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Abstract. Alzheimers Disease (AD) is the most common neurodegenerative dis-
order associated with aging. Early diagnosis of AD is key to the development, as-
sessment, and monitoring of new treatments for AD. Machine learning approach-
es are increasingly being applied on the diagnosis of AD from structural MRI.
However, the high feature-dimension and imbalanced data learning problem is t-
wo major challenges in the study of computer aided AD diagnosis. To circumvent
this problem, we propose a novel formulation with hinge loss and sparse group
lasso to select the discriminative features since features exhibit certain intrinsic
group structures, then we propose a hybrid probabilistic oversampling to allevi-
ate the class imbalanced distribution. Extensive experiments were conducted to
compare this method against the baseline and the state-of-the-art methods, and
the results illustrated that this proposed method is more effective for diagnosis of
AD compared to commonly used techniques.
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1 Introduction

Alzheimers disease (AD) is the most frequent form of dementia in elderly patients,
which causes progressive impairment of memory and other cognitive functions, leading
directly to death. It accounts for 6070% of age related dementia, affecting an estimated
30 million individuals in 2011 and the number is projected to be over 114 million by
2050[1]. Early diagnosis of AD patients is important because it allows early treatment
to improve the quality of life of the patients and their families. Therefore, effective and
accurate diagnosis of AD, as well as its prodromal stage (mild cognitive impairment
(MCI)), has attracted more and more attention recently. The machine learning, or clas-
sification approach has been used to provide markers for various neurological disorders
including Alzheimer’s disease[2, 3] on structural magnetic resonance imaging (MRI).
However, two of the key challenges in designing good prediction models for diagnosis
of AD with MRI lie in:

1) How to solve the dimensionality reduction in the high-dimensional data: High
dimensionality of the data may affect the computational performance (processing time)
and, worse, it may lead to a wrong estimation and identification of the relevant pre-
dictors[2]. Feature selection methods select a small subset of the original feature set to
? Supported in part by National Natural Science Foundation of China (61502091).
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reduce the dimensionality of the data set and facilitate better generalization of train-
ing samples. In AD, features exhibit certain intrinsic group structures in the context
of Alzheimer’s disease diagnosis. There is natural grouping of the features, the groups
correspond to specific region-of-interest (ROIs) in the brain, and the individual features
(average cortical thickness, standard deviation of thickness, surface area, cortical vol-
ume and subcortical volume) are specific properties of those regions. Hence the group
effect in the features need to be taken into account while doing feature selection.

2) How to address the imbalanced data distribution between different classes: In
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the MCI cases eligible
for the study are nearly two times the AD patients and normal controls (NC)[4]. This is
a typical class imbalance problem [5, 6]. Class imbalanced data has detrimental effects
on the performance of conventional classifiers. The actual cause for the poor perfor-
mance of conventional classifiers on the minority class is not necessarily related to
only the between-class imbalance. Within-class imbalance [7] refers to the case where
a class is formed of a number of sub-clusters with different sizes, concerns itself with
the distribution of representative data for sub-concepts within a class. The existence of
sub-concepts also increases the complexity of the problem because the amount of in-
stances among them is not usually balanced. For the patients with AD or MCI, there
exists multiple sub-concepts as the disease involves multiple different subtype or differ-
ent characteristic, which results in the distribution of instances over each class concepts
and may yield clusters with unequal sizes.

The aim of our work is to simultaneously address both issues, and to explore whether
oversampling combined with feature selection benefits the diagnosis of individuals
based on multivariate brain MRI data. A low-dimensional representation of the data
not only reduces the risk of overfitting, improving the models generalization ability, but
also allow the oversampling algorithm to generate much accuracy synthetic instances
[15]. Based on the motivation, we propose a new formulation incorporating hinge loss
combined with sparse group lasso (called HLSGL) to conduct the feature selection. The
objective function is non-convex and non-smooth, which is difficult to solve in general.
To address it, we use differentiable approximation of hinge loss, and adapt a accelerat-
ed proximal gradient method for solving the non-smooth formulation[9]. On the other
hand, we propose a hybrid probabilistic oversampling (HPS) algorithm to balance the
skew class distribution based on the lower dimensional data. Experimental results show
that HLSGL-HPS achieves a considerable improvement in the prediction performance.
Results also demonstrate that feature selection and oversampling are two key steps for
diagnosis of AD before building classifier model, and feature selection can be very
helpful when facing imbalanced data sets.

