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a b s t r a c t 

Purpose: Accurate diagnosis of autism spectrum disorder (ASD) plays a key role in improving the con- 

dition and quality of life for patients. In this study, we mainly focus on ASD diagnosis with functional 

brain networks (FBNs). The major challenge for brain networks modeling is the high dimensional con- 

nectivity in brain networks and limited number of subjects, which hinders the classification capability 

of graph convolutional networks (GCNs). Method: To alleviate the influence of the limited data and high 

dimensional connectivity, we introduce a unified three-stage graph learning framework for brain network 

classification, involving multi-graph clustering, graph generation and graph classification. The framework 

combining Graph Generation, Clustering and Classification Networks (GraphCGC-Net) enhances the criti- 

cal connections by multi-graph clustering (MGC) with a supervision scheme, and generates realistic brain 

networks by simultaneously preserving the global consistent distribution and local topology properties. 

Results: To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed 

method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and conduct extensive experiments 

on the ASD classification problem. Our proposed method achieves an average accuracy of 70.45% and 

an AUC of 72.76% on ABIDE. Compared with the traditional GCN model, the proposed GraphCGC-Net 

obtains 9.3%, and 10.64% improvement in terms of accuracy and AUC metrics, respectively. Conclusion: 

The comprehensive experiments demonstrate that our GraphCGC-Net is effective for graph classification 

in brain disorders diagnosis. Moreover, we find that MGC can generate biologically meaningful subnet- 

works, which is highly consistent with the previous neuroimaging-derived biomarker evidence of ASD. 

More importantly, the promising results suggest that applying generative adversarial networks (GANs) in 

brain networks to improve the classification performance is worth further investigation. 

© 2022 Published by Elsevier B.V. 
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. Introduction 

Autism is increasingly recognized as a common brain disorder 

ith altered brain networks [1,2] . It is a heterogeneous neuro- 

evelopmental disorder characterized by impaired social interac- 

ion and repetitive behaviors. Neuroimaging studies have explored 

unctional connectivity (FC) of autism spectrum disorder (ASD) 

hrough resting-state functional magnetic resonance imaging (rs- 

MRI). FC is defined as a statistical dependency between differ- 

nt brain regions and has been quantified through Pearson’s cor- 

elation (PC). Compared with structural MRI, rs-fMRI [3] is able 

o measure hemodynamic changes induced by neuronal activity in 
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he whole brain at a range of time points and has been used as a

rimary tool to investigate and explore FC. Traditional diagnosis of 

SD is typically predominantly performed through the observation 

ndividual’s behaviors, questionnaires and interviews of a patient. 

owever, these diagnostic methods are time-consuming and prone 

o a misdiagnosis sometimes. Integrating machine learning algo- 

ithms on neuroimages can be established to differentiate the ASD 

ubjects from normal control subjects [4] . 

Motivated by breakthroughs of deep learning on Euclidean data, 

ffort s have been made to extend convolutional neural networks 

CNNs) to non-regular graph data [5,6] . Kipf [7] proposed Graph 

onvolutional network (GCN) as an effective graph embedding 

odel that naturally combines structure information and node fea- 

ures in the learning process. Recently, some researchers have ap- 

lied GCN on the FBNs to extract latent graph representations 

8,9] . However, at the current stage, the brain network classifica- 

ion via GCN models faces two challenges as follow: 
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Challenge 1: Noisy correlations in brain networks. In brain 

etworks, considering all the correlations may lead to the inclu- 

ion of noisy and spurious connections. Noise in brain images is 

ue to measurement errors likely to arise from technological limi- 

ations, operator performance, equipment, environment, and other 

actors. Currently, PC is the simplest and most widely-used method 

n constructing FBNs. However, it tends to result in brain networks 

ith dense connections. The high dimensional connections could 

e relatively large and thus not very discriminative, which causes 

verfitting issues and increases computational complexity. Due to 

ts high dimensionality and high noise level, the FBNs analysis may 

ot be easy to interpret. Moreover, removing weaker (potentially 

oisy) connections depends on a hard-threshold without enough 

exibility. 

Challenge 2: Limited training data. Our aim is to treat a 

rain network as a graph and embed it into a meaningful low- 

imensional representation. The embedding learning with GCN re- 

uires a large collection of training data. However, the amount 

f available subjects is usually limited in the clinical application, 

hich hinders the classification performance. 

Driven by the two important issues, two questions arise: how 

o capture the critical structures of brain networks by removing 

oisy connections, and how to generate high-quality graphs that 

reserve the local graph structures and the global data distribu- 

ion. Due to the intrinsically complex structure of brain networks, 

ew generative adversarial network (GAN) models can be directly 

pplied due to: (1) a large number of graph edges, (2) the in- 

apability of preserving the topological structure, (3) the diverse 

nterpolation incompatible with the original distribution, and (4) 

n unstable optimization. To resolve these issues, we develop a 

nified three-stage graph learning framework for brain network 

lassification, involving multi-graph clustering, graph generation 

nd graph classification. The framework, GraphCGC-Net, coherently 

ombines the power of Graph Generation, Clustering and Classifi- 

ation Networks. Specifically, we introduce a multi-graph cluster- 

ng to enhance the important connections and remove the irrele- 

ant connections in the brain network with a supervision scheme. 

he multi-graph clustering with supervision is able to generate 

ore robust and biologically meaningful functional connectivity 

ubnetworks. Through learning the indicative edges, we improve 

he interpretability of the model by highlighting the critical func- 

ional connections that are significantly beneficial for the predic- 

ion. Meanwhile, the clean structure not only reduces the com- 

utational complexity, but also facilitates the downstream graph 

eneration and classification task. Moreover, we propose a graph 

AN to generate realistic brain networks for improved diagnosis 

erformance. More specifically, we adapt the structure of α-GAN 

y introducing an additional code discriminator network. Mean- 

hile, we also employ Wasserstein GAN [10] with Gradient Penalty 

WGAN-GP) [11] loss functions to prevent mode collapse. Further- 

ore, we introduce three constraints: local topological measure 

onstraint, a homeomorphic constraint and dual reconstruction 

onstraint to guarantee the graph generation quality. All of them 

nable the generator to preserve graph structural properties and 

nforce the compatibility between the latent sample distances and 

he corresponding graph sample distances, which are important for 

he brain networks analysis for neurological disorders. 

Our contributions are three folds: 

1. We propose a supervised multi-graph clustering, which is 

ble to remove the noisy functional connections from a group 

evel. Moreover, it is capable of identifying the critical structure in 

 brain network, which actually boosts the performance of the fol- 

owing graph generation and classification procedures. 

2. We develop a graph generation model with the proposed 

ultiple regularizations on the graph space and latent embedding 

pace. Our design can stabilize GAN training, alleviate the gradient 
2 
anishing and mode collapse issues, for achieving a better approxi- 

ate data distribution. To the best of our knowledge, the proposed 

raphGAN++ is the first generation model on the brain networks 

or improved classification performance. 

3. The proposed framework method is evaluated on the real- 

orld Autism Brain Imaging Data Exchange (ABIDE). Comprehen- 

ive experiments have been conducted to evaluate the proposed 

ramework. The experimental results demonstrate that our method 

ot only outperforms several state-of-the-art approaches in the 

SD diagnosis, but also is effective in automatically identifying 

isease-related brain subnetworks in the human brain. 

