
Unsupervised Class Separation of Multivariate Data
through Cumulative Variance-based Ranking

Andrew Foss
Department of Computing Science

University of Alberta
Edmonton, Canada

afoss@cs.ualberta.ca

Osmar R. Zaı̈ane
Department of Computing Science

University of Alberta
Edmonton, Canada

zaiane@cs.ualberta.ca

Sandra Zilles
Department of Computer Science

University of Regina
Regina, Canada

zilles@cs.uregina.ca

Abstract—This paper introduces a new extension of outlier
detection approaches and a new concept, class separation
through variance. We show that accumulating information
about the outlierness of points in multiple subspaces leads to a
ranking in which classes with differing variance naturally tend
to separate. Exploiting this leads to a highly effective and effi-
cient unsupervised class separation approach, especially useful
in the difficult case of heavily overlapping distributions. Unlike
typical outlier detection algorithms, this method can be applied
beyond the ‘rare classes’ case with great success. Two novel
algorithms that implement this approach are provided. Ad-
ditionally, experiments show that the novel methods typically
outperform other state-of-the-art outlier detection methods on
high dimensional data such as Feature Bagging, SOE1, LOF,
ORCA and Robust Mahalanobis Distance and competes even
with the leading supervised classification methods.

Keywords-Outlier Detection; Classification; Subspaces.

I. INTRODUCTION

A common problem in many data mining and machine
learning applications is, given a dataset, to identify data
points that show significant anomalies compared to the
majority of the points in the dataset. These points may be
noisy data, which one would like to remove from the dataset,
or may contain information that is particularly valuable for
the identification of patterns in the data.

The domain of outlier detection [1], [2] deals with the
problem of finding such anomalous data, called outliers.
Outlier detection can be viewed as a special case of unsu-
pervised binary class separation in the case of ‘rare classes’.
The dataset is separated into a large class of ‘normal cases’
and a small class of ‘rare cases’ or ‘outliers’.

Outlier detection is particularly problematic as the di-
mensionality d of the given dataset increases. Problems are
often due to sparsity or due to the fact that distance-based
approaches fail because the relative distance between any
pair of points tends to become relatively the same, see [3].

One idea to overcome such problems is to rank outliers
in the high-dimensional space according to how consistently
they are outliers in low-dimensional subspaces, in which out-
lierness is easier to assess. To this end, Lazarevic and Kumar
developed Feature Bagging [4] and He et al. SOE1 [5], both

A
tt

ri
b

u
te

 2

Attribute 1

A
tt

ri
b

u
te

 2

Attribute 1

A
tt

ri
b

u
te

 2

Attribute 1

A
tt

ri
b

u
te

 2

Attribute 1

Figure 1. A point that is an outlier in a 2-dimensional space but not in
any of the two corresponding 1-dimensional spaces.

taking an ensemble approach combining the outlier results
over subspaces. SOE1 is remarkably simple, summing the
local densities of each point for each individual attribute.
While SOE1 looks only at 1-dimensional subspaces (i.e., at
single attributes), Feature Bagging combines the results of
the well-known LOF outlier detection method [6] applied to
random subspaces with d/2 or more attributes (out of a total
of d attributes). However, both methods have weaknesses.

SOE1. Looking only at 1-dimensional subspaces is very
efficient but not always effective. It is simple to give ex-
amples showing when this may lead to missed information;
Figure 1 illustrates such a case. The point in the upper right
corner is not a clear outlier with respect to either attribute
1 or attribute 2, but is obviously an outlier in the two-
dimensional space. In two dimensions this is obvious, but the
likelihood of such a scenario arising and being significant
clearly declines as the subspace size increases — due to the
phenomenon explored in [3].

Feature Bagging. Once the LOF algorithm, applied in the
subspaces, becomes less effective (as d/2 rises beyond the
dimensionality barrier shown by [3], see Section II), bagging
will become less effective, too.

Motivated by that, we propose a method that employs a
stable outlier detection algorithm for subspaces of a fixed
low dimensionality k, 1 < k << d, and combines the
results of that algorithm over all k-dimensional subspaces
to provide an outlier ranking in d dimensions.

This results in two major and novel contributions.

Contribution to Outlier Detection: We provide a new
framework for outlier detection in an arbitrary number of
dimensions, based on rankings obtained by investigating
low-dimensional subspaces (as opposed to Feature Bagging)
that consist of more than one attribute (as opposed to SOE1).
Experiments show that our method is superior not only
to SOE1 and Feature Bagging, but also to state-of-the-art
outlier detection algorithms designed for multi-variate data.
Those algorithms are the two distance-based methods ORCA
[7] and Robust Mahalanobis Distance (RMD) [8], and the
density-based LOF-method [6].

Contribution to Class Separation: Our outlier ranking
can be applied to unsupervised class separation even when
neither one of the classes is ‘rare’ — with marked success.
Class separation by means of an outlier score has, inciden-
tally, been used indirectly for the sole purpose of validating
outlier detection approaches [4], [5]. For lack of ground
truth, unbalanced binary class training data were used with
the assumption that the rare class points are outliers vis-à-vis
the dominant class [9]. In this work, we not only separate
balanced as well as unbalanced classes of high dimensional
data but also elucidate the phenomenon that allows this class
separation.

The problems we address here are binary class separation
problems in which the two classes are assumed to differ in
variance. We argue that, for two underlying classes A and B
of different variance, our outlier ranking basically separates
all points in A from all points in B, even if the two classes
overlap completely and are of the same size. As we will
explain below, this is because points in the class of high
variance are more likely to be outliers consistently in many
low-dimensional subspaces and are thus ranked higher in the
resulting outlier ranking.

We test this experimentally with positive results: not only
is our method, applied to the case of balanced classes,
frequently superior to other outlier detection methods, but
it can even compete with supervised classification methods,
which are fed with labelled training data.

