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Abstract. 3D medical image segmentation is critical for clinical diagno-
sis and treatment planning. Recently, with the powerful generalization,
the foundational segmentation model SAM is widely used in medical im-
ages. However, the existing SAM variants still have many limitations in-
cluding lack of 3D-aware ability and automatic prompts. To address these
limitations, we present a novel SAM-based segmentation framework in
3D medical images, namely 3D-SAutoMed. We respectively propose the
Inter- and Intra-slice Attention and Historical slice Information Sharing
strategy to share local and global information, so as to enable SAM to be
3D-aware. Meanwhile, we propose a Box Prompt Generator to automat-
ically generate prompt embedding, leading full automation in SAM. Our
results demonstrate that 3D-SAutoMed outperforms advanced universal
methods and SAM variants on both metrics and across BTCV, CHAOS
and SegTHOR datasets. Particularly, a large improvement of HD score
is achieved, e.g. 44% and 20.7% improvement compared with the best
result in the other SAM variants on the BTCV and SegTHOR dataset,
respectively.
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1 Introduction

The Segment Anything Model (SAM) [12] is a foundational segmentation model
trained on over 11 million images and 1 billion masks, aiming to segment any
object in any image. By employing prompt-driven strategy, SAM demonstrates
outstanding zero-shot segmentation performance on unseen datasets and tasks.
In medical image segmentation, a limitation is the lack of sufficient data for train-
ing models to learn robust representations. Recent studies [10, 8] have shown that
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directly applying SAM to medical image segmentation tasks does not yield good
performance. This is attributed to the fact that the majority of SAM’s training
data consists of RGB-based natural images, which exhibit a significant discrep-
ancy compared to medical images (typically MRI, CT scans, etc.). To solve it,
some studies [21, 22, 17] attempted to finetune SAM on medical images, achiev-
ing remarkable results. Despite these advancements, there are still two significant
challenges making the extension of SAM to 3D medical image segmentation tasks
potentially problematic.

SAM lacks 3D spatial information perception. SAM is a segmentation
model designed for 2D images. However, most medical image data are typically
3D. Most existing improvements based on SAM [21, 22, 17] do not consider adap-
tation for 3D medical image segmentation, thereby overlooking the 3D spatial
information inherent in volume. These methods inevitably limit the accuracy of
segmentation and affect the continuity of 3D segmentation results.

SAM requires prompts in each slice when segmenting 3D images.
SAM is a prompt-based interactive segmentation model. However, providing
prompts for each slice in the entire volume is labor-intensive. In order to reduce
manual participation, [15, 18] generate the current slice’s box prompt by using
an extra detection model or directly using previous slice prediction. However, the
quality of the prompts generated by the above methods is coarse and depends
on the accuracy of the segmentation model.

To address the aforementioned challenges, we propose a novel segmenta-
tion framework based on SAM for 3D medical image segmentation, namely
3D-SAutoMed. 3D-SAutoMed aims to leverage the pre-trained weights of the
foundational model SAM and adapt it to automatic 3D medical image segmen-
tation scenarios. Firstly, we apply the LoRA [9] technique in the encoder to
learn medical image-specific feature representations during finetuning. Simulta-
neously, to leverage 3D spatial information, we introduce inter- and intra-slice
attention after the encoder to facilitate feature interaction between adjacent
slices, enabling local 3D-aware. Meanwhile, to better leverage the global infor-
mation inherent in the entire volume, we propose a Historical slice Information
Sharing (HIS) strategy. In this strategy, we store global information and contin-
uously reuse and update it during the iterative segmentation process to achieve
global 3D-aware. Second, we propose a box prompt generator to automatically
generate box prompts, motivated by DETR-based methods [2, 20, 16]. We use the
bounding box obtained from the previous slice segmentation result to initialize
the anchor query of the generator, and predict the target location to obtain the
box prompt embedding for the current slice. At the same time, we introduce se-
mantic embedding into the box prompt generator to enhance the role of prompts
in semantic segmentation tasks. Our main contributions can be summarized as
follows:

– Enable SAM to be 3D-aware. We introduce Inter- and Intra-slice Atten-
tion and Historical slice Information Sharing strategy to share information
from the local and global perspectives, respectively.
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Fig. 1. The overall segmentation pipeline of 3D-SAutoMed for 3D medical image.

– Enable SAM to generate prompt automatically. We propose a Box
Prompt Generator to automatically generate prompt embedding, leading to
fully automatic segmentation. In addition, by replacing the segmentation
head and introducing semantic embedding in Box Prompt Generator, we
enable SAM to automatically perform semantic segmentation with adaptive
box prompts, eliminating the requirement for manual prompts.