. Related work 

.1. Brain networks construction 

In our work, the FBN is constructed by calculating pairwise lin- 

ar correlations between fMRI time series of different regions of 

nterest (ROIs) using Pearson’s correlation (PC). Given two times 

eries of length L , x and y , the value of PC can be calculated as

ollows: 

xy = 

∑ L 
i =1 ( x i − x̄ ) ( y i − ȳ ) √ ∑ L 

i =1 ( x i − x̄ ) 
2 
√ ∑ L 

i =1 ( y i − ȳ ) 
2 
, (1) 

here x̄ and ȳ are the means of x and y . A correlation matrix A ∈
 

n ×n is obtained by computing all the pairwise correlations, and its 

alues range from 1 to −1 , n is the number of time series (or ROIs).

he values close to 1 indicate a higher positive correlation whereas 

he values close to −1 indicate a higher negative correlation. 

.2. Graph convolution networks 

Different from the regular structure of Euclidean data, graphs 

ave non-regular spatial structures. Given an adjacency matrix 

 ∈ R 

n ×n , GCN can automatically use edge information to aggre- 

ate node information from the neighboring nodes to generate the 

l + 1) th layer node representations through the following equa- 

ion: 

 

(l+1) = σ ( ̃  D 

− 1 
2 ˜ A ̃

 D 

− 1 
2 H 

(l) W 

(l) ) , (2) 

here W 

(l) is the learnable weight matrix, σ (·) denotes a non- 

inear operation. ˜ A = A + I n , where I n is the identity matrix and 

˜ D

s the diagonal node degree matrix of ˜ A , H 

(l) is the feature matrix 

f the lth layer. 

.3. Generative adversarial network 

Recently, GANs [12] have been widely applied in the field of im- 

ge generation to produce very realistic images in an unsupervised 

etting. This gained a good deal of interest in the medical imaging 

esearch communities [13,14] . In GANs framework, two models are 

imultaneously trained: a generator G and a discriminator D. The 

enerator G captures the data distribution and tries to produce re- 

listic data. It transforms a random vector z into a sample, where 

 usually comes from an easy-to-sample distribution. The genera- 

or is trained to generate ˆ x = f g ( z ) , which is indistinguishable from 

he samples in the real distribution P r . The discriminator D mea- 

ures how realistic the input data is. It takes samples as inputs and 

utputs the probability of whether x comes from the real distri- 

ution P r . In practice, discriminator is trained to produce a lower 

robability value for the generated data. The learning is done by 

laying a two-player game, where discriminator tries to distinguish 

he real sample x and the generated sample ˆ x , while the generator 

ims to confuse the discriminator by generating ˆ x similar to x . 
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Fig. 1. The detailed pipeline of our proposed GraphCGC-Net for brain network generation and classification: 1 © we train a supervised multi-graph clustering to construct 

a coarsened graph with a critical graph structure. 2 © Based on the coarsened brain networks, we propose a graph GAN model to generate the real-like brain networks under 

the guidance of the proposed regularizations from the graph space and latent embedding space. 3 © Both the generated and original graphs are merged into a mixed training 

dataset to fine-tune the pre-trained GCN model. 
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The game between the generator and the discriminator can be 

efined as a minimax objective function: 

in 

G 
max 

D 
E 

x ∼P r 

[ log ( f d (x ))] + E 

z ∼P z 

[ log (1 − f d ( f g ( z ) ))] , (3) 

here P z is the simple noise distribution, f g ( ·) and f d ( ·) are the

unctions of the generator and discriminator. 

. Architecture overview 

In our work, we cast the ASD diagnosis as a classification prob- 

em and propose a data augmentation method based on the coars- 

ned graphs. Specifically, we develop a unified three-stage learning 

ramework for brain network classification. It involves multi-graph 

lustering, graph generation and graph classification. The frame- 

ork is shown in Fig. 1 . 

. Multi-graph clustering for the graph structure learning 

In the function brain networks (FBNs), the dimensionality of 

unctional connectivity could be relatively large and thus less dis- 

riminative. The noisy connections that are most influenced by ex- 

erimental need to be removed for further analysis. Moreover, the 

eterogeneity present in the dataset might compromise the coher- 

nce of information between different sites, such as in the large 

ulti-site ABIDE dataset. The existence of heterogeneity results 

n a lower identification of fMRI image classification, which was 

emonstrated in several recent imaging studies [15,16] . Therefore, 

e introduce a multi-graph clustering for graph structure learning 

hat treats clusters as supernodes to remove the noisy connections 

nd eliminate the inconsistency in brain networks data. Our objec- 

ive is well-motivated: by reducing the noisy correlation edges and 

nhancing the important correlations, a better brain network can 

e achieved. 
3 
The purpose of multi-graph clustering (MGC) is to improve 

lustering accuracy by leveraging information from a group-level 

nalysis. However, the MGC [17] is unsupervised so potential in- 

onsistency between the learned graph by MGC and the sub- 

equent classifier may degrade the final diagnosis performance. 

o overcome this problem, instead of an unsupervised training 

cheme, MGC guides the graph structure learning process by con- 

idering the group-level consistency in the subjects from the mul- 

iple sites with class label supervision. Specifically, the weights of 

unctional connections that connect the nodes crossing different 

lusters are enhanced whereas the connections of the nodes within 

he same clusters are removed. Moreover, our MGC is an end-to- 

nd model to jointly learn the graph clustering and graph embed- 

ing for classification in a supervision scheme, which is beneficial 

or improving classification performance. 

At first, we regard the human brain as a functional system 

n which the positive and negative correlations are separately 

tilized for diagnosing brain diseases. However, several methods 

18,19] produce a binary graph through a threshold. It may dis- 

egard the important information in the positive and negative 

orrelations. Moreover, existing methods [20,21] have suggested 

hat negative correlations should not be simply discarded as they 

ontain useful information that would aid the classification task. 

herefore, to avoid losing useful information regarding positive 

nd negative correlations during the graph convolution process, we 

mploy two branches B 

+ and B 

− to model the positive correlation 

 

+ and negative correlation A 

−, respectively. Specifically, the FBN 

an be described by an adjacency matrix A ∈ R 

n ×n , which is di-

ided into negative and positive graph data A 

−
v and A 

+ 
v depending 

n the FC values. The A 

−
v and A 

+ 
v are aggregated into coarsened 

raphs S −v and S + v ∈ R 

m ×m by 

 

κ
v = F T A 

n 
v F , κ ∈ (Neg, P os ) , (4) 
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here F ∈ R 

n ×m is an indicator matrix shared among the graphs. In 

articular, for node i in graph A v , a value f i is assigned indicating

ow important node i is for the classification task, and the edge 

etween node i and j is associated with a weight w i j . Each item F ie 
f the indicator matrix F to be optimized can be interpreted as the 

embership of node i to the supernode S e , where F ie = f i if i ∈ S e ,

therwise F ie = 0 . During the aggregation of the coarsened graph 

 v , the nodes linked to the non-indicative edges are grouped into 

he same clusters to remove the noisy connections and eliminate 

raph inconsistencies. The weight of the superedge W 

κ
de 

between 

upernode S d and S e is defined as: 

 

κ
de = 

∑ 

i ∈ S d , j∈ S e 
f i · w i j · f j . (5) 

Through the training of MGC, we obtain a set of clusters as su- 

eredges { W 

κ
1 

, W 

κ
2 

, · · · , W 

κ
m 

2 } , κ ∈ (Neg, Pos ) to form the coarsened

raphs S v . The positive and negative coarsened graphs S + v and S −v 
re fed into the GCN models to capture the structures embedding 

 

+ 
v and V 

−
v . Then we flatten and concatenate the V 

+ 
v and V 

−
v to-

ether, and send them to fully-connected layers to obtain classifi- 

ation scores using the softmax function. 

