
Knowl Inf Syst (2017) 53:109–151
DOI 10.1007/s10115-017-1028-2

REGULAR PAPER

DANCer: dynamic attributed networks with community
structure generation

C. Largeron1 · P. N. Mougel1 ·
O. Benyahia1 · O. R. Zaïane2

Received: 10 February 2016 / Revised: 24 September 2016 / Accepted: 3 February 2017 /
Published online: 2 March 2017
© Springer-Verlag London 2017

Abstract Most networks, such as those generated fromsocialmedia, tend to evolve gradually
with frequent changes in the activity and the interactions of their participants. Furthermore,
the communities inside the network can grow, shrink, merge, or split, and the entities can
move from one community to another. The aim of community detection methods is precisely
to detect the evolution of these communities. However, evaluating these algorithms requires
tests on real or artificial networks with verifiable ground truth. Dynamic networks generators
have been recently proposed for this task, but most of them consider only the structure
of the network, disregarding the characteristics of the nodes. In this paper, we propose a
new generator for dynamic attributed networks with community structure that follow the
properties of real-world networks. The evolution of the network is performed using two
kinds of operations: Micro-operations are applied on the edges and vertices, while macro-
operations on the communities. Moreover, the properties of real-world networks such as
preferential attachment or homophily are preserved during the evolution of the network, as
confirmed by our experiments.

Keywords Social network · Graph generator · Community structure

1 Introduction

Recently, significant attention has been paid to the emerging field of temporal network analy-
sis. The study of these kinds of complex networks is interdisciplinary, leading to terminology
where a single concept can have different names: temporal graph, evolving graph, evolu-
tionary network, time-varying graph, time-aggregated graph, time-stamped graph, dynamic

B C. Largeron
christine.largeron@univ-st-etienne.fr

1 Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d’Optique Graduate chool, Laboratoire Hubert
Curien UMR 5516, F-42023 SAINT-ETIENNE, France

2 Department of Computer Science, University of Alberta, Edmonton, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-017-1028-2&domain=pdf
http://orcid.org/0000-0002-0060-5988

110 C. Largeron et al.

network, dynamic graph, and so on. The main challenge with these forms of networks is to
track the changes in their configuration or in their community structure over time that might
help anticipate important transformations in the whole system. To this end, new approaches
are proposed in the literature to analyze the topological and temporal structure of networks
and to model their behavior over time. Most of these methods utilize not only the relation-
ships between the entities but also the attributes describing their characteristics. However,
the current lack of benchmarks makes the evaluation of the results and comparison of the
methods difficult. To check whether a method can capture changes in a network, in particular
the community evolution, suitable benchmarks are needed. To fill this gap, we have designed
a generator for static attributed networks with community structure [20]. This generator
allows to generate networks having communities and attributed nodes. Moreover, properties
of real-world networks are respected by the generated network, like, for instance, the pref-
erential attachment which requires that the more connected nodes are more likely to receive
new links, or the homophily property according to which nodes are more likely to connect
to nodes having similar attributes. We propose herein an extended version of this generator
for dynamic attributed networks with community structure, called DANCer. The objective
is to provide a sequence of attributed graphs with a well-defined partition of the vertices
into communities that progresses from one-time snapshot to the other while preserving the
properties of real networks. Thus, DANCer allows a researcher to generate a first network
having certain properties and then produce a sequence of other ones by modifying one or
several parameters to weaken the properties of the first network. The researcher can study
the robustness of pattern mining methods toward the degradation of this reference network.

The model underlying this generator is presented in the following section Sect. 2 and the
algorithm of DANCer in Sect. 3. The experiments are described in Sect. 4 and the related
work in Sect. 5. Section 6 states our conclusion.

2 Model

We provide a new generator of attributed dynamic networks with community structure.
Such networks can be represented by (1) a sequence of T attributed graphs Gi = (Vi , Ei),
i ∈ {1, . . . , T }, where Vi is a set of vertices, Ei a set of undirected edges and where for each
vertex v ∈ Vi and each attribute A ∈ A, vA denotes the attribute value of A assigned to vertex
v and (2) a sequence of T partitions Pi of Vi , i ∈ {1, . . . , T } which gives a community for
each vertex in the corresponding graph Gi , i ∈ {1, . . . , T }.

The generation of the network is carried out in two phases. In phase one, an initial graph
G1 = (V1, E1) is builtwhile respecting thewell-knownnetwork properties such as preferential
attachment or homophily. In the second phase, the initial graph is modified through two kinds
of operations. The first set of operations, called micro-operations, because they are local, are
applied on the vertices and edges, whereas the second kind of operations are applied on
the communities, i.e., at a macro-level. In the next subsections, we present the assumptions
underlying the generation of the graph, the properties of the latter and the dynamic operations
allowing us to build a sequence of graphs.

2.1 Hypothesis and properties of a graph

The proposed generator is based on the following hypothesis concerning the properties of a
graph in the sequence.

123

DANCer: dynamic attributed networks with community... 111

Weconsider that a graph (i.e., the network at a single timestamp) has a community structure
if the nodes are grouped into sets densely connected, while they are less connected to vertices
belonging to other groups. Moreover, a graph has a cluster structure if the nodes are grouped
into sets relatively homogeneous with regard to the attributes. Usually, the groups defined
according to the relationships are called communities, whereas those defined according to
the attributes are called clusters, but, in our article, we assume that the structure defined on a
graph is based on the attributes and the relationships together. So the membership to a group
(called indifferently cluster or community) depends on the attributes and structural links in
such a way that firstly, there should be more edges between vertices belonging to the same
community than between vertices from different communities and secondly, two vertices
belonging to the same community are more likely to be similar in terms of attributes than
two vertices belonging to different communities. Moreover, we suppose that these groups do
not overlap, and consequently, they define a set of partitions, one for each graph: Pi of Vi
i ∈ {1, . . . , T }, such that (1) ∀(C1,C2) ∈ Pi × Pi ,C1 ∩ C2 = ∅; (2) ∀C ∈ Pi ,C �= ∅; and
(3) ∪C∈Pi C = Vi .

Note that this structure, based on the attributes and relationships, is compatible with the
homophily hypothesis, according to which two vertices are more likely to be connected if
they share common characteristics, and this property is verified inside the communities but
also between communities [21,26]. So, the more similar the vertices, the more likely they
are to be connected.

Finally, our model respects the preferential attachment according to which new nodes
prefer to join the more connected nodes existing in the network. Thus, each node is connected
to an existing node with a probability proportional to the number of links of the chosen node.
Given this hypothesis, our model can be considered as an extension of the Barabási–Albert
model: It leads to scale-free networks characterized by a degree distribution with a heavy
tail, which can be approximated by a power law distribution such that the fraction of vertices
P(k) having a degree k follows the law P(k) ∼ k−γ where γ ranges typically between 2 and
3 [3]. However, as noted in [22], usually in social networks, the actors do not have a global
knowledge of the network. Consequently, the preferential attachment model is more likely
to be local.

Given these hypotheses, the proposedmodel allows us to generate attributed graphs having
the following properties.

P1. Local preferential attachment: The local preferential attachment states that a vertex
is more likely to create connections with vertices having a high degree and which are close
[22].

P2. Small world: This property indicates that most vertices can be reached from every other
through a small number of edges. According to [32], in a small-world network, the average
shortest path is proportional to the logarithm of the number of vertices. The diameter can
also be used to evaluate the small-world property since it is defined as the maximum distance
between any two vertices, where the distance is the minimum number of edges on the path
fromone vertex to the other. It has been shown that real networks exhibit very small diameters,
notably the well-known “six-degrees of separation” [4,27].

P3. Community structure: A community structure appears when vertices can be grouped
in such a way that vertices in a group are more connected to vertices in the same group
compared to other vertices. While there is no formal definition of a network community,
several measures have been proposed to control the community structure. In this article, we

123

112 C. Largeron et al.

consider the well-known modularity measure from [28]. Moreover, the average clustering
coefficient from [32] is given as an indication of the transitivity of connections in the network.

P4. Homogeneity: The groups, which compose a partition of the vertices, are homogeneous
if two vertices belonging to the same group are more likely to be similar in terms of attributes
than two vertices belonging to different groups. To measure this property, one can use the
within inertia ratio. Given P , a partition of vertices and d(v1, v2), the Euclidean distance
between the real attribute vectors assigned to the vertices v1 and v2, the within inertia ratio is∑

C∈P (PC
∑

v∈C d(v,gC)2)
∑

v∈V d(v,g)2
where gC is the center of gravity of the vertices inC (i.e., its centroid),

PC the weight of C and g is the global center of gravity of all the vertices.

P5. Homophily: While the homogeneity is only defined according to the attribute values, the
homophily is defined according to relationships and attribute values. Indeed, this property
is verified when similar vertices according to their attributes tend to be more connected
than dissimilar vertices. To measure this property, we adapted the test introduced by [9] for
numeric attributes. This test compares an expected homophily measure corresponding to the
probability for two vertices to be similar with an observed homophily measure defined as the
probability that two linked vertices are similar. If the expected measure is significantly less
than the observed measure, then there is evidence for homophily.

Given an initial graph having these properties, our aim is to simulate its evolution. In the
following section, we present the methodological choices for modeling common dynamic
operations with the objective of conserving the mentioned properties in the graph at each
timestamp.

2.2 Dynamic operations

The evolution of the network is performed using two kinds of operations: micro (or local)-
operations and macro-operations. The micro-operations are applied on the vertices or edges,
while the macro-operations are applied on the communities. A list of these operations is
presented in Table 1.

2.2.1 Micro-operations

The micro-operations consist in removing or adding vertices and edges or updating their
attributes. They are illustrated through examples in Figs. 1, 2, 3, 4, 5 and 6.

Remove vertex: The first micro-operation consists in removing a vertex. This is presented
in Algorithm 5 described in Sect. 3. Intuitively, a vertex connected to many other vertices
is unlikely to leave the network. To model this behavior, we consider that only vertices
connected to a single other vertex (i.e., having a degree equal to one) or in a triangle may
leave the network. This constraint ensures that removing a vertex will not split a community
into several disconnected components. The operation is illustrated in Fig. 1. Note that in
the example, the vertices a or c cannot be removed because their removal disconnects their
community, whereas it is not the case for d and g. Indeed, even though the degree of vertex
g is two, since it is part of a triangle, it can be removed.

Add vertex: The operation, adding a vertex, allows new vertices to be inserted in a com-
munity. This is presented in Algorithm 6 described in Sect. 3. According to the homophily
property P5, the attribute values of the new vertex are selected from the attribute values of

123

DANCer: dynamic attributed networks with community... 113

Table 1 Description of the operations in the context of a social network

Operations Description

Micro-operations

Add vertex A new actor joins the network in an existing community

Remove vertex An actor leaves the network

Add within edge A connection is created between two actors belonging to the same
community

Remove within edge A connection is removed between two actors belonging to the same
community

Add between edge A connection is created between two actors in distinct communities, i.e.,
creation of a bridge between two communities

Remove between edge A connection is removed between two actors in distinct communities

Update attributes An actor has some of its properties changed according to the social
influence effect

Macro-operations

Split community An existing community is split into two new communities, and connections
are removed between distant members of the original community

Merge communities Two similar communities are merged into a single one, and new
connections are created between the members of the new community

Migrate community A group of actors leave their community to either create a new one or join
an existing one

Fig. 1 Examples illustrating the
micro-operation Remove vertex
(removing vertices d and g). The
gray scales correspond to the
communities. Vertices are
assigned a single attribute

a.76 b .74

c.68 d .81

e.03 f .06

g.01

a.76 b .74

c.68

e.03 f .06

⇒

the vertices in its community. More precisely, the value for each attribute is picked uniformly
and randomly between the minimum and the maximum observed for the vertices in the
community. New connections are also created with vertices inside its community using the
preferential attachment property P1 (i.e., vertices having a high degree are more likely to be
selected as neighbors) and with vertices in other communities with a preference for vertices
having similar attributes according to P5. In the example presented in Fig. 2, the new vertex
b is connected to vertex c since it has the highest degree.