II. RELATED WORK

Only few existing methods can cope with the problem of
outlier detection in high-dimensional data, due to sparsity.
The effectiveness of most common methods declines be-
cause they rely on distances between points, something that
becomes less meaningful in high dimensionality, because the
distance between any two points tends to become relatively
the same, cf. [3]. Real-world datasets frequently have large
numbers of attributes so this poses a significant problem
especially because approximation schemes in general and
tree indices in particular tend to break down with more than
10-15 dimensions [3]. Beyond this dimensionality barrier,
algorithms that work in the full dimensional space face
considerable challenges in both efficiency and effectiveness.

This is the primary motivation for using information about
outliers in lower-dimensional subspaces of the full high-
dimensional space in order to determine which points are
outliers in the full space.

While the literature on anomaly detection is vast, very few
methods aim at investigating subspaces in high-dimensional
data. Aggarwal and Yu [10] developed an evolutionary
search algorithm to find low density subspaces, though the
predominance of such spaces poses challenges, cf. [11].
Knorr and Ng [12] computed a dendogram to show the
intensional knowledge in the hierarchy of subspaces in
which a point is an outlier. Zhang and Wang [11] proposed
HighDOD, a method that uses a sample based learning
process based on the sum of the distances to the k nearest
neighbours (k-NN) to identify the subspaces in which a
given point is an outlier.

SOE1 [5] and Feature Bagging [4] represent the current
state-of-the art as far as ranking points according to their
outlierness using subspaces is concerned.1

Validating outlier detection methods was largely lacking
until the idea of using rare classes as outliers in unbalanced
supervised classification training data was introduced in [9].
Since then, others have used the separation of a rare class
from a dominant class as a means to validate an outlier
detection approach. However, the stated objective was never
class separation per-se and the data used was typically heav-
ily unbalanced for the exact purpose of validating outliers.
Exploiting outliers for genuine class separation was never
intended or explained.

III. THE T∗ FRAMEWORK

We assume a dataset D ⊂ Rd in d dimensions. Each
of the dimensions represents a different attribute. For every
point x ∈ D and every i ∈ {1, . . . , d} we denote by xi

the value in the ith attribute of x, i.e., x = (x1, . . . , xd). If
k ≤ d and S = {i1, . . . , ik} ⊆ {1, . . . , d}, then DS denotes
the set {(xi1 , . . . , xik

) | x ∈ D}, i.e., the projection of D
on the attributes indexed by S.

For every finite set Z, let |Z| denote the cardinality of Z.

A. Algorithmic Idea

In this section we assume an efficient algorithm Outlier,
which, given a subspace DS for a ‘small’ set S of attributes
(in our experiments, |S| = 2 is sufficient) and a point x ∈
DS , determines a degree of ‘outlierness’ of x in DS . Let

out(x, DS)

denote this degree.
We will describe two such algorithms in detail in Ap-

pendix A; however, the specific Outlier algorithm used for
this purpose is not critical for our outlier detection approach

1The work of Knorr and Ng [12] could be developed further to rank
outliers, but they have not pursued this direction so far.

in high dimensionality — other heuristics could be applied
in the same way.

Note that we have not defined what an ‘outlier’ in DS

is, since there is no unique commonly accepted definition
of that term. Different versions of the algorithm Outlier
correspond to different interpretations of the term ‘outlier
in DS’.

Our algorithmic approach to outlier detection in D can be
sketched as follows. Intuitively, our algorithm accumulates
an outlier score for every data point, by counting how often
and to which degree it is an ‘outlier’ in a set of all subspaces
of a low dimension k. The top-ranked points are considered
outliers.

1) Compute an outlier score for every point in D.
a) Set the parameter k << d (size of subspaces).
b) Let S1 ⊆ {1, . . . , d}, . . . , Sz ⊆ {1, . . . , d} be all

subsets of {1, . . . , d} of size k, i.e., |Si| = k for
all i ∈ {1, . . . , z}.

c) For every point x ∈ D, compute an outlier score

score(x) =
∑

1≤i≤z

out(x,DSi)

Note here that we assume the values of out to
be calibrated over the different subspaces, such
that a high out value in one subspace cannot
become predominant over those obtained in other
subspaces.

2) Rank the points in D with respect to their outlier
scores.

a) Compute a ranking x1, . . . x|D| over the points
in D such that the values of score(xi) are non-
increasing when i is increasing.

b) If queried for the top N outliers in D, return
x1, . . . , xN .

The crucial question in this approach is over which
subspaces we should accumulate the outlier scores, i.e., how
to choose the dimensionality k. On the one hand, taking
all subspaces of a relatively high dimension k would be
intractable. On the other hand, as argued in Section I, it is not
advisable to accumulate only over subspaces of dimension 1
and when d is large, so remains d/2.

As the experiments described in Section IV demonstrate,
a value of k = 2 is sufficient to outperform standard outlier
detection methods on typical datasets, while at the same time
resulting in a very efficient and effective method.

B. A Note on the Dimensionality d of the Original Dataset

It is important to note here that a high enough dimension-
ality d of the original dataset is essential for our method to
work as discussed in Section III-D.

Note that none of the closely related work on outlier
detection attempts genomic or proteomic data. Outlier de-
tection (classically) seeks to find individual anomalies or

rare classes in the presence of major classes or distribu-
tions. Genomic and proteomic data typically have a very
small number of interesting features and no large coherent
class(es). Thus such data has not been the focus of research
on outlier detection so far and therefore we have also not
studied this kind of data. The datasets we use for empir-
ical evaluation below have between 20 and 166 attributes.
Datasets over 10-15 dimensions can be considered ‘high’
due to the onset of high-dimensional effects [3].