To improve the MGC performance, we incorporate three terms 

o regularize the learning process. First, we penalize the sum of 

egative values in the indicator matrix F to avoid the trainable ma- 

rix containing negative values. The regularization is defined as: 

 neg = 

n ∑ 

i =1 

m ∑ 

j=1 

(
Relu (−F i j ) 

)
. (6) 

Second, the orthogonal constraint L o is introduced to penalize 

he off-diagonal elements of F T F to prevent overlapping of clusters: 

 o = 

∥∥F T F − diag 
(
F T F 

)∥∥
2 
. (7) 

In addition, we introduce a balancing loss L b to balance the 

roup size to improve the interpretability of the model. The reg- 

larization can be given by: 

 b = var 
(
diag (F T F ) 

)
, (8) 

here var (·) means variance. Hence, the total loss of MGC can be 

xpressed as follows: 

 total = min 

F , W 

(− 1 

N 

N ∑ 

i =1 

y i log 
(

ˆ y 
)

+ 

∑ 

j=+ , −
(λL 

( j) 
o + βL 

( j) 
b 

) + γ L neg + ηL 2 ) , 

(9) 

here a cross entropy loss is used for classification, N is the num- 

er of samples, y is the true label and ˆ y is the predicted proba- 

ility of the model. L 2 = ‖ F ‖ 2 2 + ‖ W ‖ 2 2 ( W is the weight matrix of

CN) is used to reduce overfitting. λ, β , γ and η are parameters of 

he constraint terms. With supervision, we can optimize the MGC 

odel via back-propagation and learn a better solution of the clus- 

er indicator matrix F . 

. GraphGAN++: An improved graph GAN model for brain 

etworks generation 

GANs [22,23] have been shown to produce very similar graph 

tructure data thanks to adversarial training. However, these ap- 

roaches are still insufficient for modeling brain network genera- 

ion due to the following challenges: 

C.1 The instability of the GAN training process often leads to 

he problem of mode-collapse. 

C.2 The local topology measure is not preserved during the gen- 

ration process, which is crucial for brain networks. 
4 
C.3 The previous GAN models may be prone to generate incon- 

istent graphs with respect to graph structure and graph level em- 

edding. 

C.4 The global consistent distribution is ignored in the latent 

mbedding space. 

In this paper, we introduce a graph GAN method named Graph- 

AN++ to improve the graph generation quality. Figure 2 illus- 

rates the overall architecture of the GraphGAN++ framework. It 

nvolves four modules: the graph encoder, the graph generator, 

he graph discriminator and the code discriminator. At first, we 

hoose α-GAN [24] for learning latent variables to effectively ad- 

ress the problems of mode collapse. Moreover, we introduce a lo- 

al topological measure to enable the generator to preserve global 

tructural properties. Furthermore, we propose a latent data dis- 

ance constraint to enforce the consistency between the latent em- 

edding distances and the corresponding graph distances, which 

revents the generator from producing diverse graph samples of 

hich the corresponding latent codes are close to each other. 

.1. Graph encoder and code discriminator 

Wasserstein GAN: To effectively address challenge C.1 , we in- 

roduce Wasserstein GAN (WGAN) to prevent mode collapse and 

chieve a more stable training. WGAN minimizes an approxima- 

ion of the Wasserstein distance between the real distributions 

nd the generated sample distribution [10] . First, we introduce a 

ode discriminator for learning latent variables to replace the vari- 

tional inference in VGAE [25] . Second, we use Wasserstein dis- 

ance to improve the generation quality. Moreover, we employ gra- 

ient penalty to stabilize the training process by penalizing the 

radient norm of the interpolated samples ˆ x , which can be defined 

s: 

 gp = E ˆ x [(‖∇ ˆ x f ( ̂  x ) ‖ 2 − K) 2 ] , (10) 

here f (·) is the function of the discriminator. L gp requires the 

radient of the discriminator be at most K to satisfy Lipschitz con- 

traint. 

.1.1. Graph encoder 

An encoder network Enc is trained to learn a function E θ (·) that 

aps each real sample to a point in the latent space, which con- 

ists of two GCN layers. With the coarsened graph as input, the 

ncoder learns the graph embedding Z e . We introduce the graph 

onvolution processing for each layer as follows: 

 

(l+1) = σ ( ̃  D 

− 1 
2 ˜ A s ̃  D 

− 1 
2 Z 

(l) W 

(l) ) , (11) 

here ˜ A s is the symmetrically normalized adjacency matrix, Z 

(l) 

s the graph embeddings of the lth layer, σ (·) denotes the ReLU 

ctivation function, and W 

(l) is the trainable weight matrix. The 

oss function of the encoder is: 

 

c 
enc = min 

E θ (·) 
(− 1 

N 

N ∑ 

i =1 

f c w 

(E θ (S (i ) ))) , (12) 

here N is the number of samples, f c w 

(·) is a function of the code 

iscriminator. 

.1.2. Code discriminator 

In this section, we adapt the structure of α-GAN and introduce 

n additional code discriminator CD to distinguish whether the la- 

ent code comes from a real prior distribution or a code embed- 

ing obtained by the graph encoder. This purpose is to enforce the 

ode embedding Z e ∼ E θ (S ; θ ) to be normally distributed. Specif- 

cally, we treat the code embedding Z e as fake and the Gaussian 

oise Z r in the normal distribution as real. Then Enc and CD play 

n adversarial game. When the Wasserstein distance between the 
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Fig. 2. The architecture of the proposed GraphGAN++. At first, the encoder network Enc is trained to learn a parametric mapping: Z e ∼ E(S ; θ ) , mapping each real sample S 

to a representation Z e in the latent space. Then, the generator network Gen is trained to learn a function G φ (·) : mapping each point in the latent space Z e to a reconstructed 

graph S̄ , or mapping a random point in the Gaussian distribution Z r to a generated graph ˆ S . These networks are trained in tandem with the graph discriminator and the 

code discriminator, which learn to discriminate between the real and generated samples, and between the Gaussian noise and the latent points, respectively. 
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 e and Z r is small enough, we consider that the posterior distribu- 

ion Z e and the prior distribution Z r are matched. Thus the loss of 

he code discriminator is formulated as: 

 

c 
d = min 

f c w (·) 
( 

1 

N 

N ∑ 

i =1 

f c w 

(E θ (S (i ) )) − 1 

N 

N ∑ 

i =1 

f c w 

(Z 

(i ) 
r ) + L c gp ) , (13)

here L c gp is the gradient penalty term of the code discriminator. 