Update attributes: The attribute update allows the social influence effect to be modeled. This
is presented in Algorithm 7 described in Sect. 3. It is well known that not only actors tend
to connect to similar actors (i.e., the homophily effect), but also that an actor may become
more similar to actors with which it is connected. This is commonly referred to as the social
influence effect. For this reason, in the proposedmodel, a vertexmay have one of its attributes
replaced by a new value, uniformly and randomly selected between the minimum and the
maximum observed in its neighborhood inside its community.

123

114 C. Largeron et al.

a.76

c.68 d .54

e.03

g.01

a.76 b .74

c.68 d .54

e.03 f .02

g.01

⇒

Fig. 2 Examples illustrating the micro-operation Add vertex (adding vertices b and f). The gray scales
correspond to the communities. Vertices are assigned a single attribute

Fig. 3 Examples illustrating the
micro-operation remove within
edges (removing edges a–c, c–d
and e–g). The gray scales
correspond to the communities.
Vertices are assigned a single
attribute

a.76 b .74

c.68 d .81

e.03 f .06

g.01

a.76 b .74

c.68 d .81

e.03 f .06

g.01

⇒

Four operations are proposed for the edges because we choose to distinguish between
edges within a community (i.e., connecting two vertices in the same community) and edges
between communities (i.e., connecting two vertices belonging to different communities).
This difference seems relevant because a within edge corresponds to a connection that could
be qualified as natural (e.g., family, work, hobby) and often found in the network. On the other
hand, a between edge corresponds to a bridge between communities which are by definition
loosely connected. The between edges play a specific role as they allow communication over
the whole network.

Remove within edge: The operation consisting of removing within edges allows a network
with sparse communities to be generated. Algorithm 8 presented in Sect. 3 describes this
operation, and an example is given in Fig. 3. Since this operation is intended to be local,
we added the constraint that removing an edge should not split a community into several
disconnected components, which could be considered as updating the set of communities.
Consequently, an edge between two vertices may be removed only if these two vertices are
connected through another member of their community.

Add within edge: As an opposite operation to the previous, this operation enforces the com-
munity structure by connecting vertices within a community according to the preferential
attachment property P1. This is presented in Algorithm 9 and illustrated in Fig. 4.

Remove between edge: The between edges are removed by selecting vertices, which have
dissimilar attribute values. This operation detailed in Algorithm 10 allows the construction
of highly disconnected communities. In particular, it is possible to build a network where
each community is a connected component. Note that removing such an edge may split a

123

DANCer: dynamic attributed networks with community... 115

Fig. 4 Examples illustrating the
micro-operation add within edges
(adding edges b–d and f –g). The
gray scales correspond to the
communities. Vertices are
assigned a single attribute

a.76

b.68

c .74

d .81

e.06

f.03 g .01

a.76

b.68

c .74

d .81

e.06

f.03 g .01

⇒

Fig. 5 Examples illustrating the
micro-operation Remove
between edges (removing edge
b–e). The gray scales correspond
to the communities. Vertices are
assigned a single attribute

a.76

b.68

c .74

d .81

e.06

f.03 g .01

a.76

b.68

c .74

d .81

e.06

f.03 g .01

⇒

Fig. 6 Examples illustrating the
micro-operation Add between
edges (adding edge b–e). The
gray scales correspond to the
communities. Vertices are
assigned a single attribute

a.76

b.68

c .74

d .81

e.06

f.03 g .01

a.76

b.68

c .74

d .81

e.06

f.03 g .01

⇒

connected component formed by at least two communities. Nonetheless, it is not considered
as a macro-operation since it does not affect community membership (Fig. 5).

Add between edge: The operation of adding between edges, presented in Algorithm 11,
allows two existing communities to be connected or more connected by linking two vertices
belonging to each one. The first vertex must have a higher number of connections inside its
community than outside. The second vertex is then selected among the most similar vertices
with respect to the attribute values (Fig. 6).

2.2.2 Macro-operations

Themacro-operations are applied to the communities, and consequently they may drastically
change the network structure. They consist in (1)migratingmembers of a community to either
a new community or an existing one, (2) splitting a community into two new subcommunities
and (3) merging two existing communities into a single community. They are performed after
the micro-operations in Algorithm 4 (lines 10–19).

The migration of actors, presented in Algorithm 12, allows either the creation of a new
community or the migration of several actors from the community to another. To decide
which vertices are migrating, we consider a randomly selected vertex and its neighborhood
which satisfy constraints with respect to their connectivity. The idea is that a migrating vertex

123

116 C. Largeron et al.

Fig. 7 Examples illustrating the
split macro-operation. The gray
scales correspond to the
communities. Vertices are
assigned a single attribute

a.76 b .74

c.68 d .81

e.72

a.76 b .74

c.68 d .81

e.72

⇒

Fig. 8 Examples illustrating the
merge macro-operation. The gray
scales correspond to the
communities. Vertices are
assigned a single attribute

a.76 b .74

c.68 d .81

e.72 f .06

g.01 h .08

a.76 b .74

c.68 d .81

e.72 f .06

g.01 h .08

⇒

should be able to connectmore easilywith vertices in the destination community thanwith the
vertices in its own community.More precisely, we compare the number of its neighbors in the
destination community and in its original community using both the direct neighborhood and
the 2-neighborhood (i.e., neighbors of the direct neighbors). As this operationmay disconnect
the community, a rewiring step is performed to restore the connexity in the neighborhood of
the migrating vertices.

To model a community split, presented in Algorithm 14, we first have to decide which
community should be split and then find which vertices will join another community. The
first hypothesis is that a community is more likely to be split if it is large in such a way
that some members may hardly communicate inside the community. This intuition can be
modeled by splitting the community having the highest diameter. The diameter measures
eccentricity by checking the highest shortest path between pairs of nodes in the community.
To reallocate the vertices, we consider that a split is due to the emergence of two leaders,
corresponding to highly connected vertices that will be followed by the other members of
the community depending on their geodesic proximity. Moreover, to remain consistent with
the standard community definition, the connections between the members of the two new
communities should be sparser than the connections within the new communities (Fig. 7).

For the merge operation, presented in Algorithm 13, we have to select communities which
must be merged. This choice is done by considering, on the one hand, the attribute-based
distancebetween the communitymembers andon theother hand, their number of connections.
Intuitively, two communities sharing similar interests and communicating easily are more
likely to be merged. The distance between two communities is defined as the minimum of
the pairwise Euclidean distance of their representative vertices. The merged communities are
those having a distance below the average community distance and maximizing the number
of between edges (Fig. 8).

Given this model and these operations, we present, in the following section, an algorithm
taking into account the desired properties.

3 Algorithm

The following Generator named DANCer described as Algorithm 1 returns:

123

DANCer: dynamic attributed networks with community... 117

– an attributed dynamic network with community structure G defined by a sequence of T
graphs Gi = (Vi , Ei), i ∈ {1, . . . , T }, where Vi is a set of vertices, Ei a set of undirected
edges andwhere for each vertex v ∈ Vi and each attribute A ∈ A, vA denotes the attribute
value of A assigned to vertex v;

– a sequence of T partitions Pi of Vi , i ∈ {1, . . . , T } giving the community membership
of the vertices for each graph Gi such that:
• ∀(C1,C2) ∈ P2

i ,C1 �= C2,C1 ∩ C2 = ∅;
• ∀C ∈ Pi ,C �= ∅;
• ∪

C∈Pi
C = Vi

The previously described network properties can be controlled by the userwith the parameters
summarized in Table 2. Firstly, an initial graph G1 = (V1, E1) and its corresponding partition
P1 are generated by Algorithm 1 (lines 1–18). The reader is referred to [20] for a detailed
discussion on this Algorithm and its parameters, notably the power law distribution of the
functionRandPlwhich ensures the local preferential attachment. From this first graph, several
operations are then applied to obtain the other instances of the network (lines 22–24). For each
new graph Gi , two kinds of updates are performed by Algorithm 4, (Line 23 in Algorithm 1)
either micro-updates (i.e., insert or remove vertices, within or between edges and update
attribute values) or macro-updates (i.e., merging and splitting of communities or migrating
vertices from one community to another). They are detailed in the following sections.

3.1 Micro-dynamic updates

The call to the micro-updates are performed on lines 1–2 of Algorithm 4. The micro-updates
correspond to the following algorithms:

– RemoveVertices (Algorithm 5) and AddVertices (Algorithm 6) which, respec-
tively, remove and insert vertices in the graph;

– UpdateAttributes (Algorithm 7) that updates the attribute values assigned to exist-
ing vertices;

– RemoveWithinEdges (Algorithm 8) and AddWithinEdges (Algorithm 9) which,
respectively, removes and inserts edges between vertices in the same community;

– RemoveBetweenEdges(Algorithm 10) and AddBetweenEdges (Algorithm 11),
respectively, remove and insert edges connecting vertices belonging to different commu-
nities.

Each micro-operation is performed with respect to an uniform probability Pmicro. The
higher this parameter, the more likely the micro-updates take place: If it is set to 0, then
no micro-operation is performed, while if it is equal 1, the micro-operations are always run.
The parameters RremoveV ert , RaddVert , Rupdated Attributes , RremoveWthEdge, RaddWthEdge,
RremoveBtwEdge, RaddBtwEdge allow to quantify the number of objects (i.e., vertices or edges)
that will be impacted by the corresponding micro-operation. The parameters are summarized
in Table 2, and their role is described with the corresponding algorithms. Parameters for the
first timestamp are explained in [20]. The micro-updates are performed independently for
each community (line 1 in Algorithm 4), except for the operations on the between edges. The
different algorithms are detailed below.

RemoveVertices: The vertex removal is presented in Algorithm 5. This operation is
controlled by parameter RremoveV ert , which corresponds to the ratio between the number of
vertices removed and the candidates VtoAdd defined as the vertices that can be removed from

123

118 C. Largeron et al.

Algorithm 1: Generator
Input: N , Emax

wth , E
max
btw , MT E ,A, K , NbRep, PrandomCommunity , T

// Micro-operations parameters
Pmicro, RremoveV ert , RaddV ert , RremoveWthEdge , RaddWthEdge , RremoveBtwEdge ,

RaddBtwEdge , Rupdated Attributes
// Macro-operations parameters
Pmerge , Pspli t , Pmigrate , PremoveEdgeSpli t

Output: - A sequence Gof T graphs Gi = (Vi ,Ei ,Ai), i ∈ {1, . . . , T }
- A sequence Pof T partitions Pi of Vi , i ∈ {1, . . . , T }

1 V ← an arbitrary set of N vertices
// Vertices and attributes generation

2 for v ∈ V do
// Generate numeric attributes for v

3 for A ∈ A do vA ← N (0, σA)

// Communities initialization
4 InitCommunities()

5 for C ∈ P do C.rep ← C VtoAdd ← V \ ∪C∈PC
// Batch vertex insertion

6 while VtoAdd �= ∅ do
7 for v ∈ Sample(VtoAdd , RandUni ({1, . . . , |VtoAdd |})) do
8 if RandUni ([0, 1[) < PrandomCommunity then C ← RandUni (P) else

C ← argmin
C ′∈P

dist (v,C ′.rep)

9 AddEdges(v, C)
10 C ← C ∪ {v}
11 VtoAdd ← VtoAdd \ {v}
12 for C ∈ P do C.rep ← Sample(C,min(|C |, NbRep))

// Final edges insertion

13 MT E ← min(MT E,
∑

C∈P |C |×(|C |−1)
2)

14 while |E | < MT E do
15 v ← RandEdgeBtw(V)

16 Etri ← {{v1, v2} | v1, v2 ∈ neigwth(v) ∧ v1 �= v2} \ E
17 E ← E ∪ RandUni (Etri)

18 output G= {G1}, P= {P1}
19 repeat T−1 times
20 DynamicUpdates(G, P)
21 output G= {G1 . . .GT }, P= {P1 . . .PT }

Algorithm 2: InitCommunities
1 Vinit ← Sample(V, K × NbRep)
2 P ← KMedoids(Vinit , K)

3 MinRep ← min
C∈P|C |

4 for C ∈ P do
5 g ← Center of gravity of the elements in C
6 C ← argmin

C ′⊆C
|C ′|=minRep

∑

v∈C ′
d(v, g)