C. Application to Unsupervised Class Separation

T∗ can be used for unsupervised (binary) class separation
even beyond the ‘rare classes’ case immediately, if the given
dataset fulfills the following conditions.
• The data are of high enough dimensionality for T∗ to

produce a discriminative ranking of the data points.
• The given data separate in two classes, A and B.2

• Class B is of higher variance than class A.
Under the given assumptions, we propose the following

straightforward unsupervised class separation method.
1) Run T∗ on the given dataset D to obtain a ranking

x1, . . . , x|D| of the points in D.
2) For every t ∈ {1, . . . , |D|} assign a likelihood of the

point xt being in B in a way such that this likelihood
decreases as t increases. Alternatively, if the class ratio
|A|/|B| is known, label the points x1, . . . , x|B| with
B and the remaining points with A.

The reason this method is expected to work well is based
on the same intuition that our outlier detection method is
based on:

If a point is contained in a class of high variance,
then this point is likely to be an ‘outlier’ in many
low-dimensional subspaces, and vice versa.

Let us explain this intuition in more detail, assuming
a density-based Outlier method applied in 2-dimensional
subspaces (the argument easily carries over to other cases).

First, assume a point x is ranked high in the outlier
ranking returned by T∗. Then, for ‘many’ 2-dimensional
subspaces D{i,j} of D, x is assigned a high outlier degree
in D{i,j} by the corresponding Outlier method.

This means that, for ‘many’ 2-dimensional subspaces
D{i,j} of D, x is isolated (i.e., an outlier). Since the class A
has low variance, points in A are expected to be not isolated
in ‘most’ 2-dimensional subspaces. Hence x is more likely
to belong to B than to belong to A. Consequently, if a point
has a score value above a certain threshold, this point is
most likely to belong to B.

Second, assume a point x is ranked low in the outlier
ranking returned by T∗. Then, for ‘most’ 2-dimensional
subspaces D{i,j} of D, x is not considered an outlier in
D{i,j} by the corresponding Outlier method. This means

2We assume underlying true populations A and B and denote by A and
B the respective fixed sets of datapoints contained in the given dataset D.

that, for ‘most’ 2-dimensional subspaces D{i,j} of D, x is in
a dense region. Since the class B has high variance, points
in B are expected to be isolated in ‘many’ 2-dimensional
subspaces. Hence x is more likely to belong to A than to
belong to B. Consequently, if a point has a score value
below a certain threshold, this point is more likely to belong
to A.

In particular, if the difference between the variance of A
and the variance of B is high enough, and if d is high enough
to provide a sufficient number of 2-dimensional subspaces,
we expect thus to separate basically all points in B from all
points in A — just because basically all points in B will
have higher outlier scores than any point in A.

Since this observation is totally independent of the mean
µ around which the points in a class are distributed, our
algorithm works well even if two classes overlap completely
— as long as the two classes differ significantly in variance.

Figure 2 illustrates the general phenomenon. In Example
(i), there are two equal variance classes and this results
in their members being well mixed in the outlier score
ranking. However, in Example (ii), the variances of the
two classes are different and there is a tendency for the
higher variance class cv to populate the higher outlier score
rankings. If the classes are heavily overlapping, in any given
subspace, only a few members of cv will visually appear
as outliers. However, as their underlying variance is higher,
accumulating over multiple subspaces, eventually almost all
can differentiate themselves from the lower variance class.

In fact, for many real-world datasets it is the case that they
contain two classes that differ significantly in variance. For
instance, when considering medical data, it is often the case
that the class representing healthy cases has lower variance
than the class representing unhealthy cases. To date, outlier
detection has been understood as beneficial in separating two
such classes in the case of an extreme class imbalance, i.e., if
the ‘healthy’ class is predominant in the sense that it contains
many more data points than the ‘unhealthy’ class. However,
our outlier detection method allows for unsupervised class
separation even in the case of perfectly balanced classes, as
long as the classes differ in variance.

D. Concentration of Measure

The basis of this intuition lies in the law of large numbers
and its extension by V. Milman [13] which he termed
the concentration of measure. Milman showed that this is
applicable to a large class of functions (Lipschitz) that are
smooth and have a finite mean. A measure over an ensemble
size m of independent variables strongly tends to the mean
as m → ∞. A simple example is coin tosses. If a coin
of unknown bias p is thrown m times giving the results
{X0, X1, ...}, then

∀ε > 0, P

(∣∣∣∣
∑m

i Xi

m
− p

∣∣∣∣ ≥ ε

)
≤ 2e−2ε2m (1)

O
u

tl
ie

r
S

c
o

re

Rank
Example (i)

O
u

tl
ie

r
S

c
o

re

Rank
Example (ii)

c
v

O
u

tl
ie

r
S

c
o

re

Rank
Example (i)

O
u

tl
ie

r
S

c
o

re

Rank
Example (ii)

c
v

Figure 2. In Example (i) two classes with equal variance show no
separation in the outlier ranking. In Example (ii), the difference in variance
leads to a degree of separation.

For example, if a balanced coin is thrown once there is
complete uncertainty regarding the outcome. If the coin
is thrown 1000 times, the number of heads will, in all
probability, be rather close to 500. The larger the number
of tosses, the more predictable the outcome. Similarly, high-
dimensional vectors radiating from a distribution mean will
tend to be found concentrating at a mean length which is a
function of the variance of the distribution. This is the basis
of separating concentric classes that are randomly generated
with different variances. This phenomenon is also the cause
of the phenomenon of converging maximum and minimum
interpoint distances with increasing dimensionality eluci-
dated by Beyer et al. [3].

Thus, concentration of measure, while making points
increasingly similar and thus undermining the concept of
outlierness, also improves our ability to estimate certain
properties of the underlying distributions, as we demonstrate
for variance. Equation 1 shows the bound tightens exponen-
tially with m and Beyer et al. showed empirically that the
effect is important for greater than 10-15 dimensions. An
ensemble of completely enumerated subspaces size k over
d independent dimensions will contain at least d − k + 1
independent sets of subspaces. Thus datasets with more
than 15 dimensions may exhibit this phenomenon when
an ensemble approach such as that described in this paper
(k = 2) is applied.