.2. Graph generator and discriminator 

.2.1. Graph generator 

The generation process of the generator network involves two 

arts: mapping each point in the latent space Z e to a reconstructed 

raph S̄ , and mapping each point in the normal distribution Z r to a 

enerated graph 

ˆ S . More specifically, we adopt the link prediction 

ethod to generate new edges. Considering the fact that the edges 

n the coarsened graphs are enhanced, we choose a softplus activa- 

ion function to guarantee the validity of the generated edges. The 

enerator consists of two fully-connected layers and a link predic- 

ion module. For example, the function of link prediction in the 

eneration procedure is expressed as: 

p( ̂ S | Z r ) = 

∏ m 

i =1 

∏ m 

j=1 p(s i j | z i , z j ) , 
with p(s i j | z i , z j ) = σ (η( z i ) 

T · η(z j )) , 
(14) 

here s i j are the edges of ˆ S , z i and z j are the elements of Z r , η(·)
s the function of fully-connected layers, η(z i ) 

T · η(z j ) indicates the 

nner product between latent variables, and σ is the activation 

unction. 

Local topological measure constraint: It is a remarkable fact 

hat brain networks have unique topological properties, which are 

esirable to be preserved when generating brain networks. How- 

ver, the existing graph GAN models do not consider the local 

opology measure in the graph space. To solve challenge C.2 , we in- 

orporate a topological loss function using a centrality metric that 

nforces the generator to preserve the local topology of the graphs. 

e calculate the local topology measures during both the genera- 

ion and reconstruction processes as follows: 

 t p = L gen 
t p + L rec 

t p , (15) 

here L 
gen 
t p and L rec 

t p are the local topology loss for the generation 

nd reconstruction processes, respectively. At first, we set a thresh- 

ld value μ to remove the weaker edges from both the true and 

he generated graphs at first. Then, we calculate the absolute dif- 

erence of the centrality score between the generated graph and 

he real graph as the topology loss. In our study, we choose be- 

weenness centrality (BC), which is commonly used in graph the- 

ry as a local measure. It is worth noting that we attempted multi- 

le graph measures as the topological loss and found BC performs 
5 
est. We discuss this further in the experiment. 

 bc ( n i ) = 

m ∑ 

j,k =1 

sp( j, i, k ) , ( j � = k ) , (16)

quation (16) denotes the number of shortest paths sp( j, i, k ) be- 

ween nodes j and k that pass through node i . The topology loss 

n the generation procedure is defined as follows: 

 

gen 
t p = min 

G φ (·) 
( 

N ∑ 

i =1 

� MAE (C 
S (i ) 

bc , C 
ˆ S (i ) 

bc )) , (17) 

he reconstruction process is the same as the generation for calcu- 

ating the topology measure loss. 

Dual reconstruction loss for consistent generation: To cope 

ith challenge C.3 , we also introduce a dual reconstruction loss to 

nforce the generator module to achieve a consistent reconstruc- 

ion. More specifically, we propose a dual reconstruction scheme 

o guarantee the generation quality. The dual reconstruction loss 

f graph generator can be represented by: 

 rec = L s rec + L e rec , (18) 

here L s rec and L e rec indicate the graph structure and graph embed- 

ing reconstruction loss, respectively. 

1. More specifically, to ensure that the reconstructed graphs 
¯
 can preserve the same structure with the original graphs, we 

hoose l 1 loss as the graph structure reconstruction loss: 

 

s 
rec = min 

G φ (·) 
( 

1 

N 

N ∑ 

i =1 

∣∣S (i ) − S̄ (i ) 
∣∣) . (19) 

2. Moreover, to ensure that both the reconstructed graph and 

he original graph can be represented by the same graph embed- 

ing by the graph encoder E θ (·) , we define the reconstruction loss 

s follows: 

 

e 
rec = min 

G φ (·) 
( 

1 

N 

N ∑ 

i =1 

(E θ (S (i ) ) − E θ ( ̄S 
(i ) )) 2 ) . (20) 

In summary, the overall loss of the generator can be defined as: 

 

g 
gen = L adv + λt p L t p + λrec L rec , (21) 

here L t p and L rec are the topology measure loss in Eq. (15) and 

he dual reconstruction loss in Eq. (18) , λt p and λrec are the hyper- 

arameters, and L adv is the adversarial loss: 

 adv = min 

G φ (·) 
(− 1 

N 

N ∑ 

i =1 

f g w 

(G φ(Z 

(i ) 
r )) − 1 

N 

N ∑ 

i =1 

f g w 

(G φ(Z 

(i ) 
e ))) , (22) 

here f 
g (·) is a function of the graph discriminator. 
w 
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Fig. 3. Schematic diagram of the proposed homeomorphic mapping. 
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.2.2. Graph discriminator 

Typically, the graph discriminator distinguishes the generated 

raph data from the true graph data. In this paper, we expect the 

enerated graphs ˆ S and reconstructed graphs S̄ to follow the same 

tructures as the original graphs S . In an ideal case, L rec should 

e zero. However, this is not the case for the discriminator model 

hat uses fully connected networks. It will mislead the generator to 

aste its capacity in reducing the total loss, instead of maintaining 

he same graph structures. 

To deal with this deficiency, we devise a GCN-based graph dis- 

riminator D that learns to enforce the intrinsic structural similar- 

ty between S̄ , ˆ S and S . Specifically, the D includes a two-layer GCN 

nd a three-layer full connected network. The loss function of the 

raph discriminator is defined as: 

 

g 

d 
= min 

f g w (·) 

( 

1 

N 

N ∑ 

i =1 

f g w 

(
G φ(Z 

(i ) 
e 

)) 

+ 

1 

N 

N ∑ 

i =1 

f g w 

(
G φ

(
Z 

(i ) 
r 

))

− 2 

N 

N ∑ 

i =1 

f g w 

(
S (i ) 

)
+ λL g gp ) , (23) 

here L 
g 
gp is the gradient penalty term of the graph discriminator. 

Homeomorphic mapping for consistent constraint: Moreover, 

e propose a homeomorphic mapping for consistent constraint, 

hich enforces the compatibility between latent sample distances 

n the embedding code space and the corresponding graph sam- 

le distances in the graph space. The consistent constraint also 

revents the generator from producing diverse graph samples of 

hich the corresponding latent codes are close to each other, i.e. 

ode collapse. To improve the mapping Z → S , the homeomorphic 

apping ensures that interpolation between samples in the latent 

ode space leads to a better semantic interpolation in the graph 

pace with a consistency constraint. 

Specifically, we incorporate a homeomorphic mapping to the 

odel, as shown in Fig. 3 . We define z hm 

sampled uniformly along 

traight lines between a pair of points vector z i and z j in the graph

mbedding space P c . It can be defined as follows: 

z hm 

= εz i + (1 − ε) z j , (24) 

here ε ∼ U [0 , 1] . The scheme allows our GAN model to generate

he neighborhood samples by restricting the generated G φ(z hm 

) , 

 φ(z i ) and G φ(z j ) in the graph space P g . The homeomorphic map-

ing loss that we add to the Gen and D is defined as: 

 

hm 

gen = min 

G φ (·) 
(− 1 

N 

N ∑ 

i =1 

f g w 

(G φ(Z 

(i ) 
hm 

))) , (25) 

 

hm 

d = min 

f g w (·) 
( 

1 

N 

N ∑ 

i =1 

f g w 

(G φ(Z 

(i ) 
hm 

)) − 1 

N 

N ∑ 

i =1 

f g w 

(S (i ) ) + L hm 

gp ) . (26)
s

6 
.3. Learning 

In summary, our algorithm alternately updates the parameters 

f graph encoder, graph generator, graph discriminator and code 

iscriminator. The total loss of our GraphGAN++ is defined by: 

 GAN = L c enc + λ1 L 
c 
d + λ2 L 

g 
gen + λ3 L 

g 

d 
. (27) 

e jointly train the proposed model using the following parameter 

pdating rules for each training batch: 

Enc 
+ ← −∇ θEnc 

L c enc , θCD 
+ ← −∇ θC D 

L c d , θGen 
+ ← −∇ θGen 

L g gen , θD 
+ ← −∇ θD 

L g 
d 
, 

where λ1 , λ2 , λ3 are tunable hyper-parameters. 