2 Proposed Method

In this section, we describe the proposed approach in diagnosis of AD with structural
MRI brain images. At first, feature selection based on HLSGL is performed to select
relevant ROIs and features, then HPS is conducted to balance the skew class distribution
on the selected feature subset. Finally, we build a kernel classifier trained on lower
dimensional balanced data to classify AD/NC, AD/MCI and MCI/NC. HLSGL not only
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reduces the dimensionality so as to improve the performance of the HPS algorithm, but
also makes the classification model interpretable. Moreover, HPS offers an effective
solution for within-class in tandem with the between-class imbalance according to the
distribution probability without jeopardizing structure of data.

2.1 Feature Selection by hinge loss combined with sparse group lasso, HLSGL

The general goal of supervised learning is to predict for the input x an output y. To
achieve this objective, learning algorithms usually use training data {xi, yi}ni=1 to learn
a prediction function f that can correlate x with y. A common approach to obtain is to
minimize the following regularized empirical error:

min
w∈RP

l(w;y,X) + λr(w) (1)

where l(·) denotes the loss function, r(·) is the regularizer and λ is regularization param-
eter. In the context of classification, we employ hinge loss l(w) = max(1−ywTX, 0),
because kernel methods [12, 13] have been shown to be very effective for classification
in Alzheimers disease[10, 11], and hinge loss is used in the objective function of kernel
methods. However, hinge loss is non-smooth loss function, which is difficult to opti-
mize. Therefore, we propose to use a differentiable approximation of hinge loss, which
is defined as:

l(y, t) =


0 if yt > 1 + h

(1 + h− yt)2

4h
if |1− yt| ≤ h

1− yt if yt < 1− h

(2)

where t = wTX is the predicted label, and h is a parameter to choose, typically be-
tween 0.01 and 0.5.

Sparse methods have attracted a great amount of research efforts in the past decade
due to its sparsity-inducing property and strong theoretical guarantees[14]. Tradition-
ally the `1-norm (namely lasso) was effectively implemented to feature selection in
high-dimensional setting. However, lasso fails to capture the correlation information a-
mong the pairwise of group features. For group of features that the pairwise correlations
among them are very high, lasso tends to select only one of the pairwise correlated fea-
tures and does not induce the group effect. In the context of AD, the groups correspond
to specific regions of-interest (ROIs) in the brain, and the individual shape features
are specific properties of those regions. The multiple shape measures from the same
ROI tend to be selected together as joint predictors, and use this prior knowledge to
group relevant shape features together in the same ROI guide the learning process. Let
G = {G1, . . . , Gm} be the groups of variables at the m ROIs considered. For our data,
the number of features in each group is 4 for cortical region involving cortical thickness
average (TA), standard deviation of thickness (TS), surface area (SA) cortical volume
(CV), and 1 for subcortical region involving subcortical volume (SV).

The group lasso is a technique to do variable selection on (predefined) groups of
variables[8, 16]. However, it is a strict assumption for feature selection. Our motivation
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in promoting structured sparsity is drawn from the fact that for predicting disease sta-
tus, if a particular brain region (ROI) is irrelevant, then coefficients of all morphological
features at that ROI should be zero. Furthermore, if a particular brain region is deemed
relevant, then we should be able to select the most important morphological feature(s)
at that region to be considered for prediction. In order to achieve the goal of structural
sparse feature selection (SGL), we employ sparse group lasso integrating lasso ‖w‖1
and group lasso ‖w‖G2,1

as feature selection with structural grouping sparsity, so as to
allow simultaneous joint feature selection from feature level and ROI level. The hierar-
chical norm of SGL is defined as:

r(w) = λ1 ‖w‖1 + λ2 ‖w‖G2,1
(3)

where ‖w‖1 =
∑p
i=1 ‖wi‖2, and ‖w‖G2,1

=
∑m
j=1

√∑
i∈Gj

∥∥UGj

∥∥2
2
. Note that

p and m is the size of features and ROIs size, respectively.

By approximating hinge loss, l(w;y,x) is convex and differentiable with Lips-
chitz continuous gradient so that ‖f(z) − f(w)‖ ≤ L‖z − w‖ where L denotes the
Lipschitz constant, however r(w) is still convex but non-smooth. For the convex but
non-smooth formulation, we solve it by designing a new accelerated proximal gradient
(APG) method [9] in this work.