IV. EXPERIMENTAL RESULTS

In the framework of T*, many different heuristics for
determining outliers in low dimensionality could be plugged
in. We propose two novel and effective methods. One based
on entropy, T*ENT, and the other based on the Resolution-
based Outlier Factor (ROF) [14], called T*ROF. Both these
original algorithms are presented in Appendix A. Since
Feature Bagging uses LOF as a basis for determining outlier

scores in subspaces, we also experimented with using LOF
in the T* framework (T*LOF). While the Feature Bagging
method of [4] uses a relatively small sample of high di-
mensional spaces, T*LOF enumerates all the 2D spaces
using LOF. These three are compared with Feature Bagging,
SOE1, Robust Mahalanobis Distance (RMD), ORCA, and
full-dimensional LOF.

As it is difficult to find data with any ground truth ranking
of outliers, we consider two types of datasets for evaluation.

Type 1. The data are ranked and we expect a relationship
between this ranking and outlierness. In this case, the
accuracy of T∗is measured by a correlation with the provided
rank. As type 1 datasets we used three National Hockey
League (NHL) datasets [15], which are popular validation
sets in outlier detection research. In professional sports data,
the bulk of the players are often hard to differentiate from
each other but the top players tend to stand out on many
attributes. Players could potentially be outliers for many
reasons, not just because they are top players in the league.
However, due to the fact that many attributes (e.g., number
of goals scored or number of assists) have many players with
‘bad’ values, we expect low-ranked players to be in a fairly
dense area and thus unlikely to be outliers. For illustration,
consider Figure 3 (Appendix A). More isolated points can be
found in the upper right corner, where both attributes have
their higher and ‘better’ values. It is reasonable, therefore,
to expect a stronger correlation of an outlier ranking for the
leading players than for the less successful players.

Type 2. The data are labelled in two classes A and B
and we expect B to contain outliers more often than A. In
this case, the accuracy of the outlier algorithms is measured
by testing how many of the topmost ranked outliers are in
B, using the actual number of points in B as a cutoff. We
also measure area under the ROC curve (AUC). Type 2 data
have been exploited this way for validating outlier detection
methods before [4], [10] using ‘rare’ classes. In our case a
range of UCI datasets [16] are used; they all have higher
dimensionality and have data of two classes that are likely
to differ in variance. For example, medical data are often of
type 2.

A. Evaluation on Type 1 Data.

The NHL datasets for seasons 2003/04, 2005/06, 2006/07
(there was no 04/05 season) each provide an official rank and
values in 15 or 16 attributes for about 1000 hockey players.
The attributes vary from having fairly continuous values to
having no more than four possible values.

The algorithms are evaluated under the assumption that
top players are frequently outliers. Table I shows the re-
sults for the three most successful algorithms. Every ‘Cor.’
value is the Pearson Correlation between the outlier score
and the NHL ranking. For 2006/07 the top seven outliers
determined by T*ENT method contain the players with NHL
ranks 3,4,5,6,8 (2,3,4,5,6,7,9,10 for 2005/06 and 1,2,4,6 for

2003/04) and none with rank lower than 60 out of about
1000 players. T*ROF also put high ranking players at the
top of the outlier scores. SOE1 had less obvious success
with the leading players. (None of the other algorithms
yielded a statistically significant correlation so the ranking
appears quite random.) To further illustrate the results, it is
also shown for each algorithm, down to which depth in the
resulting ranking one has to look in order to find any 5 out
of the top 10 NHL-ranked players.

Table I
CORRELATION COEFFICIENTS (ABBREVIATED BY COR.; ALL VALUES

SIGNIFICANT AT p < 0.0005) AND TOP 10 OUTLIER PLAYERS (IN
ORDER) BY NHL RANKING NUMBER. PLAYERS THAT ACTUALLY HAVE

ONE OF THE TOP 10 NHL RANKING NUMBERS ARE HIGHLIGHTED IN
BOLDFACE. ‘5/10’ DENOTES THE RANK AT WHICH 5 OUT OF THE TOP
10 (BY NHL RANK) PLAYERS ARE COVERED (LOWER NUMBERS ARE

BETTER).

2003-2004

Method Cor. Top Outliers 5/10

T*ENT 0.852 1,2,41,57,6,21,19,37,4,16 14
T*ROF 0.686 16,2,41,6,18,5,12,33,3,4 10
SOE1 0.843 37,91,34,90,41,131,7,28,155,1 47

2005-2006

Method Cor. Top Outliers 5/10

T*ENT 0.851 2,3,4,11,16,6,10,7,5,9 7
T*ROF 0.690 15,9,6,7,83,5,20,3,10,4 8
SOE1 0.858 11,15,16,59,27,72,165,35,9,51 33

2006-2007

Method Cor. Top Outliers 5/10

T*ENT 0.858 60,4,8,6,5,3,14,11,17,24 6
T*ROF 0.706 6,4,5,34,9,47,48,3,7,27 8
SOE1 0.864 5,60,90,77,105,53,3,17,55,24 44

This type of data drew a clear line between two groups
of algorithms as the other comparison algorithms performed
poorly on or could not handle this data. RMD could not
complete the NHL data, ORCA did not achieve a signifi-
cant correlation (e.g. 2003/04: r = −0.071), and LOF, as
published, and thus Feature Bagging, are not suitable for
certain attributes of the NHL dataset due to many identical
data points and gave non-significant results when the task
was attempted.

B. Evaluation on Type 2 Data.

The algorithms were tested on all UCI Repository [16]
binary problem datasets, with 20 or more attributes, which
they would all reasonably be expected to complete. This
meant requiring non-categorical data without missing values
or a very large number of attributes (≥ 500). While these
limitations could be reduced by modifying certain of the
algorithms, they serve as a useful set of conditions to define
a group of datasets that is both broad in scope and free of

any question of experimenter bias. Out of the 12 datasets
that meet these criteria, two were left out each being one of
a pair of datasets based on the same data. For example,
the SPECTF data with the highest number of attributes
was chosen. The ‘Hill-Valley’ dataset was omitted since the
task should not be amenable to this approach — whether a
sequence has a peak or a trough does not imply any likely
difference in variance between the classes. On the other
datasets, it is reasonably possible that the two classes may
have different variances due to some meaningful tendency
in the data. The statistics for the datasets are given in Table
II.