.4. Final classification 

The final training dataset D m 

contains two sources: the original 

raph datasets D r and the generated graph dataset D g . 

 m 

= 

{ 

{ S (i ) 
r } N r 

i =1 
; { S ( j) 

g } N g 
j=1 

} 

, (28) 

here N r and N g indicate the number of real and generated sam- 

les, both the S (i ) 
r and the S 

( j) 
g are coarsened graphs. The generated 

raphs D g are used to augment the original graph datasets D r . The 

ixed datasets are used to fine-tune the GCN model to improve 

he classification performance. 

. Experiment 

We evaluate our GraphCGC-Net on the task of graph classifica- 

ion to answer the following three questions: 

Q1 Is multi-graph clustering beneficial for the following GAN 

and GCN? 

Q2 How does our GAN behavior compare with the previous 

GAN models? 

Q3 Can the generated graph data enrich the limited dataset and 

improve classification performance? 

.1. Datasets and pre-processing 

.1.1. Datasets 

The Preprocessed Connectomes Project (PCP) released pre- 

rocessed versions of ABIDE-I using several pipelines, and we 

se the data processed through Configurable Pipeline for Analysis 

f Connectomes (CPAC). Moreover, we choose the functional pre- 

rocessed data based on Craddock 20 0 (CC20 0) functional parcella- 

ion [26] , which was segmented into 200 regions of interest (ROIs). 

BIDE I includes 505 ASD subjects and 535 normal controls (NC) 

rom 17 international sites [2] . We selected the same 871 subjects 

s the previous works [27] , including 403 ASD subjects and 468 

Cs. The details of ABIDE I are shown in Table 1 . 

.1.2. Combating batch effects when combining batches (ComBat) 

The parameter settings of scanners are different for each site. 

herefore, we choose ComBat [16] to eliminate the negative im- 

act of multi-site harmonization on the performance of classifica- 

ion models. ComBat suggests that the differences introduced in 

he imaging features can be normalized by adjusting the location 

nd scale (L/S) of each site. We choose y i jv to represent the con- 

ectivity values of the v th functional connectivity metric of jth 

canner at i th site as: 

 i jv = αv + I i j βv̄ + γi v + δi v εi jv , (29) 

here αv is the overall feature value for the connectivity value v 
etween two brain regions, I i j is the specific covariance matrix of 

iological information, such as age and gender, βv is the regres- 

ion coefficients corresponding to I i j , the terms γi v and δi v indicate 
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Table 1 

Detail of the ABIDE I. SD is the standard deviation, M and F denote the male and female. 

SITE ASD NC Scanner 

Age(SD) Gender Age(SD) Gender 

CALTECH 27.4(10.3) M 15, F 4 28.0(10.9) M 14, F 4 Siemens Trio 

CMU 26.4(5.8) M 11, F 3 26.8(5.7) M 10, F 3 Siemens Verio 

KKI 10.0(1.4) M 16, F 4 10.0(1.2) M 20, F 8 Philips Achieva 

LEUVEN 17.8(5.0) M 26, F 3 18.2(5.1) M 29, F 5 Philips Intera 

MAX MUN 26.1(14.9) M 21, F 3 24.6(8.8) M 27, F 1 Siemens Verio 

NYU 14.7(17.1) M 65, F 10 15.7(6.2) M 74, F 26 Siemens Allegra 

OHSU 11.4(2.2) M 12, F 0 10.18(1.1) M 14, F 0 Siemens Trio 

OLIN 16.5(3.4) M 16, F 3 16.7(3.6) M 13, F 2 Siemens Allegra 

PITT 19.0(7.3) M 25, F 4 18.9(6.6) M 23, F 4 Philips Allegra 

SBL 35.0(10.4) M 15, F 0 33.7(6.6) M 15, F 0 Philips Intera 

SDSU 14.7(1.8) M 13, F 1 14.2(1.9) M 16, F 6 GE MR750 

STANFORD 10.0(1.6) M 15, F 4 10.0(1.6) M 16, F 4 GE Signa 

TRINITY 16.8(3.2) M 22, F 0 17.1(3.8) M 25, F 0 Philips Achievao 

UCLA 13.0(2.5) M 48, F 6 13.0(1.9) M 38, F 6 Siemens Trio 

UM 13.2(2.4) M 57, F 9 14.8(3.6) M 56, F 18 GE Signa 

USM 23.5(8.3) M 46, F 0 21.3(8.4) M 25, F 0 Siemens Trio 

YALE 12.7(3.0) M 20, F 8 12.7(2.8) M 20, F 8 Siemens Trio 
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he location and site parameters of site i for value v , and the error

erm εi jv follow a normal distribution. The final ComBat-adjusted 

onnectivity values can be defined as: 

 

combat 
i jv = 

y i jv − ˆ αv − I i j ̂
 βv − γ ∗

i v 
δ∗

i v 
+ ˆ αv + I i j ̂

 βv , (30) 

here ˆ α, ˆ β, γ ∗
i v and δ∗

i v are the empirical Bayes estimators for the 

arameters α, β , γi v and δi v . 

.2. The result of our proposed GraphCGC-Net 

.2.1. Performance of the graph generation with respect to the graph 

evel 

We compared our proposed model with several current state- 

f-the-art generative model approaches: α-GAN, ARVGE and VAE- 

AN, which are most related to our work. ARVGE [28] is an auto- 

ncoder model that regularizes the latent codes by adversarial 

raining and forces the latent codes to match a specific prior distri- 

ution. α- GAN [24] combines the variational lower bound on the 

ata likelihood with the density ratio trick, allowing the model to 

eplace variational inference in a GAN-like fashion and to better 

apture the connection between VAE and GAN. VAEGAN [29] com- 

ines VAE with GAN using the KL divergence regularization terms 

o minimize the distance between the prior and the posterior of 

he latent code. 

To show the comparison between the quality of graphs gener- 

ted by our model and other comparable methods in terms of re- 

lity, we employ the trained generative models to generate graph 

ata at first. Then we set a threshold value μ to remove the 

eaker edges from both the original and generated graphs, and 

ompare the differences between them in terms of the following 

raph statistical properties: 

1. Degree property metrics : largest connected component 

LCC), characteristic path length (CPL), power law coefficient (PLC), 

lustering coefficient (CC). 

2. Edge distribution metrics : relative edge distribution entropy 

REDE) and node strength (NS). 

3. Centrality measures metrics : closeness centrality (CC), be- 

weenness centrality (BC) and degree centrality (DC). 

The quantitative results achieved by different methods are re- 

orted in Table 2 . The first row is the values of the real graphs and

he rest is the absolute values of differences between the graphs 

enerated by each generative model and the real graphs. 