7 for v ∈ C do
8 Ewth ← RandUni ({1, . . . , Emax

wth })
9 repeat Ewth times

10 v′ ← RandUni (C \ {v})
11 E ← E ∪ {{v, v′}}

123

DANCer: dynamic attributed networks with community... 119

Table 2 Description of the dynamic network generator parameters

Parameter Dom. Algorithm Description

First timestamp (i.e., graph G1)

K N
+ 1 Number of communities

N N
+ 1 Number of vertices

p N
+ 1 Number of numerical attributes

A = {σ1, . . . , σp} 1 Standard deviations of the attributes generated
using centered normal distributions

Emax
wth N 1 Maximumnumber of edges connecting a newver-

tex to vertices in its community

Emax
btw {0, . . . , Emax

wth } 1 Maximumnumber of edges connecting a newver-
tex to vertices in a different community

NbRep N
+ 1 Maximum number of representatives of each

community

MT E N 1 Minimum number of total edges

PrandomCommunity [0, 1] 1 A threshold to decide whether a new vertex joins
a randomly selected community or not

Micro-operations

Pmicro [0, 1] 4 A threshold to select whether the micro-dynamic
updates are performed or not

RremoveV ert [0, 1] 5 Ratio defining the number of vertices removed

RaddV ert [0, 1] 6 Ratio defining the number of vertices inserted

Rupdated Attributes [0, 1] 7 Ratio defining the number of attributes updated

RremoveWthEdge [0, 1] 8 Ratio defining the number of within edges
removed

RaddWthEdge [0, 1] 9 Ratio defining the number of within edges
inserted

RremoveBtwEdge [0, 1] 10 Ratio defining the number of between edges
removed

RaddBtwEdge [0, 1] 11 Ratio defining the number of between edges
inserted

Macro-operations

PremoveEdgeSpli t [0, 1] 14 Proba. to remove an edge between two vertices in
the previously same community when splitting a
community

Pmigrate [0, 1] 4 Proba. to perform the migrate vertices operation

Pmerge [0, 1] 4 Proba. to perform the merge operation

Pspli t [0, 1] 4 Proba. to perform the split operation

T N
+ 4 Number of graphs generated

a community without splitting it into several disconnected components. If it is set to 1, all
the candidate vertices are removed. First, this set VtoAdd of vertices that can be potentially
removed is selected (lines 1–3). It contains vertices that can be removed without splitting a
community into two connected components. It corresponds to the vertices having a within
degree equal to 1 (i.e., vertices at the boundaries) if such vertices exist (line 1), otherwise it
corresponds to vertices in a triangle (line 3). The candidates for removal are also required
not to be a community representative. Once this set has been computed, a number of vertices

123

120 C. Largeron et al.

Algorithm 3: AddEdges
Input: v, C
// Within edges

1 Ewth ← RandPL (min(|C |, Emax
wth))

2 while degw(v) < Ewth do
3 v′ ← RandEdgeWth(C \ neigwth(v))

4 E ← E ∪ {{v, v′}}
// Between edges

5 Ebtw ← RandPL (min(Emax
btw , Ewth) + 1) − 1

6 while degb(v) < Ebtw do
7 v′ ← RandEdgeBtw(v, ∪

C ′∈P
C ′ �=C

C ′.rep)

8 E ← E ∪ {{v, v′}}

Algorithm 4: DynamicUpdates
// Micro Updates

1 for C ∈ P do
2 if RandUni ([0, 1[) < Pmicro then RemoveVertices(C) if RandUni ([0, 1[) < Pmicro then

AddVertices(C) if RandUni ([0, 1[) < Pmicro then UpdateAttributes(C) if
RandUni ([0, 1[) < Pmicro then RemoveWithinEdges(C) if RandUni ([0, 1[) < Pmicro then
AddWithinEdges(C) if RandUni ([0, 1[) < Pmicro ∧ |P| > 1 then
RemoveBetweenEdges() if RandUni ([0, 1[) < Pmicro ∧ |P| > 1 then
AddBetweenEdges() for C ∈ P do C.rep ← Sample(C,min(|C |, NbRep))

//
// Macro Updates

3 if RandUni ([0, 1[) < Pmigrate then
4 MigrateVertices()
5 for C ∈ P do C.rep ← Sample(C,min(|C |, NbRep))
6 else
7 if RandUni ([0, 1[) < Pmerge ∧ |P| ≥ 2 then
8 MergeCommunities()
9 for C ∈ P do C.rep ← Sample(C,min(|C |, NbRep))

10 if RandUni ([0, 1[) < Pspli t ∧ ∃C ∈ P, |C | ≥ 2 then
11 SplitCommunities()
12 for C ∈ P do C.rep ← Sample(C,min(|C |, NbRep))

from the community depending on parameter RremoveV ert are picked uniformly and randomly
from VtoAdd and removed from the graph (lines 4–9).

AddVertices: The algorithm which inserts new vertices into the graph is described as
Algorithm 6. In this algorithm, parameter RaddVert quantifies the number of vertices added.
A high value allows exponential growth in the network to be modeled, in particular, if it is set
to 1, the number of vertices in a community is doubled at each timestamp if there is no vertex
removed. First, a number of vertices �|C | × RaddVert�, depending on parameter RaddVert ,
are generated. The attribute values assigned to the new vertices are selected uniformly and
randomly between the minimum and maximum observed in the community (line 3). Once
the attribute values have been generated, within and between edges are inserted using the
preceding function AddEdges presented in Algorithm 3, and the graph structure is updated.
The reader is referred to [20] for a detailed discussion in this Algorithm 3.

123

DANCer: dynamic attributed networks with community... 121

Algorithm 5: RemoveVertices
Input: C

1 VtoAdd ← {v ∈ C | degw(v) = 1 ∧ v /∈ C.rep}
2 if VtoAdd = ∅ then
3 VtoAdd ← {v ∈ C | v /∈ C.rep ∧ deg(v) = 2 ∧ ∀v1, v2 ∈ neig(v), {v1, v2} ∈ E}
4 repeat min(|VtoAdd |, �|C | × RremoveV ert �) times
5 v ← RandUni (VtoAdd)

6 VtoAdd ← VtoAdd \ {v}
7 V ← V \ {v}
8 E ← E \ {{v, v′} | v′ ∈ neig(v)}
9 C ← C \ {v}

Algorithm 6: AddVertices
Input: C

1 repeat �|C | × RaddV ert � times
2 v ← a new vertex
3 for A ∈ A do vA ← RandUni ([min

v′∈C
v′
A, max

v′∈C
v′
A]) AddEdges(v, C)

4 C ← C ∪ {v}
5 V ← V ∪ {v}

UpdateAttributes: Attribute values are updated according to the approach described
in Algorithm 7. For each community C and each attribute A ∈ A, a set of �|C | ×
Rupdated Attributes� vertices have their value of attribute A replaced by a value randomly
and uniformly taken between the minimum and the maximum of A observed in their within
neighborhood. This operation is controlled by the parameter Rupdated Attributes which defines
the number of updates. A high value indicates a network where the users have strong influ-
ence on the others. The higher this value is, the more likely a high proportion of vertices
will be impacted, modeling social influence. Note that a value equal to 1 does not imply that
all the vertices will have their attribute values updated, nor that all the attribute values of a
vertex will be updated.

Algorithm 7: UpdateAttributes
Input: C

1 for A ∈ A do
2 repeat �|C | × Rupdated Attributes� times
3 v ← RandUni (C)

4 vA ← RandUni ([min
v′∈neigwth (v)

v′
A, max

v′∈neigwth (v)
v′
A])

RemoveWithinEdges: The removal of within edges (i.e., between vertices of the same
community) is presented in Algorithm 8. Parameter RremoveWthEdge gives the ratio for
between edges that can be removed from the candidates (i.e., the edges in a community that
can be removed without splitting the community into several disconnected components). A
high value leads to a network having a weak community structure. If it is set to 1, all the
candidates are removed. This set of candidates, Etri , is computed (line 1) such that it contains

123

122 C. Largeron et al.

the edges that are part of a triangle formed by vertices belonging to the community. Only
these edges are considered for removal to ensure that the community will remain connected.
Then, a number of at most �|C | × PremoveEdgeWithin� edges are selected uniformly and ran-
domly from Etri and removed from the graph. Each time an edge is removed, the set Etri is
updated because some edges are no longer in a triangle anymore (line 6).

Algorithm 8: RemoveWithinEdges
Input: C

1 Etri ← {{v, v′} | (v ∈ C) ∧ (v′ ∈ neigwth(v)) ∧ (neigwth(v) ∩ neigwth(v′) �= ∅)}
2 i ← 0
3 while i �= �|C | × RremoveWthEdge� ∧ Etri �= ∅ do
4 e ← RandUni (Etri)
5 E ← E \ {e}
6 Etri ← {{v, v′} | (v ∈ C) ∧ (v′ ∈ neigwth(v)) ∧ (neigwth(v) ∩ neigwth(v′) �= ∅)}
7 i ← i + 1

AddWithinEdges: Algorithm 9 describeswithin edges insertion. In this algorithm, param-
eter RaddWthEdge corresponds to the ratio of within edges inserted and, the number of within
edges is set as �|C | × RaddWthEdge�. Consequently, the maximum number of new edges
that can be inserted is the number of vertices in the community, for RaddWthEdge = 1. For
each inserted edge, two vertices v and v′ are selected to be connected. The first vertex, v,
is selected randomly and uniformly in C such that it is not already connected to all other
vertices of C (line 3). The second vertex, v′, is selected among the vertices of C which are
not in the neighborhood of v, by preferentially selecting the vertices having a higher degree
(line 4). A new edge between v and v′ is then inserted into the graph (line 5). Note that the
condition on line 2 ensures that this operation will only occur if there is an edge that can be
inserted.

Algorithm 9: AddWithinEdges
Input: C

1 repeat �|C | × RaddWthEdge�times
2 if C is not a complete graph then
3 v ← RandUni ({v ∈ C | C \ neig(v) �= {v}})
4 v′ ← RandEdgeWth(C \ (neig(v) ∪ {v}))
5 E ← E ∪ {{v, v′}}

RemoveBetweenEdges: The method of removing between edges (i.e., edges connect-
ing vertices belonging to different communities) is described as Algorithm 10. Parameter
RremoveBtwEdge is the ratio of between edges removed. All between edges are removed
when RremoveBtwEdge = 1 and, consequently, each community is a connected component
but on the condition that no between edge is later inserted. The set of between edges in
the graph is first computed on line 1. A fraction �|Ebtw| × RremoveBtwEdge� of these edges
depending on parameter RremoveBtwEdge are then removed. To select which edge will be
removed, a community C is selected uniformly and randomly among all the communities
connected to at least one other community (line 3). Note that such a communityC necessarily

123

DANCer: dynamic attributed networks with community... 123

exists, otherwise it would mean that there is no more between edge, which is not possible
since only a fraction (possibly all) of the between edges are removed (c.f., the constraint
on line 2). Then, a vertex v from C having at least one neighbor in another community is
selected uniformly and randomly (line 4) and a second vertex v′ is selected in the between
neighborhood of v: v′ is the most distant vertex w.r.t. its attributes (line 5). Finally, the edge
{v, v′} is removed from the graph (line 6).

Algorithm 10: RemoveBetweenEdges

1 Ebtw ← {{v, v′} ∈ E | ∃(C1,C2) ∈ P2,C1 �= C2 ∧ v ∈ C1 ∧ v′ ∈ C2}
2 repeat �|Ebtw | × RremoveBtwEdge� times
3 C ← RandUni ({C ∈ P | ∃v ∈ C, degb(v) > 0})
4 v ← RandUni ({v ∈ C | degb(v) > 0}})
5 v′ ← argmax

v′∈neigbtw(v)

d(v, v′)

6 E ← E \ {{v, v′}}

AddBetweenEdges: Algorithm 11 depicts the approach used for the insertion of between
edges. Parameter RaddBtwEdge controls the number of between edges inserted at each times-
tamp. If RaddBtwEdge = 1, the final number of between edges is twice the number of
between edges at the previous timestamp. A set of vertices candidate is first built: It corre-
sponds to the vertices with a within degree higher than the between degree (Line 1). Then
�|Vcand | × RaddBtwEdge� between edges are inserted by randomly and uniformly selecting
a vertex from Vcand and a destination vertex belonging to the set of representatives with a
higher probability for the vertices similar to v in terms of their attributes according to the
Euclidean distance.