Table II
CLASS SIZES, DATASET SIZE AND NUMBER OF ATTRIBUTES.

|D| d Target class Other class

Ionosphere 351 32 126 225
SPECTF 267 44 212 55
Sonar 208 60 111 97
WDBC 569 30 212 357
Parkinsons 195 22 148 48
Spambase 4601 57 1813 2788
Creditcard 1000 24 700 300
Musk 476 166 207 269
Insurance 5822 85 348 5474

Table II gives an overview of these datasets showing that
they represent various balances including a preponderance of
the class B expected to be more often contributing outliers.
Hardly any would meet the usual ‘rare’ class criterion. For
example, the WDBC set consists of 569 samples labelled in
two classes, 212 malignant and 357 benign with 30 attributes
for each sample. In this dataset as in many medical scenarios,
normal biopsies tend to have quite strongly clustered results
while abnormal ones exhibit a higher variance.

The results on the UCI datasets are summarised in Tables
III and IV. Our results show that overall T∗ROF and
T∗ENT were the most effective though RMD and SOE1
performed well. However, RMD is hampered by high run
time and SOE1 by parameter sensitivity. Being parameter
free, T∗ROF has a clear edge as an effective and user
friendly approach. Since T*ENT gives a binary score for
each subspace it does best if

(
d
2

) ≥ |D| (the highest possible
score is not less than the number of points).

Table V gives an indication of how the run-time of the var-
ious algorithms scales with dataset size and dimensionality.
Results for T*LOF are given but the implementation used,
while effective, was inefficient for low dimensional spaces
and thus these run times could be significantly improved.
In general, the scaling is in line with the theoretical run
times suggested by the authors. Purely for the purpose of
this scaling experiment, the WDBC dataset was used as a
seed to create datasets 10, 50 and 100 times the size of the
actual WDBC set. This was done by creating multiple copies
of each point and adding a random amount of jitter to each,

not exceeding 1%, thus preserving the core characteristics
of the dataset. Similarly, to test scaling with respect to the
number of attributes, the WDBC data was used as a seed
with up to 10% jitter to minimize correlation effects.

Table V
RUN TIME (IN SECONDS): SCALING BY DATASET SIZE FOR VARIOUS

ALGORITHMS (30 ATTRIBUTES) AND SCALING BY NUMBER OF
ATTRIBUTES (569 DATA POINTS). †EXCEEDED TIME LIMIT.

Algorithm Dataset Size # Attributes

569 5,690 28450 56,900 30 60 90 120

T*ENT 43.4 317.4 821.0 1782.2 43.4 174.8 405.0 704.5
T*ROF 43.6 321.0 828.4 1798.3 43.6 178.3 411.5 717.0

SOE1 0.0 0.1 0.7 1.5 0.0 0.0 0.0 0.1
FBAG 20.4 1620.5 † † 20.4 30.2 42.9 53.8
LOF 0.5 44.0 1309.7 4331.9 0.5 0.8 1.2 1.5
ORCA 0.6 0.8 1.0 1.2 0.6 0.8 1.2 1.2
RMD 188.5 2225.1 † † 188.5 729.9 1619.1 2635.2
T*LOF 77.7 5907.9 † † 77.7 393.7 1178.4 1990.8

An extensive, but not necessarily exhaustive, literature
search for the best results on these datasets using supervised
classifiers yielded the following:
Ionosphere: Wang [17] using a range of k-NN classifiers
and 10-fold cross-validation (MCV) achieved an accuracy of
87.8%. A Support Vector Machine (SVM) ensemble tested
with 10-fold MCV achieved 95.20% [18].
SPECTF: Previously, the CLIP3 algorithm was used to
generate classification rules from these patterns that were
81.34% accurate (as compared with cardiologists’ diag-
noses) [19]. Ali et al. [20] report that the best Linear
Dimensionality (LD) reduction Quadratic classifier had an
error of 4.44% while the LD Linear classifier studied had
an error rate of 17.64%.
Sonar: The Sonar dataset is known to be difficult to separate.
Harmeling et al. [21] tested a wide variety of supervised
methods including Gaussian mixtures, Support Vector Data
Description (SVDD), Parzen, a k-means based approach,
and several k-NN methods. Their concept was using various
local density based measures to rank the points for their
degree of being typical as an outlier method does. Results
varied from AUC 0.596 (SVDD) to 0.870 (new γkNN
method).
WDBC: Jiang and Zhou used a neural network to edit the
training data for kNN classifiers [22]. With a minimum of
250 points used as training data, 100% separation of the
classes was been achieved. With 200 training points they
achieved 96% accuracy. Ali et al. [20] report that the best
Linear Dimensionality (LD) reduction Quadratic classifier
had an error of 4.02% while the LD Linear classifier studied
had an error rate of 2.99%.
Parkinsons: No comparable supervised classification results
were located in our literature search.
Spambase: Neural Expert networks have been reported with
an accuracy of 85% [23] using 10 fold MCV.

Table III
AREA UNDER THE CURVE (AUC) AND PERCENT ACCURACY ON THE TARGET CLASS FOR VARIOUS UCI DATASETS. †COULD NOT COMPUTE

COVARIANCE MATRIX.