Firstly, it can be seen that compared with ARVGE, VAEGAN and 

-GAN, GraphGAN++ obtains an improvement in terms of graph 
7 
egree, edges and centrality attributes. The improvement demon- 

trates that our GAN framework presents a better generation per- 

ormance than the state-of-the-art graph GAN methods due to the 

ollowing advantages: 

1. A more stable training process that guarantees the samples 

enerated from the prior space are more realistic; 

2. A local topology measure that preserves the graph structure; 

3. A dual reconstruction loss that ensures a consistent genera- 

ion of graph structure in the graph space. 

.2.2. Performance of the graph generation with respect to the data 

istribution 

To intuitively understand the graph generation quality of 

raphGAN++, we apply t-SNE [30] on both the original and gen- 

rated graphs. To measure how close the distributions of gener- 

ted and the original samples are on the 2-dimensional space, we 

valuate the data distribution of each class in the original and 

enerated samples through visualization. t-SNE is a non-linear di- 

ensionality reduction algorithm used to visually explore high- 

imensional data. Figure 4 shows the scatter plot results of t-SNE, 

ith each point representing a graph sample. 

From Fig. 4 , we can observe that the distributions of the graphs 

enerated by VAEGAN and α-GAN are inconsistent with the origi- 

al data distribution. For ARVGE, the generated samples from the 

ormal control class are mixed with the ASD class, which could 

onfuse the following classifier model. Compared to the compet- 

ng models, the results demonstrate that our GraphGAN++ model 

s able to synthesize graphs that are consistent with the original 

raph distribution and provides a better class discriminative abil- 

ty. 

.2.3. Classification performance evaluation of the multiple graph 

AN models 

Data augmentation is typically utilized to increase the size of 

he effective training datasets when training deep neural networks 

or supervised learning tasks. In addition to the comparisons with 

espect to graph measure characteristics, we conduct rigorous ex- 

eriments to verify whether the generated graphs can improve the 

lassification performance. We compared our GraphGAN++ method 

ith the following graph generation methods: 

α -GCNGAN [31] is a graph generation model that solves the 

roblems of mode collapse by combining GCN with α-GAN to gen- 

rate graphs. 

CONDGEN [32] is an end-to-end model that combines the 

ower of GCN and VAEGAN to collapse the node features 
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Table 2 

Performance evaluation of compared algorithms in terms of graph statistical properties. 

Models 

Degree Edges Centrality 

LCC CPL PLC CC REDE NS BC CC DC 

Real Graph 8 1.592 2.542 0.158 0.753 7.711 0.880 0.028 0.831 

ARVGE [28] 1.610 0.311 0.842 0.670 0.110 5.010 0.442 0.046 0.473 

α-GAN [24] 1.746 0.329 0.885 0.646 0.122 4.846 0.447 0.051 0.470 

VAEGAN [29] 1.753 0.311 0.795 0.579 0.089 4.794 0.427 0.027 0.451 

GraphGAN + + 1.762 0.280 0.821 0.375 0.059 4.508 0.413 0.025 0.432 

Fig. 4. The embedded t-SNE representation of synthetic graphs generated by the various competing GAN models. 

Table 3 

Classification performance comparison of various methods. We compare the multiple GAN models on the original brain networks and the 

coarsened brain networks, respectively. 

Model Graph ACC(%) AUC(%) SEN(%) F1(%) PREC(%) 

EigenGCN [33] Original 58.00 56.40 62.40 59.96 57.70 

CONDGEN [32] Original 59.80 57.70 61.40 60.90 60.40 

α-GCNGAN [31] Original 61.40 57.40 76.20 51.70 58.60 

α-GAN [24] Coarsened 66.42 68.40 66.35 66.38 66.62 

ARVGE [28] Coarsened 67.82 68.40 65.00 65.00 65.00 

VAEGAN [29] Coarsened 67.94 71.16 66.67 65.75 64.86 

GraphCGC-Net Coarsened 70.45 72.76 70.47 70.39 70.38 
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nto permutation-invariant graph latent code and guarantee the 

ermutation-invariant generation of the graphs. 

We choose EigenGCN [33] as the baseline classification of the 

riginal graphs without generation. EigenGCN is a unified GCN 

odel that integrates a pooling operator, EigenPooling, to utilize 

he node features and local structures during the pooling pro- 

ess. From the results in Table 3 , we can draw the following 

onclusions: 

1. It is clearly observed that the synthetic graph data generated 

y different models provide additional contributions to the classi- 
8 
cation performance. The graph-based generative models working 

n the original brain networks are also helpful for the classifica- 

ion model, but the improvement is limited. The reason is due to 

he fact that generative models are negatively influenced by the 

oisy edges in the original graph data. Although the original brain 

etworks can be reduced by a threshold value, the binarization of 

raph data results in that the useful information is lost in the orig- 

nal brain networks. In contrast, the coarsened graphs by MGC can 

etter preserve the functional connectivity information and achieve 

etter classification performance. 
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Fig. 5. The ROC of multiple computing methods. 
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2. The results prove our hypothesis that the GAN models based 

n the coarsened graphs can improve the classification perfor- 

ance. Compared with EigenGCN, our GraphCGC-Net obtained an 

ccuracy improvement of 12.45%. 

3. It is obvious that the graph samples generated by Graph- 

AN++ provide more sufficient information for the classification 

ompared with other graph generation models. 

.3. Comparison with the state-of-the-art methods for ASD diagnosis 

To verify the effectiveness of our GraphCGC-Net on the ASD 

lassification, we compare our method with several recent state- 

f-the-art methods: 

ASD_DiagNet [8] is a joint learning model combing an auto- 

ncoder and a single layer perceptron to improve the quality of 

xtracted FC features and to optimize the parameters of the classi- 

er. 

DAE [34] is an auto-encoder-based model that used two de- 

oising auto-encoders to reduce the dimensionality and eliminate 

oise from the correlation matrices, and the weight parameters 

sed for denoising were further used to initialize the parameters 

or the classifier. 

S -GCN [35] is a framework that uses the siamese graph convo- 

utional neural network to learn the structural similarity between 

wo graphs in a supervised manner. 

ST -GCN [36] is a framework for analyzing rs-fMRI data that uti- 

izes spatio-temporal graph convolutional to learn the importance 

f graph edges to gain insight into the FCs. 

BrainGNN [9] is an interpretable graph neural network-based 

ramework for fMRI classification tasks that jointly learns ROI clus- 

ering and the downstream whole-brain fMRI prediction. 

MVS-GCN [19] is a multi-view graph convolutional network- 

ased model using graph structure learning and multi-task graph 

mbedding learning to diagnose brain disorders and to identify the 

ritical subnetworks. 

1D_CNN [37] is a simple method to transform the high- 

imensional rs-fMRI data into the time series and use 1D- 

onvolutional neural networks for classification. 

3DCNN_1D [38] is a model that uses 3DCNNs to extract voxel- 

evel features from the full 4-D fMRI data and use 1D_CNNs to pro- 

ess the spatio-temporal features for classification. 

3DCNN_C_LSTM [38] is an end-to-end model that can extract 

ocal and global spatio-temporal features from the full 4-D fMRI 

ata using 3DCNNs and 3D-convolutional long short-term memory 

LSTM). 