Algorithm 11: AddBetweenEdges
1 Vcand ← {v ∈ V | degb(v) < degw(v)}
2 repeat �|Vcand | × RaddBtwEdge� times
3 v ← RandUni (Vcand)

4 v′ ← RandEdgeBtw(v, ∪
C∈P
v /∈C

C.rep)

5 E ← E ∪ {{v, v′}}

3.1.1 Macro-updates

The macro-updates consist in three operations:

– Migrate a set of vertices from one community to another, possibly a new one (Algo-
rithm 12, MigrateVertices),

– Merge two communities into a single one
(Algorithm 13, MergeCommunities),

– Split a community into two new communities
(Algorithm 14, SplitCommunities).

These operations are controlled by the parameters Pmigrate, Pmerge and Pspli t ,whichdefine
the probability of performing the corresponding operations. Note that the latter operations

123

124 C. Largeron et al.

occur only if the migrate operation is not performed, i.e., if Pmigrate = 1, then the merge
and split operation will never happen (Algorithm 4 (line 10 and 13).

MigrateVertices: The procedure to migrate vertices from one community to another,
possibly a new one, is described as Algorithm 12. The general idea for migration is to select
a migrant from an original community. This migrant will leave its community possibly with
other vertices from its community. Firstly, the source community C f rom (i.e., the original
community of the departing vertices) is selected: that is the community having the highest
diameter (line 1). Then, with an uniform probability given by parameter Pmerge, themigrating
vertices will join an existing community (lines 3 and 4) or build a new community (lines 6–
9). In the first case (migrating to an existing community), the migrant is selected randomly
and uniformly among the vertices of C f rom , otherwise the migrant is selected randomly and
uniformly among the vertices of C f rom having at least one neighbor with a degree equal
to 1 inside the community to avoid the creation of a community formed by a single vertex.
Once the migrant has been selected, the set of migrating vertices is computed (lines 10–16).
A vertex u in the within neighborhood of the migrant v joins the new community if either:

– it is connected to more vertices in the destination community Cto than in the source
community C f rom (i.e., degCto(u) > degC f rom (u))

– or its neighborhood is connected to more vertices in Cto than in C f rom (i.e.,∑
u′∈neig(u) deg

Cto(u′) >
∑

u′∈neig(u) deg
C f rom (u′))

As this operation can lead to new vertices satisfying the previous conditions, it is repeated
until no vertex can migrate.

The next step aims at ensuring that the vertices in the original community remain connected
(lines 17–27). The idea is to add edges to connect the vertices which belong to the previous
neighborhood of the migrating vertices and which remain in the source community. These
vertices are sequentially selected and connected. To avoid adding unnecessary edges, the
order used to select a vertex depends on whether it is already connected to another vertices
or not (test on line 21).

Finally, a last step ensures that the within degree of the vertices remains higher than
their between degree (lines 28–32). To do that, the vertices not satisfying the condition are
connected to other vertices in the community, randomly selected according to their degrees
(cf. property P1 in Sect. 2, lines 30 and 31).

MergeCommunities: The approach used to merge two communities is given in Algo-
rithm 13. First, in lines 1–5, the two communities to merge are selected using the following
approach. For each pair of communities Ca and Cb, the minimal distance between each
pair of representatives in distinct communities is stored in dCa ,Cb

min , and the average mini-
mal distance davg is computed on all pairs of communities (lines 1–4). The communities

selected (Ca,Cb) are the communities having a minimum distance dCa ,Cb
min lower than davg

and the maximum number of between edges (line 5). In case of a tie, a couple is arbitrarily
selected. This approach allows both the structural similarity (i.e., the number of between
edges) and the similarity of the attributes (i.e., the two communities must be more similar
than the average of the communities) to be taken into account. Once the couple has been
selected, a new community Cmerge is created by uniting the vertices (line 6). Edges are then
inserted between the vertices of the previously disjointed communities to reinforce the com-
munity structure (lines 7–12). First, densi tymin is set as the minimal density in the original
communities Ca and Cb, where the density of a set of vertices V is the ratio between the
number of edges connecting the vertices in V and the maximum number of possible edges
in V , i.e., densi ty(V) = 2·|{{v1,v2}∈E | (v1,v2)∈V×V }|

|V |·(|V |−1) . Then at most � 1+densi tymin
2·densi tymin

� edges are

123

DANCer: dynamic attributed networks with community... 125

Algorithm 12: MigrateVertices
1 C f rom ← argmax

C∈P,|C |≥2
diameter(C)

2 if RandUni ([0, 1[) < Pmerge then
3 Cto ← RandUni (P \ {C f rom })
4 v ← RandUni (C f rom)

5 else
6 Cto ← {}
7 P ← P ∪ {Cto}
8 K ← K + 1
9 v ← RandUni ({v ∈ C f rom | ∃v′ ∈ neig(v), deg(v′) = 1})
// Update Vmigrate the set of migrating vertices

10 VtoAdd ← {v}
11 Vmigrate ← {v}
12 repeat
13 Cto ← Cto ∪ VtoAdd
14 C f rom ← C f rom \ VtoAdd
15 VtoAdd ← {u ∈ neigC f rom (v) |

degCto (u) > degC f rom (u)

∨ ∑
u′∈neig(u) deg

Cto (u′) >
∑

u′∈neig(u) deg
C f rom (u′))}

16 until VtoAdd = ∅
// Ensure that C f rom remains connected

17 VtoAdd ← ∪v′∈Cto neig
C f rom (v′)

18 v1 ← RandUni (VtoAdd)

19 VtoAdd ← VtoAdd \ {v1}
20 while VtoAdd �= ∅ do
21 if ∃v2 ∈ VtoAdd s.t. {v1, v2} ∈ E then
22 v1 ← RandUni ({v2 ∈ VtoAdd | {v1, v2} ∈ E})
23 else
24 v2 ← RandUni (VtoAdd)

25 E ← E ∪ {{v1, v2}}
26 v1 ← v2

27 VtoAdd ← VtoAdd \ {v1}
// Ensure that the within degree is greater than the between degree

28 for C ∈ {Cto,C f rom } do
29 for v′ ∈ C do
30 while degw(v′) < degb(v

′) do
31 v′′ ← RandEdgeWth({v ∈ C | {v′, v} /∈ E)

32 E ← E ∪ {{v′, v′′}}

inserted between two vertices belonging, respectively, to Ca and Cb, which are not already
connected and which are selected randomly according to their degree. Finally, the partition
and the number of communities K are updated on lines 13 and 14.

SplitCommunities: This macro-update operation consists in splitting a community into
two subcommunities. It is described in Algorithm 14. First, the community C to split cor-
responds to the community having the highest diameter and at least two vertices (line 1).
Intuitively, a community having a large diameter is more likely to be split since there are
individuals that can hardly communicate with other members in the community. Then, two
leaders are selected as seeds for the newly created communities. The first leader corresponds
to the vertex of C having the highest degree (line 3). The second leader is selected among

123

126 C. Largeron et al.

Algorithm 13: MergeCommunities

1 for (Ca ,Cb) ∈ P2 do

2 d
Ca ,Cb
min ← min

r1∈Ca .rep
r2∈Cb .rep

d(r1, r2)

3 davg ← davg + d
Ca ,Cb
min

4 davg ← davg
K ·(K−1)

5 (Ca ,Cb) ← argmax
(Ca ,Cb)∈P2

Ca �=Cb

|{{v1, v2} ∈ E | v1 ∈ Ca ∧ v2 ∈ Cb ∧ d
Ca ,Cb
min < davg}|

6 Cmerge ← Ca ∪ Cb
7 densi tymin ← min(densi ty(Ca), densi ty(Cb))

8 repeat � 1+densi tymin
2·densi tymin

� times
9 if ∃{v1, v2} /∈ E s.t. v1 ∈ Ca ∧ v2 ∈ Cb then

10 v1 ← RandEdgeWth({v ∈ Ca | Cb � neig(v)})
11 v2 ← RandEdgeWth({v ∈ Cb | {v, v1} /∈ E})
12 E ← E ∪ {v1, v2}
13 P ← (P \ {Ca ,Cb}) ∪ {Cmerge}
14 K ← K − 1

the five remaining vertices having the highest degree: that is the most distant vertex from
the first leader, according to the geodesic distance dg (line 4). On lines 5 and 6, the two new
communities Ca and Cb are initialized in such way that Ca contains the first leader and Cb

the second one. Vertices from the original community are then assigned either to Ca or Cb as
follows. A vertex v is assigned to Ca if its geodesic distance to the first leader is smaller or
equal to its geodesic distance to the second leader, otherwise it is assigned to the community
Cb. Once all the vertices from C have been assigned to Ca or Cb, several edges are removed
between the two new communities, while new edges are inserted inside to ensure community
structure. The edge removal is described on lines 10 and 11. Each edge, connecting a vertex
of Ca to a vertex of Cb, has a uniform probability defined by parameter PremoveEdgeSpli t to
be removed. The within edges are then inserted. For each vertex v ofCa (orCb), within edges
are inserted for as long as either (1) the within neighborhood of v is empty or (2) its between
degree is higher than its within degree and (3) v is not already connected to every other
vertices in its community (line 14). While this condition is satisfied, a new within edge is
created by connecting v to another vertex selected randomlywith regard to its degree (lines 15
and 16). Finally, the partition and the number of communities are updated on lines 17 and 18.

3.2 DANCEer user interface

The generator is available under the terms of the GNU General Public License1 and its user
interface is presented in Fig. 9. It is formed by three views. On the left side, the user selects
the generator parameters presented in Table 2. These parameters take their values between 0
and 1. Consequently, lower values lead to few changes in the network, whereas high values
induce stronger modifications. The central part displays the generated network or the change
in its communities. Several measures, listed in Table 3, such as modularity or homophily are
computed on each graph of the dynamic network to describe its properties, notably P1, P2,
P3, P4 and P5 detailed in Sect. 2. The changes in these different measures on the sequence of

1 http://perso.univ-st-etienne.fr/largeron/DANC_Generator/.

123

http://perso.univ-st-etienne.fr/largeron/DANC_Generator/

DANCer: dynamic attributed networks with community... 127

Algorithm 14: SplitCommunities
1 Cspli t ← argmax

C∈P,|C |≥2
diameter(C)

2 Vsorted ← vertices in Cspli t sorted by decreasing degree
// v1 is the vertex from Vsorted having the highest degree

3 v1 ← Vsorted [0]
4 v2 ← argmax

v∈Vsorted [1:min(5,|Cspli t |−1)]
dg(v1, v)

5 Ca ← {v1}
6 Cb ← {v2}
7 for v ∈ Cspli t \ {v1, v2} do
8 if dg(v, v1) ≤ dg(v, v2) then Ca ← Ca ∪ {v}
9 else Cb ← Cb ∪ {v}
// Remove between edges

10 for {{v′
1, v

′
2} ∈ E | v′

1 ∈ Ca ∧ v′
2 ∈ Cb} do

11 if RandUni ([0, 1[) < PremoveEdgeSpli t then E ← E \ {{v′
1, v

′
2}}

// Insert within edges
12 for C ∈ {Ca ,Cb} do
13 for v ∈ C do
14 while (degw(v) = 0 ∨ degw(v) ≤ degb(v)) ∧ degw(v) < |C | − 1 do
15 v′ ← RandEdgeWth(C \ (neigwth(v) ∪ {v}))
16 E ← E ∪ {{v, v′}}

17 P ← (P ∪ {Ca ,Cb}) \ {Cspli t }
18 K ← K + 1

Fig. 9 User interface of the generator DANCer

graphs are presented at the bottom of the interface as Fig. 9 shows. The generated dynamic
network, the parameters and the measures can be saved as a collection of files. Note that
a seed is used for the random number generator. It can be saved to reproduce exactly the
same first graph. The user interface is described in more detail in “Appendix 2.” Moreover,
a set of predefined benchmark profiles is presented in “Appendix 3.” The parameter setting
is given for each network as well as its characteristics: modularity, within inertia, micro- and
macro-dynamicity.