Ionosphere SPECTF Sonar WDBC Parkinsons

AUC % AUC % AUC % AUC % AUC %

T*ROF 0.8915 74.60 0.8849 90.57 0.9255 83.51 0.9574 87.74 0.7405 83.67
T*ENT 0.8429 84.89 0.8959 92.45 0.6235 61.26 0.8474 85.85 0.5319 80.27

SOE1 0.7691 80.00 0.7642 84.43 0.601 56.76 0.9203 80.66 0.7456 80.95
FBAG 0.6048 69.78 0.436 78.30 0.5018 54.05 0.5161 39.63 0.4239 72.11
LOF 0.5836 66.22 0.4154 77.83 0.4954 54.96 0.4699 35.85 0.4386 72.79

ORCA 0.4575 60.89 0.5569 80.19 0.5056 49.48 0.5091 39.62 0.5169 76.19
RMD 0.9479 87.40 0.7527 84.36 0.5857 62.73 0.9131 77.25 †

T*LOF 0.4297 63.56 0.3753 75.94 0.4836 52.25 0.4834 38.21 0.4249 72.79

Table IV
AREA UNDER THE CURVE (AUC) AND PERCENT ACCURACY ON THE TARGET CLASS FOR VARIOUS UCI DATASETS. †COULD NOT COMPUTE

COVARIANCE MATRIX. *EXCEEDED TIME LIMIT.

Spambase Credit Card Musk Insurance

AUC % AUC % AUC % AUC %

T*ROF 0.9077 79.15 0.3237 63.14 0.7055 58.45 0.5213 4.31
T*ENT 0.7278 78.26 0.7689 89.14 0.3297 28.99 0.5386 10.06

SOE1 0.7078 58.36 0.4422 69.14 0.3359 29.95 0.5489 10.63
FBAG 0.4742 37.51 0.5201 68.57 0.4967 43.48 0.4999 8.33
LOF 0.4668 36.62 0.494 69.14 0.4906 43.00 0.4994 6.61

ORCA 0.4909 38.44 0.5551 71.71 0.5084 46.38 0.5359 8.62
RMD † † † †

T*LOF 0.4825 39.33 0.5168 71.57 0.4958 42.51 *

Credit Card: This is the Statlog (German Credit Card)
dataset. Eggermont et al. used Genetic Programming and
compared with C4.5 with Bagging and Boosting and other
algorithms. The best result was a 27.1% misclassification
rate [24].
Musk: This is a highly studied dataset. For example, Zafra
and Venture report accuracy with SVMs of 87% and 93%
with a genetic algorithm [25]. This dataset is only nominally
two-class as both musks and non-musks are made up of
multiple classes and thus is possibly not suitable for the
outlier approach.
Insurance: This was part of the COIL 2002 competition
and proved difficult for all algorithms. The best results were
only a few percentage points better than the best in Table
IV (See e.g. [26]).

The very best supervised classifiers outperform the out-
lier methods on most datasets tested but the margins are
generally small. Remarkably, one of our unsupervised ap-
proaches achieved the best result on two datasets — Sonar
(T*ROF) and Credit Card (T*ENT). T*ENT and T*ROF are
remarkably competitive considering that they simply exploit
the difference in variance between the classes and operate
unsupervised.

C. Parameters
T∗ROF has no user adjustable parameters. T∗ENT has a

parameter θ which determines the minimum cluster size for

a cluster to be considered ‘major’ and thus not contribute to
the outlier result. In all the Type 1 experiments and most of
the Type 2 experiments, this was set by the heuristic advised
in [27] for TURN∗, that is θ = min{100, |D|100}. On two
datasets, WDBC and Parkinsons, somewhat better results
were obtained when this value was reduced, showing some
sensitivity to this setting. SOE1 builds a histogram of the
data and thus requires either digitised data or a digitisation
parameter. For each experiment, a series of different settings
were tried and the best results reported. SOE1 proved quite
sensitive to this parameter. A mean could have been reported
but then this risked a bias due to the range of values tested.
LOF and Feature Bagging have a parameter minpts but we
found that a value of 30 generally gave the best results as
previously reported. RMD and ORCA required no parameter
settings.

V. CONCLUSION

This paper introduces an entirely novel concept of sepa-
rating classes based on variance rather than spatial location.
This distinguishes it from statistical and other approaches,
which use variance to validate separation generated by
exploiting spatial differences. We have shown that this can
be done very successfully in two-class problems even when
the classes are balanced showing that outlier detection has
application beyond the traditional problem of finding small

numbers of extreme data or rare classes. Two novel outlier
methods are presented that outperform the state-of-the-art
in outlier detection algorithms. These demonstrate that,
while inspecting 2D spaces is more expensive than simply
analysing 1D spaces, a clear effectiveness benefit is obtained
and the cost is still well below that of standard statistical
methods that involve computing a covariance matrix.

These methods are provably efficient and empirically
shown to be very effective and robust with respect to param-
eter settings. Due to its framework nature, single components
(the outlier detection method used in the subspaces) can be
replaced.

The benefit of our outlier scoring technique shows in its
application to unsupervised class separation beyond the ‘rare
classes’ case.

If good methods for outlier detection in 3, 4, 5, . . . dimen-
sions can be developed, it would be interesting to analyze
our framework for different values of k, i.e., for different
subspace sizes. Of course it might be too inefficient to detect
outliers in all 3-dimensional spaces (there are in general too
many of these), but instead of looking at all of them, a
random sample might be sufficient.

APPENDIX

Two Outlier Algorithms Employable by T∗

As stated in Section III, one could use different vari-
ants of Outlier algorithms. We describe two variants here,
both building on TURN∗ [27], a state-of-the-art clustering
algorithm which has shown to outperform various others
(DBSCAN, CHAMELEON, CURE, ROCK, Wavecluster,
and k-Means) and has the additional advantage of being
parameter-free. Since TURN∗ has proven to work best in 2
dimensions so far, but scales exponentially in d, we restrict
our use of the T∗ framework to k = 2 in this paper. However,
our experimental results will show that this already yields a
method outperforming the state-of-the-art methods on real-
world datasets.