To more comprehensively evaluate our model, we com- 

are GraphCGC-Net with two groups of state-of-the-art neural 

etwork-based methods, involving GCN-based methods (EigenGCN, 

rainGNN, ST -GCN and S-GCN) and autoencoder based methods 

SD_diagNet and DAE. We also compare GraphCGC-Net with two 

raditional machine learning approaches (SVM, RF) that use the 

attened PC data (i.e., n ×(n −1) 
2 , where n is the amount of ROIs) as 

eatures for classification. In particular, we compare with the CNN- 

ased approaches, which involve extracting the voxel-level features 

rom 4D fMRI image data without converting to FBNs. Experimen- 

al results of the 10-fold cross validation are reported in Table 4 , 

nd the ROC curves are plotted in Fig. 5 . We highlight the follow-

ng observations: 

1. It can be observed that the GraphCGC-Net model for ASD 

lassification achieves the best classification performance with an 

ccuracy of 70.45%, which is about 5.24%, 3.2%, 9.3% and 11.19% 

mprovement in ACC compared to the previous traditional ma- 

hine learning models, autoencoder models, GCN-based models 

nd CNN-based models, respectively. 

2. The autoencoder-based and traditional machine learning 

ethods are dedicated to flatten FC information and work on ex- 
9 
racting global features in brain networks. However, these meth- 

ds have an insufficient feature representation capability and ig- 

ore the spatial structure information of FBNs. The CNN-based 

pproaches use a combination of CNN and LSTM to obtain local 

nd global spatio-temporal information from the 4D fMRI images. 

hey perform worse since multi-site data are obtained from differ- 

nt scanners and with different acquisition parameters. The het- 

rogeneity of the data hinders the advantages of CNN-based ap- 

roaches. Moreover, the reason why 1D_CNN performs better than 

DCNN is that the 3DCNN-based model cannot obtain representa- 

ive voxel-level features from the heterogeneous data. 

3. Moreover, the graph representation learning methods with 

eep learning generally obtain worse prediction results than the 

raditional machine methods. The reason is that the complex and 

nconsistent graph structure in brain networks limits the classifica- 

ion performance of the GCN models. Another reason is that train- 

ng GCN requires a sufficiently large training data. The limited data 

inders the embedding learning of GCN. Overall, the results sug- 

est that GCN classification with the augmentation data generated 

y our GraphGAN++ can enable more accurate performance com- 

ared to the competing methods. 

.4. Discussion 

.4.1. The influence of positive and negative correlation in MGC 

At first, we explore the influence of positive correlation and 

egative correlation in the classification. Specifically, we input pos- 

tive and negative graphs as a separate branch into the GCN model 

o explore the separate importance of positive and negative con- 

ections in the FBNs. In addition, the binarized single graph was 

nput into the MGC classification model by setting a threshold 

alue T r using Eq. (31) and then verifying whether the threshold 

ehavior would lose information, where w i, j are the edge weights. 

he results are summarized in Table 5 : 

 i, j = 

{
1 , if 

∣∣w i, j 

∣∣ ≥ T r 

0 , if 
∣∣w i, j 

∣∣ < T r 
(31) 

1. We can find that the MGC using the positive correlations are 

uperior to the model with the negative ones, resulting in a 2.30% 

ncrease in ACC. The observation shows that the positive correla- 

ions are more critical for the classification tasks. 

2. Moreover, the MGC results when the positive and neg- 

tive correlations are learned by one branch (Pos_Neg_nosplit) 

hows that mixing positive and negative correlations together 

an negatively affect the classification performance. More impor- 

antly, we can observe that the performance of the original MGC 
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Table 4 

Comparison with the state-of-the-art methods for ASD diagnosis. 

Category Model ACC(%) AUC(%) SEN(%) F1(%) PREC(%) CV 

ML SVM 68.76 67.98 57.56 62.87 69.66 10-CV 

RF 61.66 60.35 42.96 50.42 62.54 10-CV 

Auto-encoder ASD_DiagNet [8] 69.00 68.50 61.05 64.54 68.85 10-CV 

DAE [34] 65.50 66.89 58.33 63.81 70.43 10-CV 

CNN 1D_CNN [37] 64.00 - - 64.00 - 5-CV 

3DCNN_1D [38] 54.00 - - 50.00 - 5-CV 

3DCNN_C_LSTM [38] 59.78 67.77 48.64 52.74 57.60 10-CV 

GCN MVS-GCN [19] 69.89 69.11 70.18 - - 10-CV 

S-GCN [35] 64.73 64.33 67.54 63.61 60.12 10-CV 

BrainGNN [9] 61.65 60.79 61.84 61.31 60.79 10-CV 

ST -GCN [36] 53.12 56.88 56.51 53.24 50.33 10-CV 

EigenGCN [33] 56.34 59.50 53.20 56.49 60.21 10-CV 

Our method GraphCGC-Net 70.45 72.76 70.47 70.39 70.38 10-CV 

Table 5 

The influence of positive (Pos) and negative (Neg) correlations. The Pos/Neg_split denotes that the positive and negative correlations are 

learned by individual branches, and Pos/Neg_nosplit means that two correlations are not split. 

Method Pos/Neg ACC(%) AUC(%) SEN(%) F1(%) PREC(%) 

No thresholding Pos 62.69 61.68 61.68 61.24 62.82 

Neg 60.39 59.02 59.02 56.88 57.98 

Pos/Neg_split 65 . 32 68 . 95 65 . 22 65 . 13 65 . 31 

Pos/Neg_nosplit 61.99 65.32 62.10 62.06 62.02 

Thresholding T r = 0 . 5 60.13 61 . 82 59.72 59.48 60.13 

T r = 0 . 6 59.47 63 . 09 59.21 59.00 59.39 

Table 6 

The effectiveness of each regularization in the MGC model. 

Model ACC(%) AUC(%) SEN(%) F1(%) PREC(%) 

MGC -w only CE 59.87 64.95 60.14 60.39 60.51 

MGC-w/o L n 62.10 67.85 62.39 62.45 62.64 

MGC-w/o L b 62.47 66.98 62.97 63.14 63.71 

MGC -w/o L o 63.58 68.92 64.19 64.97 65 . 66 

MGC -w/o L 2 64.30 63.91 64.37 63.89 63.92 

MGC 65 . 13 68 . 95 65 . 22 65 . 32 65 . 31 
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Table 7 

The effectiveness of each component in our GraphGAN++ model. 

Component ACC(%) AUC(%) SEN(%) F1(%) PREC(%) 

GraphGAN + + w/o DR 67.05 69.11 66.81 66.83 66.88 

GraphGAN + + w/o WD 68.18 68.34 67.88 67.92 68.03 

GraphGAN + + w/o LT 69.23 71.16 68.65 68.71 69.16 

GraphGAN + + w/o HM 67.81 69.91 66.78 66.20 69.53 

GraphGAN + + 70.45 72.76 70.47 70.39 70.38 
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Pos/Neg_split) performs much better, which indicates that the 

ositive and negative correlations should be considered individu- 

lly. 

3. Additionally, we set a simple threshold to binarize the abso- 

ute value of the edge weights. We observe that the average perfor- 

ance of MGC decreases by 5.52% with respect to ACC, indicating 

hat generating a binary graph by thresholding can ignore the in- 

ormation of positive and negative correlations. 