123

128 C. Largeron et al.

Table 3 Measures computed on
each graph Gi

Measures

Number of vertices |Vi | and number of edges |Ei |
Diameter of the graph Gi
Size of the three largest communities in Gi
Size of the connected components in Gi
Clustering coefficient of the graph Gi
Average degree in the graph Gi
Modularity of the partition in Gi
Number of communities in Gi
Average shortest path measured on Gi
Within and between inertia ratios for Gi
Observed and expected Homophily measures for Gi
Number of within and between edges in Gi
Degree distribution in Gi

4 Experiments

A set of experiments has been carried out to demonstrate how the parameters can be used to
generate dynamic attributed networks with a community structure. In this section, we show
our experimental results. Firstly, we study how the parameters for the micro- and macro-
updates change the graph measures. In each experiment, we consider the impact of one
parameter on one measure. Then, we show how it is possible to obtain different evolutions
of the communities using the macro-parameters. Finally, we report the run times obtained
for various sets of parameters.

Default parameters:Unless stated otherwise, all the experiments have been performed using
a base setting with 1000 vertices (i.e., N = 1000), 10 communities having 10 representatives
each (i.e., K = 10, NbRep = 10). Each vertex is assigned with two attributes having
a standard deviation of 1 (i.e., p = 2 and A = {1, 1}). The parameters Emax

wth and Emax
btw

have been, respectively, set to 6 and 3, and the minimum number of edges (MTE) is 5000.
The parameter PrandomCommunity is set to 0 (i.e., no degradation on the attributes associated
to a community). The probability of performing the micro-updates is fixed to 1 (i.e., the
micro-updates operations are always performed). By default, the ratio for each micro-update
operation is 0 as well as the probability for the macro-updates (i.e., they are not performed).
The number of timestamps is 10.

For each set of parameters, ten dynamic graphs are generated, each one using a different
random seed, in other words, the ten dynamic networks, each composed of ten graphs, are
different even though they have been generated with the same set of parameters. The reported
results correspond to the mean of the measures computed on these ten dynamic networks.
The standard deviation is not given since the obtained results are stable.

4.1 Impact of the parameters on graph measures

Thefirst set of experiments aims at studying the variation of several graphmeasures depending
on the value of each micro- and macro-parameter considered independently. In particular, we
focus onmeasures suited to evaluate the homophily and the graph structure, like the clustering

123

DANCer: dynamic attributed networks with community... 129

Fig. 10 Evolution of the average
clustering coefficient for
micro-update parameters ranging
between 0 and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
vg

. C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Parameter value for the micro updates

RAddVert

RAddWthEdge

RAddBtwEdge

RUpdAttr

RRemoveVert

RRemoveWthEdge

RRemoveBtwEdge

Fig. 11 Evolution of the average
clustering coefficient for
macro-update parameters ranging
between 0 and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
vg

. C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Parameter value for the macro updates

Pmerge Psplit Pmigrate

Fig. 12 Evolution of the
diameter for micro-update
parameters ranging between 0
and 1

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

D
ia

m
et

er

Parameter value for the micro updates

RAddVert

RAddWthEdge

RAddBtwEdge

RUpdAttr

RRemoveVert

RRemoveWthEdge

RRemoveBtwEdge

coefficient average, themodularity and thewithin inertia.We also evaluate classical properties
like the small world through the diameter and the average length of the shortest paths.

Figures 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 are dedicated to the
evolution of one measure (on the second axis) and presents the impact of the micro- and
macro-parameters on the measure: Each curve corresponds to a parameter whose values are
given on the abscissa, the others remaining stable.

Each figure presents the mean value computed on the ten dynamic networks at the last
timestamp (i.e., the last graph of each sequence) exceptwhen considering parameter RaddVert

where the diameter, the average length of the shortest paths, the number ofwithin and between
edges are computed on the graph generated at timestamp 5. Indeed, when RaddVert = 1, the

123

130 C. Largeron et al.

generation of the graph is not a problem, but even though an efficient version of the shortest
path computation has been implemented, this measure remains intractable for large graphs.

4.1.1 Average clustering coefficient

Figures 10 and 11, depict the evolution of the clustering coefficient [16]. These results
demonstrate that our generator is able to build graphs having a community structure since
the average clustering coefficient remains higher than 0.6 for most parameter settings.

When considering the micro-update operations (Fig. 10), we observe that three operations
tend to decrease the clustering coefficient: adding vertices, removal of within edges and
adding between edges. Adding vertices, and even with the additional edges our algorithm
does, dilutes the density of the network; hence, the expected drop of the average clustering
coefficient. Increasing RremoveWthEdge seems to decrease the average clustering coefficient
linearly. This behavior is coherent since most triangles are found within the communities;
therefore, removing within edges is likely to remove these triangles.

Regarding the insertion of between edges, we note that there are only few edges between
the communities at the first timestamp. Consequently, the first between edges inserted are
unlikely to form new triangles. Thus, the measure decreases quickly for low values of the
parameter. However, when more between edges are inserted, triangles are more likely to be
created. Consequently, the drop tends to stabilize for larger parameter values. Conversely, the
increase in parameters RaddWthEdge or RremoveBtwEdge tends to slightly improve the clus-
tering coefficient. This is coherent since both operations improve the community structure.

Finally, the macro-update operations (Fig. 11) have little impact on the average cluster-
ing coefficient. Consequently, the proposed approach for the generation of dynamic social
networks seems relevant since it does not degrade the community structure over time.

4.1.2 Diameter

Figures 12 and 13 present the evolution of the graph diameter, defined as the longest shortest
path between any pairs of vertices. If the graph contains several disconnected components,
the diameter is the longest shortest path computed in considering each component indepen-
dently. The value of the diameter in the generated graphs remains lower than 11, which is in
accordance with the small-world property observed in many real networks.

When parameter RremoveBtwEdge increases (ratio of between edges removed), we can dis-
tinguish three phases.When it is between 0 and 0.3, the graph contains a large connected com-
ponent composed of communities connected by only few edges (the higher RremoveBtwEdge,
the fewer the number of between edges). Consequently the diameter increases. However, once
sufficient between edges have been removed (i.e., RremoveBtwEdge > 0.3 in our experiments),
a community can be completely disconnected. When it occurs, the diameter is computed on
each connected component and cannot be greater than the diameter of the whole graph.
This behavior explains the drop in the diameter when 0.3 < RremoveBtwEdge ≤ 0.5. When
RremoveBtwEdge > 0.5, there are no more between edges and consequently the diameter
remains stable.

Adding vertices tends to increase the diameter because inserted vertices may be connected
to a vertex belonging to the previous longest shortest path; this leads the diameter being
increased by one.

Conversely, the vertices from different communities are more likely to be connected when
between edges are added; this tends to decrease the diameter. Note that removing vertices
also decreases the diameter since removed vertices are those having a single neighbor.

123

DANCer: dynamic attributed networks with community... 131

Fig. 13 Evolution of the
diameter for macro-update
parameters ranging between 0
and 1

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

D
ia

m
et

er

Parameter value for the macro updates

Pmerge Psplit Pmigrate

Fig. 14 Evolution of the average
shortest path length for
micro-update parameters ranging
between 0 and 1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

A
vg

. S
ho

rt
es

t P
at

h
Le

ng
th

Parameter value for the micro updates

RAddVert

RAddWthEdge

RAddBtwEdge

RUpdAttr

RRemoveVert

RRemoveWthEdge

RRemoveBtwEdge

Fig. 15 Evolution of the average
shortest path length for
macro-update parameters ranging
between 0 and 1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

A
vg

. S
ho

rt
es

t P
at

h
Le

ng
th

Parameter value for the macro updates

Pmerge Psplit Pmigrate

Finally, themacro-update operations have almost no impact on the diameter. This behavior
underlines that the macro-operations maintain the small-world property.

4.1.3 Average shortest path length

The behavior of the average length of the shortest paths is depicted in Figs. 14 and 15. The
average shortest path length corresponds to the mean length of the shortest path among each
pair of vertices if such a path exists. The behavior of this measure is similar to the one
obtained for the diameter since both are based on the length of the shortest path between
pairs of vertices.

123

132 C. Largeron et al.

Fig. 16 Evolution of the
modularity for micro-update
parameters ranging between 0
and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

M
od

ul
ar

ity

Parameter value for the micro updates

RAddVert

RAddWthEdge

RAddBtwEdge

RUpdAttr

RRemoveVert

RRemoveWthEdge

RRemoveBtwEdge

4.1.4 Modularity

Figures 16 and 17 present the change in the modularity. The modularity aims at measuring if
a graph has a community structure, i.e., if there is a partition of the vertices such that vertices
within a community are more connected with vertices in the same community compared
to vertices in the others. We used the modularity measure proposed by [29] computed as
1
2m · ∑(i, j)∈V2

(
Ai, j − deg(i)·deg(j)

2m

)
· δ(i, j), where m is the number of edges in the graph,

A is the adjacency matrix of the graph and δ(i, j) is the Kronecker function evaluated to 1
if i and j belong to the same community and 0 otherwise. A graph is considered to have a
community structure if its modularity measure is above 0.3 [29].

We note that adding vertices tends to decrease the modularity slightly. This behavior is
due to the high within density of the communities generated by adding extra edges in the
graph at the first timestamp (recall that the parameter MTE is fixed to 5000). Consequently,
adding new vertices tends to reduce the density within the communities slightly, leading to a
lowermodularitywhich stabilizes above 0.6. As expected, adding between edges or removing
within edges also tends to decrease the modularity, whereas removing between edges has
unsurprisingly the opposite effect.

Regarding macro-update operations, the modularity remains relatively stable for the
migrate and split operations but drops to 0 for the merge operation. This is a known effect
of the modularity since a graph composed of a single community has a modularity equal to
0. In our experiments, after 10 timestamps, if the merge operation occurs every time (i.e.,
Pmerge = 1), the original communities are merged into a single community.

To conclude, these results demonstrate that unless extreme parameter values are used, the
generated graphs have a good community structure with respect to modularity.

4.1.5 Within inertia ratio

The evolution of the within inertia is presented in Figs. 18 and 19. The within inertia is based
only on the attribute values assigned to the vertices. It corresponds to the sum of the squared
Euclidean distance of the vertices within a community C to the center of gravity of their
community C . The within inertia ratio is simply the within inertia normalized by the total
inertia (i.e., the sum of the squared Euclidean distance of all the vertices to the center of
gravity of all the vertices). The lower the measure is, the better the homogeneity with respect
to the attribute values. Note that this measure depends on the number of communities; in

123

DANCer: dynamic attributed networks with community... 133

Fig. 17 Evolution of the
modularity for macro-update
parameters ranging between 0
and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

M
od

ul
ar

ity

Parameter value for the macro updates

Pmerge Psplit Pmigrate

Fig. 18 Evolution of the within
inertia ratio for micro-update
parameters ranging between 0
and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

In
er

tia
 W

ith
in

Parameter value for the micro updates

RAddVert

RAddWthEdge

RAddBtwEdge

RUpdAttr

RRemoveVert

RRemoveWthEdge

RRemoveBtwEdge

particular when there is only one community, the within inertia is equal to the total inertia so
the within inertia ratio is 1. This effect is observed in Fig. 19 for the merge operation.

The update attribute operation and consequently, the high values for parameter UpdAttr ,
tend to decrease the measure, confirming an improvement of the homogeneity. This behavior
can be explained by the fact that the new attribute values are bounded by the attribute values
of the vertices within the community modeling the notion of social influence. Consequently,
after several iterations, the outliers with regard to the attributes are likely to become more
similar or closer to the other vertices within the community.

The other operations have little impact on the measure since they focus on the transfor-
mation of the graph structure and not the attribute values.