– We conducted extensive experiments on multiple datasets, demonstrating
that our 3D-SAutoMed can achieve remarkable performance in 3D medical
image segmentation. Particularly, we found that box prompts effectively en-
hance the model in segmenting the boundary of the target, leading to a 44%
and 20.7% HD improvement compared to the previous best results on BTCV
and SegTHOR dataset.

2 Method

2.1 overview of 3D-SAutoMed

The overall segmentation pipeline of 3D-SAutoMed for 3D medical images is
shown in Fig. 1, a slice-based iterative segmentation framework. In the iterative
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segmentation, we start with the middle slice of the volume and perform itera-
tive segmentation to both ends in parallel. Compared with other segmentation
methods treating each slice independently, our highlight is that we continuously
transmit the information of historical slices in the iterative process, leading to
global 3D-aware. The overview of 3D-SAutoMed in t slice segmentation includes
three stages. In the spatial-temporal representation learning stage, we
first utilize the encoder of SAM to extract feature representation of the current
t and adjacent slices, and we apply LoRA technique in encoder to reduce the
discrepancy between medical and neural image during finetuning. To capture
the 3D spatial information, we introduce Inter- and Intra-slice Attention and
HIS strategy. The former is responsible for sharing local information of adjacent
slices, and the latter focuses on sharing global information in the entire volume.
In the box prompt generation stage, we propose a Box Prompt Generator
to automatically generate prompt embedding for guiding semantic segmentation,
motivated by DAB-DETR [16]. With the anchor query initialized by the previ-
ous slice segmentation prediction, the generator generates prompt embedding of
current slice via predicting the target location. In the segmentation stage, we
extend the segmentation head of SAM’s decoder for adapting semantic segmen-
tation. Moreover, we introduce semantic embedding in Box Prompt Generator
to enhance the role of the prompt in the semantic segmentation scene. We now
delve into the details of each part.

2.2 3D Slices Information Sharing

Some previous studies [5, 7] have demonstrated that utilizing 3D spatial infor-
mation can effectively enhance the segmentation performance of medical images.
In order to transform the coarse-grained output of the 2D SAM’s encoder into a
richer and fine-grained spatial-temporal feature space, we incorporate the Inter-
and Intra-slice Attention and HIS strategy.

Local information sharing via Inter- and Intra-slice Attention. Di-
rectly Considering all slices to capture the spatial information of the entire
volume is prohibitively expensive. Therefore, we choose three adjacent slices
{xt−1, xt, xt+1} to model the local 3D spatial information. Inter- and Intra-slice
Attention modules individually facilitate spatial information interaction between
and within slices through Inter-slice Attention and Intra-slice Attention.

zt2 = Intra-SA(zt1) + zt1, zt1 = Inter-SA([f t−1, f t, f t+1]) + f t (1)

zt = MLP(zt2) + zt2 (2)

where f t denotes the image encoding feature of the t slice obtained by SAM
encoder. Specifically, both Inter-SA and Intra-SA are performed by multi-head
self-attention [19]. As shown in Fig. 1, Intra-SA focuses on all features in the
current slice (colored in red), while Inter-SA on matching features with the same
location in adjacent slices (colored in yellow).

Global information sharing via HIS. Local 3D spatial features can be
captured by combining adjacent slices [3, 6], leading to a better segmentation
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performance. However, these methods overlook the beneficial information from
other slices in volume, as they treat segmentation of each slice independently. The
main intuition of using all slices in volume is to capture the inter-slice continuity
of the organ as a solid object. As shown in Fig. 1, we continuously and recursively
transfer the historical slice information to promote global information sharing in
the process of iterative segmentation, which is realized by the Historical slice In-
formation Sharing (HIS) strategy. We first define a historical information token
tokhis ∈ RK×C for storing the information of historical slices generated by pre-
vious segmentation. tokhis is concatenated with the output token and then fed
into the SAM decoder for interaction. After two-way cross-attention calculations
in the SAM decoder, the current t slice image feature is updated with the histor-
ical slice information, and the historical information token is updated with the
current slice image feature. During the training phase, we conducted iterative
training. Specifically, when training t slice, we first select the previous n (random
from 1-3) slices for iterative inference to obtain the tokhis of t slice. Furthermore,
considering that historical information features might contain redundancy and
noise, we add an information filter at the end to filter out irrelevant information.
This process can be represented as follows:

maskt, tok
{0,...,t}
his = SAM-Decoder

(
zt, cat

(
tok

{0,...,t−1}
his , tokout

) )
(3)

where zt and maskt denote the encoding feature and the segmentation result
of t slice, respectively. tok{0,...,t}his and tokout represent the historical information
token of {0, ..., t} slice and the output token, respectively. The filter consists of
MLP and Normalization.