A well studied idea in efficient optimization of such composite objective function is
to start with a quadratic approximation of the form: QL(w,w(t)) := l(w(t)) + 〈w −
w(t),∇l(w(t))〉+ L

2 ‖w−w(t)‖2+λr(w). Ignoring constant terms in w(t), the unique
minimizer of the above expression can be written as πl,rL (w(t)) = argmin

w
{r(w)+

L
2 ‖w −

(
w(t) − 1

L∇l(w
(t))
)
‖2, which can be viewed as a proximal operator corre-

sponding to the non-smooth function r(w). A popular approach to solving the non-
smooth problems is to simply do the following iterative update: w(t+1) = πl,rL (w(t)),
which can be shown to have a O(1/t) rate of convergence [19]. In practice, since the
Lipschitz constant L may be unknown, we follow the adaptive strategy suggested in [9]
to make sure we make progress.

For our purposes, we consider a refined version of the iterative algorithm inspired
by Nesterov’s accelerated gradient descent [19]. The main idea, as studied in the liter-
ature as APG algorithms [9], is to iteratively consider the proximal operator πl,rL (·) at
a specific linear combination of the previous two iterates {w(t),w(t−1)}, in particular
at ŵ(t) = w(t) + αt+1(w

(t) − w(t−1)) instead of at just the previous iterate wt. The
choice of αt+1 follows Nesterov’s accelerated gradient descent [19] and is detailed in
Algorithm 1. The iterative algorithm simply updates w(t+1) = πl,rL (ŵ(t))

As shown in [9], the algorithm has a rate of convergence ofO(1/t2). With w̃(t+1) =

(ŵ(t) − 1
L∇l(ŵ

(t))), the problem of computing the proximal operator πl,rL (ŵ(t)) :=

Tλ1,λ2

L (w̃(t)) is given by Tλ1,λ2

L (w̃(t)) = argmin
w∈Rp

{λ1 ‖w‖1 + λ2 ‖w‖G2,1
+ L

2 ‖w −

w̃(t)‖2} .
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The proximal operator Tλ1,λ2

L (w̃(t)) can be computed efficiently in two steps, as
outlined below:

s̃(t) = Tλ1

L (w̃(t)) , (4)

w(t+1) = Tλ2

L (s̃(t)) = Tλ1,λ2

L (w̃(t)) . (5)

Tλ1

L (w̃(t)) can be obtained by soft-thresholding directly s̃(t) = sgn(w̃(t))max{
∣∣w̃(t)

∣∣−
λ1, 0}. Following [17], the group lasso updates can be done by:

w
(t+1)
j = Tλ2

L (s̃(t)) =
max{‖s̃(t)j ‖F −

λ2

L , 0}

‖s̃(t)j ‖F
s̃
(t)
j . (6)

where w(t+1)
j , s

(t+1)
j are group specific sub-vector correspond to group j in w(t+1), s(t+1)

respectively.

2.2 Hybrid Probabilistic Sampling

In order to solve the the between-class and within-class imbalance simultaneously, we
propose a hybrid probabilistic sampling (HPS) with the combination of over-sampling
and under-sampling, and incorporates probability function in its data distribution re-
sampling mechanism. It generates more accurate instances to generalize the decision
region for the minority class, and removes the redundant instances for the majority
class without destroying the structure of the data. It can deal with the between-class
imbalance and within-class imbalance issues simultaneously.

Gaussian Mixture Models (GMM) are generative probabilistic models of several
Gaussian distributions for density estimation in machine learning applications. A Gaus-
sian mixture can be constructed to acceptably approximate any given density. Therefore,
we assume the distribution of two classes follows the Gaussian mixture model with un-
known parameters. The parametric probability density function of GMM is defined as
a weighted sum of Gaussians. The finite Gaussian mixture model with k components
may be written as: p(y|µ1, . . . , µk;σ1, . . . , σk;π1, . . . , πk) =

∑k
j=1πjN(µj , σj), and

0 ≤ πj ≤ 1,
∑k
j=1πj = 1, where µj are the means, σj are covariance matrixes, πj are

the mixing proportions, and N(µj , σj) is a Gaussian with specified mean and variance.
We estimate the parameters of GMM with FJ algorithm [18], which can overcome

the major weaknesses of the basic EM algorithm particularly vis-à-vis the initialization,
and can automatically select the number of component, we use it here to estimate the
parameters of GMM. Each instance xi will then be assigned to the cluster k where it
has the largest posterior probability p(k|xi). When calculating the probability of each
instance on each component, the probabilities for the feature is obtained by a Gaussian
density function. At the same time, we obtain the parameters of each Gaussian com-
ponent. For different clusters, the re-sampling rates are different; within the cluster, the
probabilities of each instance to be chosen for re-sampled are different.