To summarize the TURN∗ method, we first need to
introduce the concepts of nearest neighbours and of clusters,
given a real-valued parameter r called resolution.

Neighbours and Nearest Neighbours. Let x, x′ ∈ D, S =
{i, j} ⊆ {1, . . . , d}, i 6= j. x is a neighbour of x′ in D
with respect to S if |xi − x′i| ≤ r and |xj − x′j | ≤ r. x is
a nearest neighbour of x′ with respect to S (an S-NN for
short) if x is a neighbour of x′ with respect to S and there
is no y ∈ D with

yj 6= x′j and (xi < yi ≤ x′i or xi > yi ≥ x′i) or
yi 6= x′i and (xj < yj ≤ x′j or xj > yj ≥ x′j) .

Internal Points and Clusters. Let S = {i, j} ⊆ {1, . . . , d},
i 6= j, and x, x′ ∈ D. x is internal in DS if x has at least
4 S-NNs. x and x′ are called reachable in DS if there are
internal points n0, . . . , nz in DS such that x is an S-NN of
n0, nm is an S-NN of nm+1 for all m < z, and nz is an

S-NN of x′. A cluster in DS is a maximal set of points that
are pairwise reachable in DS .

TURN∗ consists of two modules. The first component is
a clustering algorithm, which, given a dataset D and a reso-
lution r, assigns all points in D to clusters. Clusters are built
starting with a not yet touched internal point and recursively
adding nearest neighbours for every internal point reached.
The second component varies the resolution fed to the first
component in order to find the ‘best’ clustering, repeatedly
calling the first component. The reader is referred to [27] for
details. It is important to note that the resolution parameter
is adjusted by TURN∗ and need not be dealt with by the
user.

In what follows we describe two Outlier methods; the
corresponding variants of T∗ are called T∗ENT and T∗ROF.

A. T∗ENT — Finding the Best Resolution by Entropy

The Outlier method in T∗ENT varies the resolution se-
lection criterion in the second TURN∗ component. It calls
TURN∗ and collects a series of mean cluster density values
(see below) of the clusterings obtained while varying over
different resolution values r. The entropy of the clusterings
are computed for all the resolution values at which the mean
density changes its trend, i.e., at which the series shows a
‘knee’ suggesting an area of stability in the clustering results.
Finally the clustering with the lowest entropy is selected
as this likely has the least number of outliers. Once this
clustering is found, all points in clusters that are smaller
than a certain threshold θ are defined outliers. The outlier
degree out for a given point is then simply 1 if the point
is an outlier (in a cluster of size < θ) and 0 if the point is
not an outlier (in a cluster of size ≥ θ). In particular, the
outlier degree is just a binary value expressing whether or
not we consider a point an outlier rather than a real value
expressing how much we consider a point an outlier.

In more detail, the behaviour of the Outlier method in
T∗ENT, applied to a 2-dimensional dataset D{i,j}, can be
described as follows.

1) Run TURN∗ on D{i,j}.
2) Let r1, r2, . . . , rT be the sequence of resolutions

TURN∗ goes through.
3) For every resolution rt, 1 ≤ t ≤ T , compute a mean

density with respect to the corresponding TURN∗

clustering as follows. For every x ∈ D compute a
local density

(√
Li(x)2 + Ri(x)2 +

√
Lj(x)2 + Rj(x)2

)−1

.

Here Li(x) is the closest nearest neighbour (for res-
olution r) whose value in attribute i is not higher
than xi (and accordingly with j instead of i); Ri(x)
is the closest nearest neighbour (for resolution r)
whose value in attribute i is not smaller than xi (and
accordingly with j instead of i). The mean density is

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Points Scored by Player

A
v

g
. S

h
if

ts
/G

am
e

Clustered

Outliers

Figure 3. Outliers in a 2-dimensional subspace, automatically detected
by the Outlier method in T∗ENT (sample attribute pair, NHL data, θ =

min{100,
|D|
100

}). Filled points are flagged as outliers in this 2-dimensional
subspace, the others are not considered outliers in this space.

then the mean over all local densities of non-outlier
points x ∈ D.

4) Detect all the resolutions r∗t for which there is a
change in the second differential of the series of mean
density values.3

5) Of all those resolutions r∗t , pick the one for which
the corresponding clustering C has the lowest entropy
value given by

H =
∑

c∈C

pcln(pc)

where pc is the probability of a datapoint falling in
cluster c.

6) For every x ∈ D, let

out(x,D{i,j}) =

{
1 , if x is in a cluster of size < θ ,

0 , otherwise .

Note that the Outlier method in T∗ENT requires setting
the parameter θ. We address this point in Section IV.

For illustration, consider Figure 3 for an NHL dataset [15]
in which each point is a hockey player described by 16
attributes. The figure shows outliers flagged by the method
used in T∗ENT in the 2-dimensional space spanned by the
attributes showing (i) the number of points scored by a
player over the season, and (ii) the average number of shifts
a player had per game.

B. T∗ROF — Accumulating Outlierness over Different Res-
olutions

The Outlier method in T∗ROF applies TURN∗ without
the stopping criterion for optimal resolutions. It simply
computes the out value of a point x as the resolution-
based outlier factor (ROF) over all different resolutions that
TURN∗ goes through over the resolution range. The ROF is

3This technique is routinely used in time series analysis to render a series
stationary [28].

the sum of the ratios of cluster sizes of the cluster the point
x is contained in, as resolution changes. ROF was previously
applied successfully to a 3-dimensional engineering dataset,
cf. [14], but not developed for higher dimensionality. In
more detail, the behaviour of the Outlier method in T∗ROF,
applied to a 2-dimensional dataset D{i,j}, can be described
as follows.

1) Run TURN∗ on D{i,j}.
2) Let r1, r2, . . . , rT be the sequence of resolutions

TURN∗ goes through.
3) For every x ∈ D, let

out(x,D{i,j}) =
∑

1≤t≤T−1

|C(x, rt)| − 1
|C(x, rt+1)| ,

where, for every t, C(x, rt) denotes the cluster to
which the first component of TURN∗ assigns the point
x, when this component is run with resolution rt.

