′ for training the boundary-aware
assistant network TAb. Following this operation, the boundary pixels within
the inner region exhibit a lower segmentation difficulty compared to the lesion
boundary because they are surrounded by homogeneous lesion regions. As a re-
sult, the well-trained assistant network TAb aims at correcting boundary errors,
leading to better segmentation results (Fig. 2(g, h))). Finally, it is employed to
correct boundary errors in YF and generate the boundary-aware probability map
YB (Fig. 1).

2.4 Overall Framework

Overall, given the training dataset D = {(Xi, Yi)
N
i=1}, where Xi and Yi denote

the ith image and the corresponding ground truth mask, and N is the number
of samples. The segmentation losses for the teacher team (corresponding to T ,

TAf , and TAb) are formulated as LT = 1
N

∑N
i=1 LSeg(fT (Xi, θT ), Yi);LF =

1
M

∑M
i=1 LSeg(ff (X

r
i , θf ), Y

r
i );LB = 1

N

∑N
i=1 LSeg(fb(X

′
i, θb), Yi), where M is

the number of reconstructed images and LSeg can be any supervised semantic
segmentation loss. Note that we chose the combination of cross entropy loss and
dice loss in our experiments, as it has a compelling performance in medical image
segmentation. Meanwhile, the student loss function is expressed as:

LS =
1

N

N∑
i=1

{LSeg(fS(Xi, θS), Yi) + λLKD(fS(Xi, θS), Y
U
i )}, (1)

where LKD represents the distillation loss, and we adopt the KL divergence
paradigm. The parameter λ is a regularization parameter to balance the segmen-
tation and KD losses. It is worth noting that the teacher networks are discarded
in the inference phase after training.

3 Experiments

Dataset and Implementation Details. We conduct extensive experiments
on three different medical image segmentation tasks to evaluate the proposed
method. (1) For skin lesion segmentation, we validate our method on the ISIC-
2018 dataset [10], which includes 2,694 images for training and 1,000 images for
testing with their corresponding annotations. (2) For polyp segmentation, we
evaluate the proposed method on the public CVC-EndoSceneStill dataset [12],



Progressively Correcting Soft Labels for Knowledge Distillation 7

Table 1. Comparison with state-of-the-art KD methods on three datasets, highlighting
the best and second-best scores with bold and underlined, respectively.

ISIC CVC-EndoSceneStill IDRiD-OD

Dice(%)↑ IoU(%)↑ Dice(%)↑ IoU(%)↑ Dice(%)↑ IoU(%)↑
Teacher: TransUNet [2] 88.99±0.24 81.52±0.42 79.53±3.27 71.64±3.42 90.97±3.07 84.82±4.01

Student: UNet [8] 86.40±0.51 77.92±0.70 40.75±5.58 29.07±4.54 88.27±2.12 82.09±2.25

Methods Response Feature Relation

KD [3] ✓ ✗ ✗ 86.47±0.43 77.97±0.64 63.95±2.17 55.01±2.46 88.31±3.52 81.30±4.95
FitNet [7] ✓ ✓ ✗ 86.96±0.19 78.70±0.21 65.76±3.31 56.20±3.16 88.44±2.57 81.66±3.47
AT [15] ✓ ✓ ✗ 87.02±0.35 78.85±0.54 67.79±2.71 58.79±2.30 89.14±2.69 82.80±3.31

EMKD [6] ✓ ✓ ✓ 87.11±0.51 78.95±0.75 65.15±4.03 55.95±4.27 90.07±2.25 83.76±3.19
CWD [9] ✓ ✗ ✗ 87.09±0.46 78.90±0.67 68.87±2.92 60.15±3.54 89.61±2.29 82.86±3.47
SPKD [11] ✓ ✗ ✓ 86.58±0.44 78.09±0.65 63.22±4.16 53.73±3.70 88.86±3.07 82.27±4.46
PA [4] ✓ ✗ ✓ 84.33±0.90 75.25±1.14 62.81±3.48 51.39±2.05 88.42±1.16 82.17±3.55

IFVD [13] ✓ ✗ ✓ 86.71±0.44 78.32±0.70 65.23±1.52 56.14±1.57 87.81±1.26 81.11±1.02
CIRKD [14] ✓ ✗ ✓ 86.96±0.42 78.72±0.68 66.17±3.15 56.73±3.72 89.29±1.74 82.49±2.33
DKD [16] ✓ ✗ ✗ 87.14±0.18 79.02±0.24 68.16±3.85 59.01±3.63 89.36±2.36 82.87±3.38

PLC-KD(Ours) ✓ ✗ ✗ 88.60±0.51 81.63±0.60 71.22±1.51 62.15±1.88 92.13±0.58 86.56±0.82

Original Image GT  PLC-KD 
(Ours)

AT CIRKD CWD DKD EMKD IFVD SPKDPAFitNet

Fig. 3. Qualitative examples on three datasets.

containing 612 colonoscopy images. The dataset is split into 547 training frames,
183 validation frames, and 182 testing frames. (3) For Optic Disk segmentation,
we evaluate the proposed method on the IDRiD dataset [5], which contains 81
fundus images with pixel-level annotations. The partition of the training set and
testing set has been fixed, i.e., 54 images for training and the rest 27 images for
testing. More training details are in the supplementary material.