4.1.6 Homophily

The homophily measure takes into account both the structure of the graph and the attribute
values assigned to the vertices. The observed homophily is the number of pairs of vertices
being similar with regard to the attribute values and being connected, normalized by the
number of edges in the graph. It can be compared to the expected homophily, which is the
number of pairs of similar vertices normalized by the number of pairs of vertices in the whole
graph (i.e., not considering edges). In our experiments, we considered that two vertices v and
v′ are similar iff. ∃A ∈ A s.t. |vA − v′

A| < 2σA
K where σA is the standard deviation parameter

associated with the attribute A and K is the number of communities in the graph. If the

123

134 C. Largeron et al.

Fig. 19 Evolution of the within
inertia ratio for macro-update
parameters ranging between 0
and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

In
er

tia
 W

ith
in

Parameter value for the macro updates

Pmerge Psplit Pmigrate

Fig. 20 Evolution of the
observed homophily for
micro-update parameters ranging
between 0 and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

O
bs

er
ve

d
H

om
op

hi
ly

Parameter value for the micro updates

RAddVert

RAddWthEdge

RAddBtwEdge

RUpdAttr

RRemoveVert

RRemoveWthEdge

RRemoveBtwEdge

observed homophily measure is above the expected homophily, we can conclude that similar
vertices are more likely to be connected.

From Fig. 20, we observe that the homophily increases with RUpdAttr , the ratio of update
attributes. The reason for this behavior is the same as the one described for the within inertia
measure. The vertices having an updated attribute value are more likely to be similar to other
vertices in their community, and consequently, the homophily increases, while the expected
homophily remains stable (Fig. 22). Conversely, adding between edges tends to decrease the
homophily since these edges are more likely to connect vertices which are not similar.

For the macro-operations described in Fig. 21, we note that the homophily increases
to its maximum when Pmerge = 1 (i.e., when the merge operation is performed at each
timestamp). This is due to the definition of the similarity threshold which takes into account
the number of communities and to the fact that for Pmerge = 1, the final graphs contain only
one community. Indeed, since the attribute values are generated according to a normal law,
given our similarity definition, the probability that two vertices are similar within the final
community is 0.95. Nonetheless, the observed homophily always remains higher or equal to
the expected homophily presented in Fig. 23.

4.2 Communities operations

The second set of experiments aims at illustrating different evolutions of a network over time.
Figures 24, 25 and 26 are, respectively, dedicated to three dynamic networks generated with
different values for parameters Pmerge governing the merge operation and Pspli t governing

123

DANCer: dynamic attributed networks with community... 135

Fig. 21 Evolution of the
observed homophily for
macro-update parameters ranging
between 0 and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

O
bs

er
ve

d
H

om
op

hi
ly

Parameter value for the macro updates

Pmerge Psplit Pmigrate

Fig. 22 Evolution of the
expected homophily for
micro-update parameters ranging
between 0 and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
xp

ec
te

d
H

om
op

hi
ly

Parameter value for the micro updates

RAddVert

RAddWthEdge

RAddBtwEdge

RUpdAttr

RRemoveVert

RRemoveWthEdge

RRemoveBtwEdge

Fig. 23 Evolution of the
expected homophily for
macro-update parameters ranging
between 0 and 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
xp

ec
te

d
H

om
op

hi
ly

Parameter value for the macro updates

Pmerge Psplit Pmigrate

the split operation. In the figures, each community corresponds to a color and a numeric
identifier. Each column in the figures is a graph at a timestamp, and each row corresponds to
a community evolution. A circle is a community, and an edge is the transition of a community
from one timestamp to the next, illustrating merges and splits. We considered that when a
community is split, it leads to two different communities. Similarly, when two communities
are merged, the resulting community is considered as a new one. The edges and labels linking
the communities indicate the number of vertices shared by two communities at consecutive
timestamps.

123

136 C. Largeron et al.

Fig. 24 Communities evolution when Pspli t = 0.5 (split), Pmerge = 0.5 (merge) and K = 5

Fig. 25 Communities evolution when Pmerge = 0 (merge), Pspli t = 0.5 (split) and K = 3

In Fig. 24, parameters Pmerge and Pspli t are equal (0.5); consequently, the number of
communities remains relatively stable over time. The number of communities is at most
equal to 7 and at least equal to 5. During the 20 timestamps, 10 merge operations and 12 split
operations occur.Note that at the timestamp8, the community 16 comes from themerge of two
communities (14 and 15) and is then split to build the communities 20 and 21 (timestamp 9).

In Fig. 25, only the split operation occurs (i.e., Pspli t = 0.5 and Pmerge = 0). As expected,
the number of communities increases over time, from 3 communities in the first graph to 14
communities in the last generated graph.

Conversely, in Fig. 26, only themerge operation occurs (i.e., Pspli t = 0 and Pmerge = 0.5).
This time, the number of communities decreases over time: The ten original communities
are merged into a single community at the last timestamp. In this example, communities 0
and 2 remain very stable over time and are merged at the last two timestamps.

4.3 Runtimes

The last set of experiments presents the running times for the network generation depending
on the parameters. The times include the generation of all the graphs corresponding to the
network. Note, however, that the first graph which requires more time can be saved, and in
a second phase, the dynamic updates with varying parameter settings can be performed. The

123

DANCer: dynamic attributed networks with community... 137

Fig. 26 Communities evolution when Pmerge = 0.5 (merge), Pspli t = 0 (split) and K = 10

 0

 10

 20

 30

 40

 50

 60

 70

 1 3 5 7 9 11 13 15 17 19

R
un

tim
e

(s
ec

)

Timestamp

Base (4.1 %)

Remove Vert (0.4 %)

Add Vert (20.4 %)

Update Attr (7.3 %)

Remove Wth. Edge (4.4 %)

Add Wth. Edge (8.5 %)

Remove Btw. Edge (17.2 %)

Add Btw. Edge (23.7 %)

Migrate (0.0 %)

Merge (3.6 %)

Split (5.1 %)

Fig. 27 Change in the runtime over 20 timestamps for each micro- and macro-operations. The values are
cumulative, i.e., the reported value for an operation at a given timestamp includes the sum of the runtimes for
this operation during the previous timestamps. The percentage corresponds to the ratio between the sum of
the runtimes for an operation at each timestamp and the total time required to generate the dynamic graph

Fig. 28 Evolution of the runtime
w.r.t. the ratio of vertices inserted

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

R
un

tim
e

(s
ec

)

Ratio

RAddVert

experiments were performed on a PC running GNU/Linux with an Intel Core i7 and 16 Gb
of main memory.

Figure 27presents the evolutionof the runtimes for a parameter setting thatmay correspond
to real-world graphs.All themicro- andmacro-parameterswere set to 0.2, the original number
of vertices is 10,000 and the graph contains 100 communities at the first timestamp (i.e.,
N = 10,000 and K = 100). The final graph has 81,806 vertices and 328,016 edges. The

123

138 C. Largeron et al.

Fig. 29 Evolution of the runtime
w.r.t. the micro-removal
operations and the update
attribute operation

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0 0.2 0.4 0.6 0.8 1

R
un

tim
e

(s
ec

)

Ratio

RRemoveVert

RRemoveBtwEdge

RUpdAttr

RRemoveWthEdge

Fig. 30 Evolution of the runtime
w.r.t. the edge insertion
operations

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1

R
un

tim
e

(s
ec

)

Ratio

RAddWthEdge RAddBtwEdge

Fig. 31 Evolution of the runtime
w.r.t. the macro-update
operations

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1

R
un

tim
e

(s
ec

)

Probability

Pmigrate Pmerge Psplit

generation of this dynamic network composed of 20 graphs takes approximatively 1min.
The most time-consuming operation is the insertion of between edges (23.7% of the total
time) since it requires time to compute the Euclidean distance between a vertex and the
representatives. Note that since the community representatives and the attribute values change
over time, it is not possible to compute this distance in advance. The insertion of vertices is
the second most time-consuming operation (20.4%) because it also requires processing time
to insert between edges. Note that even though the split operation requires the diameter of the
communities to be computed, since the size of the communities remains usuallymuch smaller
than the size of the whole graph, it only requires 5.1% of the runtime in our experiments.

123

DANCer: dynamic attributed networks with community... 139

Figures 28, 29, 30 and 31 present the evolution of the runtime considering each parameter
independently. The parameter setting is the same as in Sect. 4.1. To better visualize the
evolution of computational costs, the micro-updates operations are displayed in three distinct
plots.

Figure 28 presents the evolution of the runtime with respect to parameter RaddVert . The
shape is clearly polynomial, and the number of inserted vertices is also polynomial. Indeed,
when RaddVert = 1, the number of vertices is doubled at each timestamp. Consequently, the
insertion cost of a single vertex remains linear, and this operation is tractable for large graphs
when used in conjunction with the vertex removal operation as demonstrated in Fig. 27.

Figure 29 depicts the runtimes for the removal and attribute update operations. The cost
of the operation consisting in removing within edges is due to the update of the edges in a
triangle, which must be performed after each deletion to ensure the connectivity inside each
community. The runtime of the other operations remains almost constant with respect to their
parameter.

Regarding the edge insertion presented in Fig. 30, the runtime slightly increases but
remains tractable even for high parameter values.

Finally, the runtimes for the macro-update operations are presented in Fig. 31. Again, the
runtime shows a slight increase, particularly for the split operation. This cost is mainly due
to the computation of the communities diameter required to select which community to split.

To conclude this experimental section, the obtained results demonstrate that the proposed
approach is able to generate large graphs (up to 250,000 vertices) in a reasonable time (about
70 s). Moreover, our approach allows the generation of dynamic graphs having a community
structure, and the same properties as real graphs. In addition, these properties can be degraded
by varying the parameter values.

5 Related works

Synthetic graphs are important for developing scenarios, extrapolations, and simulations,
when real graphs are impossible to collect or expensive to obtain. This leads to design
models and generators, which are very useful for assessing the quality of algorithms for tasks
such as community detection or link prediction.

5.1 Static networks

There is a large bibliography regarding network generation for graphs that are not dynamic.
Among the best known generative models, we cite the classic Erdős-Rényi (ER) model [10],
which generates random graphs where edges are formed independently and with uniform
probability or the Barabási–Albert (BA) model [5] that generates random scale-free net-
works. Other notable synthetic generators are the mathematical tractable models, such as
the Stochastic Kronecker Graph model [24], and its generalization, the Multifractal Network
model [6,30]. With regard to the networks with community structure, the first generator was
introduced by [11]. Several extensions of this GN benchmark have been proposed notably
the LFR benchmark [18,19]. However, all these generators synthesize static graphs without
attributes. Concerning networks with attributes, the generators are based on the homophily
hypothesis, and they suppose that vertices having the same characteristics are more likely to
be connected [1,12,17,33].

Recently, in [31], a frameworkwhich jointlymodels network structure and vertex attributes
is presented. The framework learns the attribute correlations in the observed network and

123

140 C. Largeron et al.

uses a generative graph model, such as the Kronecker Product Graph Model (KPGM) [24]
and Chung Lu Graph Model (CL) [7], to compute structural edge probabilities. The model
combines the attribute correlations with the structural probabilities to sample networks con-
ditioned on attribute values, while keeping the expected edge probabilities and degrees of
the input graph model. Thus, the structural characteristics provided by the graph models are
maintained when incorporating the attribute dependencies. This model generalizes and uses
a common key structural assumption of generative network models, where the model incre-
mentally selects an observed edge from all possible edges and inserts it into the generated
network.

Finally, very few generators allow the construction of a network having both a community
structure and attributes associated with the vertices. Dang presents a basic extension of the
BA model [5], without experiments confirming the properties of the generated graphs [8].
The generator introduced in [20] is the static version of the model described in this article.

5.2 Dynamic networks

Very few generators allow a dynamic network composed of a sequence of evolving graphs
to be constructed.

[25] empirically observed that real networks become denser over time, with the average
degree increasing and the diameter decreasing in many cases. From these conclusions, they
provided two models of graph generators. The first model, Community Guided Attachment
(CGA), is a probabilistic generative model, which produces hierarchical graphs with a den-
sification power law such that the linkage probability between nodes decreases as a function
of their relative distance in the hierarchy. An extended version has been proposed in which
nodes and their out-links are added over time. As shown by the authors, this dynamic version
exhibits different behaviors according to the parameter setting: densification power law with
heavy-tailed in-degrees, constant average degree with heavy-tailed in-degrees, constant in-
and out-degrees with high probability.

Forest Fire, the second model of evolving graphs introduced in [25], seeks to capture the
average degree increase as well as the shrinking diameter that real networks tend to have and
that the Community Guided Attachment models do not exhibit.