2.3 Box Prompt Generator

The role of prompt in enhancing the segmentation performance of SAM is un-
deniable. To achieve full automation, we propose a Box Prompt Generator to
automatically generate the prompt embedding for each segmentation step, as
shown in Fig. 1. We primarily utilize box prompts. Differing from the original
SAM, we allocate a box prompt token for each category, to make our SAM
adapt to multi-class semantic segmentation. Following the principle of continu-
ity in adjacent slices in 3D images, we utilize the bounding box obtained from
the previous segmentation result to initialize the generator’s object query, i.e.,
anchor query. Since there is no previous slicing result to initialize the query at
t=0, we additionally define a learnable default query to make the initial pre-
diction. Subsequently, the prompt embedding for the current slice is generated
through a cross-attention based Transformer. In addition, we introduce seman-
tic embedding into the box prompt generator to enhance the role of prompts in
multi-class semantic segmentation. The semantic embedding is intended to allow
each query to perceive the category for which it is responsible. Specifically, we
add a corresponding learnable semantic token for each query separately. These
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semantic tokens are randomly initialized and optimized during training.

SeQanc = SeEmbed (Qanc) , Qanc =

{
init (bboxpre) t > 0
default query t = 0

(4)

Epmt = Transformer (SeQanc, K, V ) (5)

where bboxpre and Qanc denote the bounding box of previous slice result and
anchor query, respectively. SeQanc represents the semantic anchor query. K, V
denote the Key and Value obtained by image encoding feature. Epmt represents
the box prompt embedding. To our knowledge, this is the first SAM-based multi-
class semantic segmentation work that does not discard prompting.

3 Experiments and Results

3.1 Datasets and Evaluation Metric

Datasets. In this study, we utilized the BTCV [14], CHAOS [11], and SegTHOR [13]
datasets to validate the performance of our method. For the BTCV dataset, it
includes 30 cases in CT modality, with each volume containing 85-198 slices.
The CHAOS and SegTHOR dataset contain 20 MR volumes and 40 CT scans,
respectively. All datasets were evaluated using 5-fold cross-validation.

Evaluation Metric. We employed the widely used Dice Similarity Coef-
ficient (DSC) and Hausdorff Distances (HD) as evaluation metrics. The DSC
directly reflects the quality of semantic segmentation, and HD focuses on the
boundary details of the predicted masks.

3.2 Implementation Details

We implement our method in PyTorch framework with an NVIDIA RTX A6000
GPU. We selected the SAM-b as our baseline model for development in this
study. In training phase, we use the hybrid segmentation loss consists of cross-
entropy loss and Dice loss. We train our model using AdamW optimizer with
learning rate=0.0001, weight decay=0.0001, and batch size=8. Code is available
at https://github.com/BossZard/AutoSAM25D.

3.3 Results

Quantitative and qualitative results. Our method was compared with ad-
vanced universal medical image segmentation methods (TransUNet [4] and Swi-
nUNet [1]) and other SAM-based methods (SAM [12], SAMed [22], MA-SAM [3],
and Slide-SAM [18]). Table 1 and 2 show the results of comparative segmentation
methods on the BTCV and CHAOS datasets, respectively. Our method achieves
the best average DSC and HD score on both datasets. These results quantita-
tively demonstrate the superiority of our method. Notably, due to the guidance
of the adaptive prompts, our method achieves significant improvements in some
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Table 1. Performance comparison of existing methods on the BTCV dataset. Nint

represents the number of interactions.

SAM variants Methods DSC Avg.
Prompt Nint 3D-aware Spleen R. Kid L. Kid Gall. Liver Stom. Aorta Panc. DSC↑ HD↓
Point N ✗ SAM 69.73 67.33 71.13 33.37 73.54 76.43 51.49 41.13 60.51 14.60

✗ 0 ✗ SAMed 93.54 92.76 93.58 53.01 94.88 84.32 85.10 74.36 83.94 9.46
✗ 0 Local MA-SAM 96.13 94.09 94.96 78.07 96.46 85.14 88.27 77.30 88.80 5.78

BBox 1 Local Slide-SAM 96.20 93.96 94.79 78.44 96.46 86.87 87.31 78.78 89.10 5.40
BBox 0 Local&Global Ours 95.16 93.97 94.08 80.78 95.93 90.54 91.23 79.05 90.09 3.00

Universal methods TransUNet 95.21 93.58 94.12 77.30 96.23 71.91 84.83 75.36 86.07 5.36
SwinUNet 96.08 92.37 93.2 76.65 96.18 84.36 87.35 79.37 88.19 7.84

Table 2. Performance comparison of existing methods on the CHAOS dataset.