Note that T∗ROF has no user-definable parameters.

C. A Remark on Complexity

T∗ENT and T∗ROF have a run time cost in
O(d2|D|log|D|). For all of the O(d2) attribute pairs,
all of the points in D have to be sorted according to
their attribute values along both dimensions; this is what
dominates the run time. The space complexity is dominated
by holding a |D| × d matrix in memory. However, the
algorithm only requires two attributes to be processed at
any one time so the minimum size is O(2|D|).

ACKNOWLEDGMENTS

We gratefully acknowledge support by the Alberta Ingenu-
ity Fund and NSERC. We thank Robert Holte for his helpful
comments.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Computing Surveys, vol. 41, no. 3, 2009,
article 15.

[2] M. Petrovskiy, “Outlier detection algorithms in data mining
systems,” Program. Comput. Softw., vol. 29, no. 4, pp. 228–
237, 2003.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft,
“When is “nearest neighbor” meaningful,” in Int. Conf. on
Database Theory, 1999, pp. 217–235.

[4] A. Lazarevic and V. Kumar, “Feature bagging for outlier
detection,” in Proc. ACM SIGKDD, 2005, pp. 157–166.

[5] Z. He, X. Xu, and S. Deng, “A unified subspace outlier
ensemble framework for outlier detection in high dimensional
spaces,” in Proc. of the 6th International Conference, WAIM
2005, 2005, pp. 632–637.

[6] M. Breunig, H.-P. Kriegel, R. Ng, and J. Sander, “LOF:
Identifying density-based local outliers,” in Proc. SIGMOD
Conf., 2000, pp. 93–104.

[7] S. Bay and M. Schwabacher, “Mining distance-based outliers
in near linear time randomization and a simple pruning rule,”
in Proc. SIGKDD, 2003.

[8] P. Rousseeuw and K. V. Driessen, “A fast algorithm for the
minimum covariance determinant estimator,” Technometrics,
vol. 41, no. 3, pp. 212–223, 1999.

[9] C. Aggarwal and P. Yu, “Outlier detection for high di-
mensional data,” in Proc. ACM SIGMOD Intl. Conf. on
Management of Data, 2001, pp. 37–46.

[10] ——, “An efficient and effective algorithm for high-
dimensional outlier detection,” VLDB Journal, vol. 14, no. 2,
pp. 211–221, 2005.

[11] J. Zhang and H. Wang, “Detecting outlying subspaces for
high-dimensional data: the new task, algorithms, and perfor-
mance,” Knowl. Inf. Syst., vol. 10, no. 3, pp. 333–355, 2006.

[12] E. Knorr and R. Ng, “Finding intensional knowledge of
distance-based outliers,” in Proc. VLDB Conf., 1999, pp. 211–
222.

[13] V. Milman, “The heritage of P. Levy in geometrical
functional-analysis,” Asterisque, vol. 157, pp. 273–301, 1988.

[14] H. Fan, O. R. Zaiane, A. Foss, and J. Wu, “A nonparametric
outlier detection for effectively discovering top-n outliers
from engineering data,” in Proc. of PAKDD’06, 2006, pp.
557–566.

[15] NHL, “Official web site: www.nhl.com,” 2008. [Online].
Available: www.nhl.com

[16] C. Blake and C. Merz, “UCI repository of machine learning
databases,” http://archive.ics.uci.edu/ml/, 1998.

[17] H. Wang, “Nearest neighbors by neighborhood counting,”
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 28, no. 6, pp. 942 – 953, 2006.

[18] H. Kim and S. H. Park, “Data reduction in support vector
machines by a kernelized ionic interaction model,” in Proc.
of SDM’04, 2004.

[19] L. A. Kurgan, K. J. Cios, R. Tadeusiewicz, M. R. Ogiela,
and L. S. Goodenday, “Knowledge discovery approach to
automated cardiac spect diagnosis,” Artificial Intelligence in
Medicine, vol. 23, p. 149, 2001.

[20] M. L. Ali, L. Rueda, and M. Herrera, “On the performance
of chernoff-distance-based linear dimensionality reduction
techniques,” Advances in Artificial Intelligence, vol. 4013, pp.
467–478, 2006.

[21] S. Harmeling, G. Dornhege, D. Tax, F. Meinecke, and K.-
R. Müller, “From outliers to prototypes: Ordering data,”
Neurocomputing, vol. 69, pp. 1608–1618, 2006.

[22] Y. Jiang and Z.-H. Zhou, “Editing training data for kNN
classifiers with neural network ensemble,” Lecture Notes in
Computer Science 3173, pp. 356–361, 2004.

[23] V. A. Petrushin and L. K. (Eds), Multimedia data mining and
knowledge discovery. Springer, 2007.

[24] J. Eggermont, J. N. Kok, and W. A. Kosters, “Genetic
programming for data classification: Partitioning the search
space,” in Proc. of the 2004 Symposium on applied computing
(ACM SAC’04), 2004, pp. 1001–1005.

[25] A. Zafra and S. Ventura, “Multi-objective genetic program-
ming for multiple instance learning,” in Lecture Notes in
Computer Science, Machine Learning: ECML ’07, 2007.

[26] B. Zadrozny and C. Elkan, “Transforming classifier scores
into accurate multiclass probability estimates,” in Proc. of
KDD ’02, 2002.

[27] A. Foss and O. R. Zaı̈ane, “A parameterless method for
efficiently discovering clusters of arbitrary shape in large
datasets,” in Proc. of the IEEE International Conference on
Data Mining (ICDM’02), 2002, pp. 179–186.

[28] T. Masters, Neural, Novel and Hybrid Algorithms for Time
Series Prediction. John Wiley & Sons, 1995.