Another recursive generative model, introduced in [23], satisfies the two properties of
densification power law and shrinking diameters. The recursive process of graph construction
is based on the Kronecker product of the adjacency matrix of current graph at time t with
itself to generate the graph at time t + 1. This process generates self-similar Kronecker
graphs (growing sequence of graphs) by iterating the Kronecker product, and it has been
shown that the aforementioned properties of time-evolving networks are satisfied but with a
staircase effect in the degree distribution. A stochastic version of Kronecker graphs was then
introduced to overcome this issue.

In [2], the authors studied properties of several time-evolving weighted graphs. They
observe that they exhibit a power law for the largest eigenvalue of the adjacency matrix
and the number of edges over time. They also show that the weight of a given edge and
weights of its neighboring two nodes are correlated. They proposed a generator satisfying
these properties and based on the same principle as in [23]. The recursive process starts with
a tensor representation of the initial graph and use recursive tensor multiplications to produce
growing graphs over time.

In a recent work, [15] propose a model for generating simple dynamic benchmark graphs
for community detection. The model, based on the classic stochastic block model, considers
a periodic evolution, such that the same configuration of communities is repeated in cycles

123

DANCer: dynamic attributed networks with community... 141

and is invariant under time reversal. It generates three classes of dynamic benchmark graphs
for time-evolving networks, such that at each snapshot, the partition into communities is well
defined. In this benchmark, a network is divided into a number of subgraphs or communities.
The cyclical evolution of the graph is modeled by two dynamic processes: growing/shrinking
and merging/splitting of the communities. From this configuration, three benchmarks can be
generated: The first one consists in communities which grow and shrink in size with a fixed
total number of nodes in the network, while the second considers communities that merge
and split. The third one is a mixed combination of the last operations.

In [14], the authors studied the generation of dynamic random graphs such that the graph
changes dynamically by node and edge insertions or deletions and where the graph incorpo-
rates a clustering structure (communities), which also changes dynamically. They describe
a random dynamic graph generator, which is based on the Erdős-Rényi model by adding
mechanism of dynamics to the model accounting for evolving events on clustering structure.
Themodel uses a custom graph generator based on the planted partitionmodel that introduces
dynamics by splitting and merging clusters in the ground truth clustering. In each time step,
one edge or vertex is added or deleted according to the probabilities prescribed by the current
ground truth clustering. The actual graph structure follows the ground truth clustering with
some delay. They also provide an efficient implementation of this generator in [13].

The aforementioned generators allow the construction of dynamic networks, exhibiting
or not a community structure but, none of them takes into account the characteristics of the
vertices. The interest of discovering communities in dynamic networks where vertices are
associated with attributes led us to develop this tool.

6 Conclusion

Interrelated data that are modeled in graphs are becoming ubiquitous in all disciplines that
tend to amass digital information. These data, in the form of large networks, are complex and
difficult to replicate. Real-world information networks have fundamental properties, such as
power law degree distribution, the small-world phenomenon, homophily and social influ-
ence. Another central property is that information networks tend to organize according to an
underlying modular structure called communities. The proliferation of complex information
networks in diverse fields of application has led to the proposal of a panoply of approaches to
analyze and discover relevant patterns in these networks. However, comparing and assessing
these approaches on effectiveness and efficiency is a significant challenge. The challenge is
compounded by the lack of large real networks with ground truth that could be easily and
freely accessible to researchers. The alternative is to synthesize data, and many approaches
have been suggested. However, while real-world information networks evolve continuously,
very little has been proposed so far in terms of generation of dynamic complex networks that
have attribute values attached to the nodes. In this paper, we proposed a generator, DANCer,
for attributed dynamic graphs with embedded community structure. After introducing the
fundamental properties of real-world attributed graphs, we presented a detailed algorithm
that malleably, with adjustable parameters, can produce a sequence of evolved attributed
graphs that abide by the mentioned properties. Our wide-ranging experiments demonstrate
the effectiveness of our algorithm and its scalability to relatively large networks. We provide
a freely available tool to efficiently generate dynamic attributed networks with community
structure that closely obey the properties of real large information networks. Note that our
generator can trivially be extended to produce multiplex networks, also called multilayered

123

142 C. Largeron et al.

or multi-level networks, where all nodes are omnipresent in all levels and intra-level edges
connect the representations of a node from one level to the other. This conversion is possi-
ble by simply converting each timestamp graph into a layer of the multiplex network and
adding the necessary intra-level edges. It remains that other less trivial extensions could also
be beneficial, in particular the possibility to include categorical attribute values. Currently,
DANCer can only generate attributed networks with numerical values. Another useful addi-
tion could be the possibility of overlapping communities. This can be done for the initial
graph before the changes, as well as at the level of the macro-operations allowing nodes to
join a new community while remaining in their original one. Lastly, one could also consider
the generation of networks having communities with a hierarchical structures, a hierarchy to
be considered in the dynamic operations.

Appendix 1: Additional functions

See Table 4.

Table 4 Additional functions used in the algorithms

Operations Description

deg(v) Degree of vertex v

degw(v) Degree of vertex v, counting only edges connecting v to vertices in its
community

degb(v) Degree of vertex v, counting only edges connecting v to other communities

neig(v) Set of neighbors of vertex v

neigwth(v) Set of neighbors of vertex v inside its community

neigbtw(v) Set of neighbors of vertex v outside its community

d(v, v
′
) Euclidean distance between the attributes of the two vertices v and v

′

dist (v,C) distance of the vertex v to the community C defined by
∑

v
′ ∈C

d(v,v
′
)

|C | + min
v
′ ∈C

d(v, v
′
)

Sample(S, L) Randomly sample L values from the set S

RandUni (S) Returns an element of the set S selected uniformly and randomly

RandPL (m) Returns a natural number belonging to {1, . . . ,m} randomly selected using

the density function f : x �→ x−2
∑m

i=1 i
−2

RandEdgeWth(V) Returns a vertex u from V randomly selected according to the probability

density function f : u �→ deg(u)
∑

u
′ ∈V deg(u′

)

RandEdgeBtw(v, V) Returns a vertex u from V randomly selected according to the probability

density function f : u �→ d(v,u)−1
∑

u
′ ∈V d(v,u′

)−1

KMedoids(V, K) Performs clustering on the vertices of V using KMedoids method to build
K clusters

123

DANCer: dynamic attributed networks with community... 143

Appendix 2: User manual

The software DANCer as well as a detailed user manual is available at http://perso.univ-st-
etienne.fr/largeron/DANC_Generator/. The user interface of DANCer generator is formed
by three views as shown in Fig. 9.

Graph parameters

The parameters are on the left panel. They correspond to the parameters of algorithms given
in Table 2. They are detailed below.

Communities

– K : Number of communities in the first graph;
– n : Number of vertices in the first graph;
– Nb. Rep. : Number of representatives in each community. The higher is the value, the

slower is the computation;
– Theta : Percentage of vertices assigned to a random community. The higher is this value,

the less likely the community will be homogeneous w.r.t. the attributes.

Attributes

– Nb. Attr. : Number of real attributes associated with the vertices. Each attribute is
distributed according to centered normal distribution with mean equals to 0;

– Dev. i : Standard deviation of the i th attribute.

Edges

– Edges Within :Maximumnumber ofwithin community edges added to a newly inserted
vertex;

– Edges Between : Maximum number of between community edges added to a newly
inserted vertex

– MT E : Minimum number of edges in the resulting graph (up to a graph where commu-
nities are cliques).

Micro-dynamic

– Proba Micro : The probability to perform a micro-update operation;
– Add V ertex : The ratio of vertices created at each timestamp. When set to 1, the number

of vertices is doubled at each timestamp;
– Remove V ertex : The ratio of vertices removed at each timestamp;
– Update Attr. : The ratio of vertices having their attribute values updated;
– Add Btw. Edges : The ratio of edges inserted connecting two vertices in different

communities;
– Remove Btw. Edges : The ratio of edges removed connecting two vertices in different

communities;
– Add Wth. Edges : The ratio of edges inserted connecting two vertices in the same

communities;

123

http://perso.univ-st-etienne.fr/largeron/DANC_Generator/
http://perso.univ-st-etienne.fr/largeron/DANC_Generator/

144 C. Largeron et al.

– Remove Wth. Edges : The ratio of edges removed connecting two vertices in the same
communities;

Macro-dynamic

– T imestamps : The number of timestamp (i.e., the number of single graphs generated to
form the dynamic network);

– Proba Merge : The probability to perform a merge operation at a single timestamp (i.e.,
merging two communities into a single one);

– Proba Spli t : The probability to perform a split operation at a single timestamp (i.e.,
split one community into two)

– Proba Migrate : The probability to perform a migrate operation at a single timestamp
(i.e., migrate vertices from a community to either a new or an existing community).

Network reproduction

– Seed parameter : A seed is used for the random number generator. It allows to reproduce
exactly the same network.

Graph visualization and manipulation

The central part of the user interface as shown in Fig. 9 allows to display the generated
network and the changes in its communities at each time step. Each graph in the sequence
can be viewed separately in the Graph tab. The sequence of graphs can also be visualized
through the timestamp scrollbar at the right side of the panel.

For each graph plotted, in the Graph View tab, we can set different options (see Fig. 32)
allowing, for example, to hide or display the edges and vertices through the Graph View
section at the right side panel. The graph can then be displayed with different layout options
(kamada-kawai, fruchtman-reynolds or self-organizing map) where the sizes of the plotted
vertices are chosen according to their degree, age or community membership. Moreover, we
can select or filter the displayed vertices according to their different events, as described in
the micro-dynamic operations, from the Select Vertices panel.

In the plotted graph, vertices of the same color are member of the same community. The
user can then interactively select or manipulate a vertex (respectively a group of vertices)
using the cursor. The informations for each node (id, degree, attributes) are displayed when
a vertex is pointed.

The community dynamics (see Figs. 24, 25, 26) are available through the Community
Dynamics tabs, in the central part of the user interface. It displays the size and the evolution
of the different communities in the sequence of graphs according to the macro-dynamic
operations (split, merge and migrate).

Graph measures

Several measures, listed in Table 3, such as modularity or homophily are computed on each
graph of the dynamic network to describe its properties, notably P1, P2, P3, P4 and P5
detailed in Sect. 2. The changes in these different measures on the sequence of graphs is
presented at the bottom of the interface as Fig. 9 shows.

123

DANCer: dynamic attributed networks with community... 145

Fig. 32 Graph options panel

Attribute measures

– Observed homophily : Ratio of edges connecting similar vertices w.r.t. their attribute
values;

– Expected homophily : Ratio of pair of similar vertices among all possible pairs of
vertices;
The difference between the expected and observed homophily allows tomeasure if similar
vertices according to the attributes tend to be more connected than dissimilar vertices
(cf. P5);

– Within inertia :Measure of the dispersion of the attribute values inside the communities
(cf. P4). A low within inertia indicates that the communities are highly homogeneous
with regard to the attribute values;

Structural measures

– Modulari t y : gives the partition modularity measure as defined by [28] (cf. P3);
– Average clustering coefficient : is given as an indication of the transitivity of connec-

tions in the network [32];
– Random clustering coefficient : gives the clustering coefficient in a Erdös–Renyi ran-

dom graph having the same number of vertices and edges;
The network average clustering coefficient is a measure of the clustering tendency of the
network (cf. P3). This observed value can be compared with the expected value com-
puted on a random graph having the same vertex set: An observed value higher than the
expected value confirms the community structure;

– Average degree : the average number of neighbors of the vertices (cf. P1);
– Average shortest path length : the average minimum number of hops required to

reach two arbitrary vertices (cf. P2). It is not computed when the graph is formed by
several disconnected components (i.e., Emax

btw = 0);
– Diameter : length of the longest shortest path between any pair of vertices (cf. P2);

123

146 C. Largeron et al.

Fig. 33 Degree distribution panel

– Nb. edges between : number of edges connecting two vertices belonging to different
communities;

– Nb. edges wi thin : number of edges connecting two vertices belonging to the same
community (cf. P3);

– Nb. edges : total number of edges in the graph, i.e., E .