Comparison with the State-of-the-Art Methods. We provide qualitative
and quantitative comparisons with state-of-the-art KD methods on the well-
performed network TranUNet [2] (teacher) and the common medical image seg-
mentation network UNet [8] (student). Contenders encompass response-based
methods [3,9,16], feature-based methods [7,15,6], and relation-based methods
[6,11,4,13,14]. The first two categories aim to minimize the divergence between
the teacher and student’s output logits and intermediate feature maps, respec-
tively. Conversely, the last category aims to capture implicit knowledge embed-
ded in the teacher network. Our method belongs to the simplest first category
without requiring complex intermediate feature map knowledge or relational
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Table 2. Ablation Study of the different component combinations on three datasets.

Components ISIC EndoScene IDRiD-OD
Models

TAf TAb SC Dice(%)↑ IoU(%)↑ Dice(%)↑ IoU(%)↑ Dice(%)↑ IoU(%)↑
V anillaKD ✗ ✗ ✗ 86.47±0.43 77.97±0.64 63.95±2.17 55.01±2.46 88.31±3.52 81.30±4.95
T + SC ✗ ✗ ✓ 87.01±0.47 78.85±0.65 65.46±4.20 54.74±4.82 89.06±1.29 82.20±1.70
T + TAf ✓ ✗ ✗ 87.87±0.13 80.32±0.13 69.82±1.15 59.97±1.79 89.78±1.17 83.11±1.89
T + TAb ✗ ✓ ✗ 87.93±0.35 80.43±0.58 70.19±1.67 60.97±2.16 90.22±1.08 83.68±1.22

T + TAf+TAb ✓ ✓ ✗ 88.47±0.37 81.48±0.79 70.86±1.24 61.88±1.41 91.63±1.34 85.16±1.70
PLC-KD ✓ ✓ ✓ 88.60±0.51 81.63±0.60 71.22±1.51 62.15±1.88 92.13±0.58 86.56±0.82

Ground Truth

Ground Truth Predicted Segmentation

Input Image

Correcting False Negative Pixels
Correcting False Positive Pixels

Vanilla KD PLC-KDf
T TA

Case 1

Case 2

f b
T TA TA 

Fig. 4. The visualization of student segmentation results with progressive correction
of soft labels, where the models correspond to those in Table 2. Case 1: correcting false
negative pixels; Case 2: correcting false positive pixels.

knowledge. As reported in Tabel 1, PLC-KD substantially outperforms all pre-
vious methods and sets new state-of-the-art for both the Dice and IoU on three
datasets. Moreover, as shown in Fig. 3, our method generates more accurate re-
sults by recovering finer segmentation details. These results imply that ensuring
the correctness of soft labels can provide more precise segmentation knowledge,
thereby enhancing the student’s lesion perception.

Ablation Study. We conduct an ablation study in terms of soft label cor-
rection components. Tabel 2 reports the performance improvements over the
baseline. Initially, we confirm that exclusively enforcing corrections to soft la-
bels (T + SC) fails to achieve satisfactory performance due to the inherent lack
of reasonable confidence in its generation of soft labels. It shows a trend that
the segmentation performance improves when the components, including the
assistant networks TAf , TAb, and SC scheme are incorporated into the base-
line, and again confirms the necessity of the “all-correct” soft labels. Taking the
ISIC dataset as an example, the incorporation of TAf network (T + TAf ) re-
sults in an improvement of 1.40% and 2.35% in terms of Dice and IoU, which
demonstrates the contribution of false-pixel-aware network correction. Building
upon this, the incorporation of TAb network (T + TAf+TAb) further improves
performance by 0.6% and 1.16%, indicating the effectiveness of lesion boundary
correction in enhancing the student network. Ultimately, the SC scheme boosts
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performance to 88.60 in Dice and 81.63 in IoU. Moreover, the visualization effect
in Fig. 4 further demonstrates the efficacy in correcting false negative and false
positive pixels with progressive correction of soft labels. Additionally, similar
performance improvements are observed across other datasets, underscoring the
effectiveness and complementarity of each component for soft label correction.

4 Conclusion

We present a novel viewpoint to correct the false soft labels for knowledge distil-
lation in medical image segmentation. Our main idea lies in relearning synthetic
images produced by teacher errors and correcting them progressively, thus ensur-
ing the transfer of “all-correct” knowledge to the student. Extensive experiments
demonstrate the effectiveness of this idea and show that the proposed PLC-KD
can achieve state-of-the-art performance. We hope this paper will contribute to
future correction-based knowledge distillation research.
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