Methods DSC Avg.
R. Kid L. Kid Liver Spleen DSC↑ HD↓

TransUNet 90.72 89.84 83.25 85.31 87.28 7.89
SwinUNet 92.48 92.15 87.14 86.82 89.64 4.72
SAMed 88.27 88.64 86.38 86.73 87.50 5.23

MA-SAM 90.52 91.21 88.20 89.31 89.81 4.47
Slide-SAM 91.89 90.98 88.42 90.76 90.51 5.16

Ours 91.27 91.19 90.12 91.82 91.10 4.26

organs that are relatively difficult to segment on the BTCV dataset, such as
the Gallbladder and Stomach. The zero-shot segmentation results of the orig-
inal SAM still have a significant gap compared to other sophisticated models.
Moreover, compared to other SAM variants, our method achieves remarkable
performance under the advantages of fully automatic and semantic-aware. From
case 1 in Fig. 2, our method and Slide-SAM show the advantage of the prior
prompts. However, the hard prompt of Slide-SAM relies heavily on the accu-
racy of the previous slice’s segmentation. Through the box prompt generator,
our method can implicitly correct the box prompt for the current slice, effec-
tively alleviating this dependence. Furthermore, the 3D visualization results of
case 2 and case 3 in Fig. 2 indicate that the segmentation result of our method
has better continuity compared with other SAM variants, demonstrating the
effectiveness of local and global 3D-aware mechanisms.

Table 3 reports the results on the SegTHOR dataset. From the table, our
method achieves the best average DSC and HD scores, outperforming the sub-
optimal method with 1.82% and 0.76mm, respectively. We find that our method
has obvious advantages in segmenting organs that span multiple slices, such as
esophagus, trachea and aorta. This can be attributed to the effectiveness of our
proposed historical slice information sharing strategy, as well as the box prompts
generation. Moreover, from the results on these datasets, our method achieves re-
markable HD scores due to the effective guidance on the location and boundaries
of the target provided by the box prompt.

Ablation Study. In Table 4, we conducted an ablation study for different com-
ponent in our method on BTCV dataset. We observed that due to the stronger
spatial correlation between adjacent slices, the improvement brought by the local
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Fig. 2. Qualitative results of different methods. Case 1: 2D view of a slice. The blue
and orange boxes indicate the box prompt (generated by the prediction result of the
previous slice). Case 2: 3D view of aorta. Case 3: 3D view of all categories.

Table 3. Performance comparison of existing methods on the SegTHOR dataset.

Methods DSC Avg.
Eso. Heart Trach. Aorta DSC↑ HD↓

TransUNet 75.71 92.04 84.29 88.54 85.14 5.30
SwinUNet 75.62 91.97 85.46 89.36 85.60 4.95
SAMed 70.54 89.36 82.61 86.90 82.35 5.98

MA-SAM 78.02 94.65 88.95 92.98 88.65 3.67
Slide-SAM 77.15 93.42 87.93 91.26 87.44 4.52

Ours 86.83 92.75 89.90 92.42 90.47 2.91

Table 4. Ablation study for different components in our method on the BTCV dataset.

Direction of iterative segmentation Local 3D-aware Global 3D-aware Prompt Generator DSC↑ HD↓

Mid-to-Ends
(from the middle slice to the ends)

✓ 86.27 8.52
✓ ✓ 89.39 4.51
✓ ✓ 89.16 5.29
✓ ✓ ✓ 90.09 3.00

End-to-End
( from the top slice to the bottom slice) ✓ ✓ ✓ 89.35 3.81

3D-aware is higher than global 3D-aware. Furthermore, we analyzed the impact
of different directions of information transfer during the iterative segmentation
process on the segmentation results. We compared the segmentation results be-
tween iterating from the middle slice in parallel towards both ends and from
one end to the other. The results demonstrate that the former achieves better
segmentation results, as the middle slice typically contains richer organ feature
information, effectively providing richer guidance information.
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4 Conclusion

In this work, we propose 3D-SAutoMed, a novel SAM-based method to solve
two limitations of existing SAM variants for 3D medical image segmentation.
To enable SAM to be 3D-aware, we propose the Inter- and Intra-slice Attention
and HIS strategy to share local information in adjacent slices and global infor-
mation in the entire volume, respectively. To enable SAM to generate prompts
automatically, we designed a Box Prompt Generator to generate prompt em-
bedding automatically. Experimental results on three datasets demonstrate the
superiority of our method compared with advanced methods and other SAM
variants.
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