Degree distribution

The bottom of the user interface includes also a panel displaying the distribution of vertex
degrees on each graph of the sequence as shown in Fig. 33.

Table 5 Predefined benchmark profiles

Parameter setting Link-based com-
munities

Attribute-based
communities

Configuration 1

PrandomCommunity = 0 Strong Strong

p = 2, σ1 = 20, σ2 = 20 (Modularity=0.64 ± 0.008) (Within inertia=0.36±0.01)

Emax
wth = 20

Emax
btw = 2

Pmicro = 0.1

RremoveV ert = 0.1

RaddV ert = 0.1

Configuration 2

PrandomCommunity = 0.8 Strong Weak

p = 2, σ1 = 2, σ2 = 2 (Modularity=0.66±0.005) (Within inertia=0.98±0.001)

Emax
wth = 20, Emax

btw = 2

Configuration 3

PrandomCommunity = 0 Weak Strong

p = 2, σ1 = 20, σ2 = 20 (Modularity=0.30±0.03) (Within inertia=0.37±0.01)

Emax
wth = 20, Emax

btw = 19

Pmicro = 0.3

RaddBtwEdge = 0.7

Configuration 4

PrandomCommunity = 0.8 Weak Weak

p = 2, σ1 = 2, σ2 = 2 (Modularity=0.32±0.06) (Within inertia=0.98±0.003)

Emax
wth = 20, Emax

btw = 19

Pmicro = 0.3

RaddBtwEdge = 0.7

123

DANCer: dynamic attributed networks with community... 147

Output files

The generated dynamic network can be saved as a collection of files, one for each time step,
under the out directory located in the same working directory as the generator. For each
graph of the sequence, the file with the extension “.graph” indicates the composition of the
graph (vertices and edges), and the “parameters” file enumerates all the parameters used by
the generator.

– Parameters : The parameters are output in a separated file. Each line starts by the
parameter name and its value.

– Vertices : In the graph file, the vertices section starts with the line # Vertices. Each
consecutive line describes a vertex. A line consists of an integer corresponding to the
vertex id , the list of its attribute values separated by “;” and an integer corresponding to
the vertex community id .

– Edges : This section starts with the line # Edges. Each consecutive line corresponds to
an edge. A line is composed of two vertex ids separated by a “;”.

– Measures : the measures are saved in a separated file. Each line gives the measure name
and its consecutive values at each time step.

Appendix 3: Benchmark profiles

Table 5 presents a first network (Configuration 1 obtained with parameters given in Table 6),
having a good community structure according to the relationships and the attributes and then
three other networks in which the link-based structure or the attribute-based structure or the
both are weaken. Table 7 presents modifications related to the dynamicity of the first network.
The parameter setting is given for each network as well as its characteristics (modularity and
within inertia).

Table 6 Default parameters Default parameters

seed = 60713489427403

K = 5, N = 2000, NbRep = 10, T = 10

PrandomCommunity = 0

p = 2, σ1 = 20, σ2 = 20

Emax
wth = 20, Emax

btw = 2, MT E = 2000

Pmicro = 0.1

RremoveV ert = 0.1, RaddV ert = 0.1

Rupdated Attributes = 0

RremoveWthEdge = 0, RaddWthEdge = 0

RremoveBtwEdge = 0, RaddBtwEdge = 0

Pmigrate = Pmerge = Pspli t = 0

123

148 C. Largeron et al.

Table 7 Benchmark profiles derived from configuration 1 by changing dynamicity

Dynamic micro Dynamic macro

Configuration 1

Link-based communities strong Weak Weak

Pmicro = 0.1 Pmigrate = 0

Modulari t y = 0.64 ± 0.008 RremoveV ert = 0.1 Pmerge = 0

Attribute-based communities strong RaddV ert = 0.1 Pspli t = 0

Rupdated Attributes = 0

Within Inertia = 0.36 ± 0.01 RaddWthEdge = 0

RremoveWthEdge = 0

RremoveBtwEdge = 0

RaddBtwEdge = 0

Configuration 1.2

Link-based communities strong Strong Strong

Pmicro = 0.5 Pmigrate = 0.3

Modulari t y = 0.63 ± 0.01 RremoveV ert = 0.3 Pmerge = 0.3

Attribute-based communities strong RaddV ert = 0.2 Pspli t = 0.3

Rupdated Attributes = 0.3

Within Inertia = 0.38 ± 0.02 RaddWthEdge = 0.3

RremoveWthEdge = 0.1

RremoveBtwEdge = 0.3

RaddBtwEdge = 0.1

Configuration 1.3

Link-based communities strong Weak Strong

Pmicro = 0.1 Pmigrate = 0.3

Modulari t y = 0.63 ± 0.01 RremoveV ert = 0.1 Pmerge = 0.3

Attribute-based communities strong RaddV ert = 0.1 Pspli t = 0.3

Rupdated Attributes = 0

Within Inertia = 0.42 ± 0.06 RaddWthEdge = 0

RremoveWthEdge = 0

RremoveBtwEdge = 0

RaddBtwEdge = 0

Configuration 1.4

Link-based communities (strong) Strong Weak

Pmicro = 0.5 Pmigrate = 0

Modulari t y = 0.68 ± 0.04 RremoveV ert = 0.3 Pmerge = 0

Attribute-based communities strong RaddV ert = 0.2 Pspli t = 0

Rupdated Attributes = 0.2

Within Inertia = 0.36 ± 0.01 RaddWthEdge = 0.3

RremoveWthEdge = 0

RremoveBtwEdge = 0.3

RaddBtwEdge = 0

123

DANCer: dynamic attributed networks with community... 149

References

1. Akoglu L, Faloutsos C (2009) RTG: a recursive realistic graph generator using random typing. Data Min
Knowl Discov 19(2):194–209

2. Akoglu L et al (2008) RTM: laws and a recursive generator for weighted time-evolving graphs. In: Eighth
IEEE international conference on data mining, 2008 (ICDM’08). IEEE, pp 701–706

3. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97
4. Amaral LAN et al (2000) Classes of small-world networks. Proc Natl Acad Sci 97(21):11149–11152
5. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
6. Benson AR et al (2014) Learning multifractal structure in large networks. In: Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 1326–1335
7. Chung F, Lu L (2002) The average distances in random graphs with given expected degrees. Proc Natl

Acad Sci 99(25):15879–15882
8. Dang TA (2012) Analysis of communities in social networks. Ph.D. thesis, Université Paris 13
9. Easley D, Kleinberg J (2010) Networks, crowds and markets: reasoning about a highly connected world.

Cambridge University Press, Cambridge
10. Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61
11. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad

Sci 99(12):7821–7826
12. Gong NZ et al (2012) Evolution of social-attribute networks: measurements, modeling, and implications

using Google+. In: ACM conference on internet measurement conference (IMC). ACM, pp 131–144
13. Görke R et al (2012) An efficient generator for clustered dynamic random networks. Springer, Berlin
14. Görke R, Staudt C (2009) A generator for dynamic clustered random graphs. Tech. rep., ITI Wagner,

Department of Informatics, Universität Karlsruhe. Informatik, Uni Karlsruhe, TR 2009-7
15. Granell C et al (2015) A benchmark model to assess community structure in evolving networks. CoRR

arXiv:1501.05808
16. Holland PW, Leinhardt S (1971) Transitivity in structural models of small groups. Comp Group Stud

2:107–124
17. Kim M, Leskovec J (2012) Multiplicative attribute graph model of real-world networks. Internet Math

8(1–2):113–160
18. Lancichinetti A, Fortunato S (2009) Benchmarks for testing community detection algorithms on directed

and weighted graphs with overlapping communities. Phys Rev E 80(1):016118
19. Lancichinetti A et al (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E

78(4):046110
20. Largeron C et al (2015) Generating attributed networks with communities. PLoS ONE 10(4):e0122777
21. Lazarsfeld PF, Merton RK (1954) Friendship as a social process: a substantive and methodological

analysis. Freedom Control Mod Soc 18(1):18–66
22. Leskovec J et al (2008) Microscopic evolution of social networks. In: ACM SIGKDD international

conference on knowledge discovery and data mining (KDD), pp 462–470
23. Leskovec J et al (2005a) Realistic, mathematically tractable graph generation and evolution, using kro-

necker multiplication. In: Knowledge discovery in databases: PKDD 2005. Springer, Berlin, pp 133–145
24. Leskovec J et al (2010) Kronecker graphs: an approach to modeling networks. J Mach Learn Res 11:985–

1042
25. Leskovec J et al (2005b) Graphs over time: densification laws, shrinking diameters and possible explana-

tions. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining. ACM, pp 177–187

26. McPherson M et al (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27(1):415–
444

27. Milgram S (1967) The small-world problem. Psychol Today 2:60–67
28. Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys

Rev E 74(3):036104
29. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E

69(2):026113
30. Palla G et al (2010) Multifractal network generator. Proc Natl Acad Sci 107(17):7640–7645
31. Pfeiffer JJ III et al (2014) Attributed graph models: modeling network structure with correlated attributes.

In: Proceedings of the 23rd international conference on World Wide Web. ACM, pp 831–842
32. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442
33. Wong LH et al (2006) A spatial model for social networks. Phys A Stat Mech Its Appl 360(1):99–120

123

http://arxiv.org/abs/1501.05808

150 C. Largeron et al.

C. Largeron is Professor at Jean Monnet University, and she is mem-
ber of the Data intelligence group at the Hubert Curien Laboratory. She
received her Ph.D. in computer science from Claude Bernard Univer-
sity (Lyon—France) in 1991 and then her HDR from Jean Monnet Uni-
versity in 2004. Her main interests include data mining and information
retrieval, and her current research focuses on developing methods to
efficiently deal with data such as XML documents or social networks.
She has served as program committee member of international confer-
ences, and she has been invited as reviewers by several journals (KAIS,
Pattern Recognition Letters, etc).

P. N. Mougel holds a Ph.D. in Computer Science from INSA-Lyon
(2012). His research interests are mainly related to data mining and
its applications, in particular constraint-based approaches for network
analysis.

O. Benyahia received a Master degree from Jean Monnet University of
Saint-Étienne, France, in 2012. He is currently a Ph.D. student, under
the supervision of Christine Largeron, at Hubert Curien Laboratory and
Jean Monnet University. His research interests include data mining,
graph mining, social network analysis, community detection.

123

DANCer: dynamic attributed networks with community... 151

O. R. Zaïane is a Professor in Computing Science at the University of
Alberta, Canada, and Scientific Director of the Alberta Innovates Cen-
tre for Machine Learning (AICML). He obtained his Ph.D. from Simon
Fraser University, Canada, in 1999 under the supervision of Dr. Jiawei
Han. He has research interests in data analytics, namely novel data min-
ing algorithms, web mining, text mining, image mining, social network
analysis, data visualization and information retrieval with applications
in Health Informatics, e-Learning and e-Business. He has published
more than 200 papers in refereed international conferences and journals
and taught on all six continents. Osmar Zaiane received the ICDM Out-
standing Service Award in 2009 and the 2010 ACM SIGKDD Service
Award.

123

	DANCer: dynamic attributed networks with community structure generation
	Abstract
	1 Introduction
	2 Model
	2.1 Hypothesis and properties of a graph
	2.2 Dynamic operations
	2.2.1 Micro-operations
	2.2.2 Macro-operations

	3 Algorithm
	3.1 Micro-dynamic updates
	3.1.1 Macro-updates

	3.2 DANCEer user interface

	4 Experiments
	4.1 Impact of the parameters on graph measures
	4.1.1 Average clustering coefficient
	4.1.2 Diameter
	4.1.3 Average shortest path length
	4.1.4 Modularity
	4.1.5 Within inertia ratio
	4.1.6 Homophily

	4.2 Communities operations
	4.3 Runtimes

	5 Related works
	5.1 Static networks
	5.2 Dynamic networks

	6 Conclusion
	Appendix 1: Additional functions
	Appendix 2: User manual
	Graph parameters
	Communities
	Attributes
	Edges
	Micro-dynamic
	Macro-dynamic
	Network reproduction

	Graph visualization and manipulation
	Graph measures
	Attribute measures
	Structural measures
	Degree distribution

	Output files

	Appendix 3: Benchmark profiles
	References