We use the oversampling combined with undersampling to balance the class size.
The sizes of the two classes are N+ and N−. The gap NG between two uneven classes
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is: NG = N− −N+. Thus, the amount of instances in the minority class for oversam-
pling is: N+

α = NG × α, and the amount in the majority class for undersampling is:
N−α = NG × (1− α). To adjust the within class imbalance, we need to balance cluster
sizes in each class. For the minority class, the number of instances to be oversampled
is inversely proportional to the size of the cluster; for the majority class, the numbers
of instances to be undersampled are proportional to the size of the cluster. Furthermore,
we use the probabilities of each instance to conduct the re-sampling with maintaining
the data structure, in order to address the two type imbalance issues. In the clusters of
the majority class, the instances with higher probability are dense, they are frequent in
the subclass, and hence they have higher chance to be undersampled. We choose the
instances to be undersampled according to the Gaussian distribution. In the clusters of
the minority class, the new instances are produced according to the probability function
of Gaussian distribution, resulting in finding more potentially interesting regions. The
main steps in undersampling for the clusters of the majority class and oversampling for
the clusters of the minority class are conducted as following:

Step 1: In the oversampling for the minority class, the smaller the size of cluster
within the class, the more instances are over-sampled, so as to avoid the small disjuncts.
For the i-th cluster, the amount of synthetic instances needed to be generated is:N i+

α =

( 1
sizei+

/
∑S+

j=1
1

sizej+
) ×N+

α , where sizei+ is the size of i-th cluster, S+ is the number

of clusters in the minority class.

Step 2: In the i-th cluster,N i+
α instances are generated with the parameters from the

current Gaussian distribution. The new instances are generated according to the proba-
bility function of the Gaussian distribution with parameters learned from the available
data. Firstly, the probability from the Gaussian distribution of each instance is calculat-

ed and normalized: p̂k = pk/
∑sizei+
j=1 pj . Then, the amount of new instances for each

instance xk is obtained according to: nk = N i+
α × p̂k. For ensuring that synthetic in-

stances created via this method always lay in the region near xk, the nk instances are
generated in its K(K = 5) nearest neighbors region. It can extend more potential re-
gions rather than being limited along the line between the minority example and its
selected nearest neighbors. In addition, this guarantees the creation of minority samples
in the cluster, and avoids any incorrect synthetic instance generation.

Step 3: In the undersampling for the majority class, we calculate the amount of
instances to be under-sampled for each cluster. The number of instances to be under-
sampled are proportional to the size of clusters. For the i-th cluster, the amount of
instances needed to be removed is: N i−

α = (sizei−/
∑S−
j=1size

j
− )×N−α , where sizei−

is the size of i-th cluster, S− is the number of clusters in the majority class.

Step 4: In each component Gaussian distribution, the center region is denser than
the border region. These instances from the center are more possible to be redundant,
and so are better candidates to be under-sampled. We need to choose the instances to
be ignored or removed located on the center of the distribution more than the border.
The probabilities to be chosen for undersampling are proportional to the normalized
probability p̂ of the Gaussian distribution for each instance in a cluster.
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3 Experimental study

3.1 Dataset and Setting

The data used in this paper were obtained from the ADNI database (adni.loni.usc.edu)
[21]. The MRI features used in our experiments are based on the imaging data from
the ADNI database processed by a team from UCSF (University of California at San
Francisco), who performed cortical reconstruction and volumetric segmentations with
the FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/). There were
p = 319 MRI features (covariates) in total. In this work, only ADNI1 subjects with
no missing feature and cognitive outcome information baseline data are included. This
yields a total of n = 788 subjects, who are categorized into 3 baseline diagnostic group-
s: Cognitively Normal (CN, n1 = 225), Mild Cognitive Impairment (MCI, n2 = 390),
and Alzheimer’s Disease (AD, n3 = 173).

For the HLSGL, the regularization parameters λ1, λ2 in Eq. (1) and C in SVM are
chosen by nested cross-validation strategy on the training data (trying values 0.01, 0.1,
1, 10, 100,1000). In HPS, α is set to 70%. To evaluate the performance of different clas-
sification methods, we use a 10-fold cross-validation strategy to compute the sensitivity,
the specificity, G-mean and AUC.

3.2 Effectiveness of proposed kernel framework

To evaluate and compare the performances of each method, three classification exper-
iments were performed: AD vs CN, AD vs MCI and MCI vs NC. We compare our
method (HLSGL-HPS) with five baseline methods involving SVM working on the orig-
inal dataset (ALL), hinge loss combined lasso (HLL), HPS on the original dataset(All-
HPS) and HLL combined with HPS(HLL-HPS). In the experiment of CN vs AD, the
two class are nearly balanced, therefore oversampling is not need to be conducted.
Prediction performance results of three groups, measured by five measure metrics of
HLSGL-HPS and baseline methods are shown in Tables 1. The results demonstrate
that reducing the feature dimensionality can mitigate the overfitting problem and im-
prove a models generalizability. Moreover, sparse group lasso based feature selection
can achieve robust classification performance compared with lasso. Furthermore, the
results indicate that feature selection is as important as the oversampling in the imbal-
anced data classification. Oversampling on the high dimensional irrelevant feature leads
to the creation of wrong instances when the class dispersion or the class noise exists.

Moreover, we provides an empirical evaluation of the proposed method compared
with other classification methods commonly used in diagnosis of AD, such as ELM(Extreme
learning machine) [3], logistic regression [22] and random forest [23]with respect to G-
mean and AUC in Table 2. From Table 2 and Fig. 1 we observe that our proposed
framework is always better than the other three classification methods, even significant-
ly outperform them in the most cases.

We applied HLSGL to conduct the ROI selection. In each fold, the ROIs are ranked
based on the weight value corresponding to this ROI by frobenius norm, and the top-10
are identified as important. The important regions identified such as Hippocampus, En-
torhinal and ParsOpercularis are relevant according to existing AD domain knowledge
and in accordance with prior studies [2, 20].
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Table 1. Comparison of baseline methods and HLSGL-HPS

AD vs. NC AD vs. MCI MCI vs. NC
Sen Spec G-mean AUC Sen Spec G-mean AUC Sen Spec G-mean AUC

All 0.802 0.932 0.865 0.859 0.277 0.905 0.501 0.510 0.342 0.865 0.544 0.433
HLL 0.811 0.941 0.874 0.879 0.253 0.928 0.485 0.523 0.208 1 0.456 0.517

HLSGL 0.829 0.948 0.882 0.892 0.334 0.919 0.536 0.571 0.253 0.965 0.494 0.594
All-HPS - - - - 0.586 0.737 0.657 0.682 0.418 0.687 0.536 0.593

HLL-HPS - - - - 0.645 0.672 0.659 0.671 0.544 0.692 0.613 0.606
HLSGL-HPS - - - - 0.691 0.696 0.693 0.710 0.646 0.576 0.650 0.682

Table 2. Average values of G-mean and AUC for all compared classification methods(Note that
? stands for the case with p ≤ 0.05 )

Methods
G-mean AUC

AD vs NC AD vs MCI MCI vs NC AD vs NC AD vs MCI MCI vs NC

Random Forest 0.861? 0.609? 0.632 0.833? 0.707 0.653?

ELM 0.855? 0.661? 0.631 0.857? 0.691? 0.636?

Logistic regression 0.727? 0.652? 0.619? 0.820? 0.663? 0.617?

Proposed method 0.882 0.693 0.650 0.892 0.722 0.682

3.3 The effect of re-sampling ratio on the performance

In HPS, the optimal re-sampling ratio α may be unknown, and the parameter plays a
vital role for the performance of hybrid re-sampling on the imbalanced data learning.
In the previous experiments, α is set to 70% empirically. The experiment shows the
performance by tuning the re-sampling ratio. The range of α is [0,100%]; the step is set
to 5%. With each value of α, we conduct 10-fold cross validation to obtain an averaged
G-mean and AUC results. From Fig. 2, we can see the changes of G-mean and AUC
when varying the value of α. When α is 0, only undersampling for majority class is
carried out and no new instances are generated. Important information of majority class
may be lost, hence the performance is lowest. When increasing the value of α, the
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Fig. 1. The ROC of multiple computing methods
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two performances increase. When α is 1, oversampling for minority class is performed
without removing redundant instances for majority class. The issue of overfitting may
occur due to the large amount of the minority class as well as the redundant information
of majority class. Moreover, we found the G-mean and AUC to achieve the best when
α is 55% for AD vs MCI, and 45% as well as 55% for MCI vs NC respectively. It
demonstrates that the hybrid re-sampling scheme with an appropriate re-sampling ratio
can achieve optimal classification performance.
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Fig. 2. The performance of varying oversampling ratio with respect to G-mean and AUC

4 Conclusion

In this paper, we focused on the high feature-dimension and class imbalanced distri-
bution problem in AD diagnosis. Specifically, we proposed a novel feature selection
method by sparse group lasso and hybrid probabilistic oversampling to preprocess the
high dimensional imbalanced data, to improve the prediction performance. In our exper-
imental results on the ADNI dataset, we validated the efficacy of the proposed method
by enhancing classification performance in terms of G-mean and AUC. In our future
works, we will extend the proposed linear sparse feature selection to the nonlinear s-
parse modal via kernel functions to capture complex patterns for AD diagnosis.
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