.4.2. The effectiveness of regularization terms in MGC 

In this section, we perform several experiments to compare the 

rediction accuracy without different regularization terms to show 

he impact of each regularization term. As shown in Table 6 , the 

esults demonstrate that all regularizations are complementary and 

ffective. We can observe that adding L b and L n constraints is more 

elpful for MGC. In addition, removing L o from the MGC leads to 

CC decreases 1.55%, which may be due to the lack of constraints 

o control the overlap size between the clusters. It also indicates 

hat we should control the overlap of ROIs between different re- 

ions, because it is beneficial for the classification tasks. 

.4.3. The impact of the different components in our proposed 

raphGAN++ 

To demonstrate the effectiveness of each component in Graph- 

AN++, we removed each one from the GraphGAN++ to investi- 

ate the relative contribution in the classification. Specifically, the 

ain components of GraphGAN++ include the dual reconstruction 

DR) mechanism, the Wasserstein distance measure (WD), the local 

opology constraint (LT) and the homeomorphic mapping (HM). 
10 
The results in Table 7 show that the DR component contributes 

o the effectiveness and robustness of the whole model. Specifi- 

ally, we find that removing the DR component from GraphGAN++ 

eads to an optimization difficulty. Moreover, the worst classifica- 

ion result demonstrates that the dual reconstruction mechanism is 

elpful to preserve the same structure with the original graphs. In 

ddition, it can be observed that removing any component leads to 

 performance decrease. GraphGAN++ consistently outperforms the 

ther variants, indicating the effectiveness of combining the pro- 

osed components together. 

.4.4. The impact of the code discriminator 

To understand the performance of our code discriminator 

hrough the Wasserstein distance instead of the KL divergence, we 

ompare the latent embedding generated by our model and the 

ne uses the KL divergence term. We plot the covariance matrix 

n Fig. 6 with the latent codes. We see that the two methods have 

ifferent side effects: the latent codes obtained using the code dis- 

riminator in our model are decorrelated, this is expected; while 

he ones obtained using the empirical KL are entangled. The code 

iscriminator achieves better disentangling, which guarantees the 

iversity of the generated graphs with less correlated embedding. 

.4.5. The impact of the topology loss 

In order to explore the useful topology information, we at- 

empt two other different measures including: closeness centrality 

CC) and degree centrality (DC). For an undirected graph S with m 

odes, the closeness centrality directly relates to the cardinality of 
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Fig. 6. Covariance matrices with the latent embedding from GraphGAN++ model using a code discriminator and the empirical KL approximation. 

Fig. 7. The influence of the homeomorphic mapping by observing the embedded t-SNE representation of graphs. 

Table 8 

The impact of different measures on preserving the 

most critical edges. 

Model MAE edges MAE BC MAE CC MAE DC 

- 3.776 0.125 0.596 0.250 

BC 0.777 0.082 0.082 0.186 

CC 1.513 0.094 0.136 0.152 

DC 2.741 0.075 0.075 0.192 
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Fig. 8. The loss curves of generators in different generation models. 
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he shortest path between two nodes. The CC is defined as: 

 cc (n i ) = 

1 ∑ m 

j=1 d(i, j) 
, (32) 

here d (i, j ) defines the distance between two nodes i and j. The

C measures the degree of connectivity doc i j between a node i and 

he other m − 1 nodes, as follows: 

 dc ( n i ) = 

m ∑ 

j=1 

doc i j (i � = j) . (33) 

To evaluate the performance of the multiple topological loss, we 

alculated the mean absolute error (MAE) of the edges between 

he real and generated graphs, as well as the MAE of centrality 

core between the generated and real graphs. 

Table 8 shows the incorporation of the topology measures can 

ffectively im prove the quality of the generated graphs. Moreover, 

C is generally better than the two other measures on graph gen- 

ration, which implies that considering the frequency of nodes on 
11 
he shortest path during the graph generation is more effective for 

opology preservation. 

.4.6. The impact of the proposed homeomorphic mapping 

The purpose of homeomorphic mapping is to achieve smooth 

nterpolations of the generated samples. To evaluate the proper- 

ies of the generated graphs, the number of the generated samples 

s set to the number of the original training datasets. Figure 7 il- 

ustrates the embedded representation of the generated and true 

ata with and without distribution consistency mechanism. It can 

e observed that the distribution consistency mechanism is able to 
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Fig. 9. Original graphs and coarsened graphs of the selected samples. The first row represents the original graphs, while the second one is the coarsened graphs. 

Table 9 

The effectiveness of each discriminator in GraphGAN++. The first row is the values of the real graphs and the rest 

are the absolute values of the difference between the generated graphs and the real graphs. 

Method 

Degree Edge Centrality 

LCC CPL PLC CC REDE NS BC CC DC 

Real Graph 8 1.592 2.542 0.158 0.753 7.711 0.880 0.028 0.831 

GraphGAN + + w/o CD 0.732 0.539 1.718 0.690 0.227 2.869 0.025 0.149 0.178 

GraphGAN + + w/o GD 0.411 0.514 3.932 0.372 0.206 1.489 0.028 0.105 0.151 

GraphGAN + + 0.330 0.280 0.821 0.375 0.059 1.197 0.024 0.025 0.143 
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ynthesize graphs that are consistent with the original graph dis- 

ribution thanks to the proposed homeomorphic mapping, which 

hows the advantage of our method to improve the modeling dis- 

ribution of complex data. 

.4.7. The effectiveness of the discriminators in GraphGAN++ 

We remove each discriminator from GraphGAN++ to demon- 

trate the effectiveness of the graph discriminator (GD) and code 

iscriminator (CD) and to validate the reality of the generated 

raphs. Specifically, we remove the code discriminator and adopt 

he KL divergence term to minimize the distribution between the 

rior and the posterior of the latent code. Moreover, we binarize 

he generated graphs by thresholding and measure the impact of 

hese two discriminators on the model generation performance in 

erms of graph statistics. 

Table 9 shows that the incorporation of the code discrimina- 

or and the graph discriminator can effectively enhance the quality 

f the generated graphs. Moreover, we can conclude that the ad- 

ersarial training approach can present a better performance when 
12 
orcing the latent code distribution to match a specific prior distri- 

ution. 

.4.8. Convergence performance evaluation of different training 

trategies 

GAN models are prone to issues in training such as instabil- 

ty and lack of convergence. To explore the stability and conver- 

ence of GraphGAN++, we choose two other generation algorithms 

39,40] that also focus on the discriminative models to rectify the 

nstability problems. We then replace the Lipschitz constant of 

raphGAN++ with the constraint or loss function proposed in both 

lgorithms, and compare the convergence behavior. 

SNGAN [39] introduces a spectral normalization (SN) constraint 

 sn to normalize the weight matrix and stabilize the training of the 

iscriminator network. 

AWGAN [40] introduces an adaptive weighted (AW) loss L aw 

unction to adaptively select weights for training a discriminator in 

he direction of gradient that benefits model’s stability ( Table 10 ). 
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Fig. 10. The top 3 subnetworks identified by our MGC. 
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Table 10 

The details of models’ discriminator. 

Model Mechanism 

GraphGAN + +(GP) L gp 

GraphGAN + +(AW) L aw 

GraphGAN + +(SN) C sn 
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From Fig. 8 , we can find that all the losses of three generators

ecrease and approach to zero, which indicates that our Graph- 

AN++ is able to converge and has stability in training, regardless 

f any strategy of stabilizing the training process of GANs. 
Fig. 11. The top 6 inter-subnetwo

13 
.5. Interpretability 

In this paper, we evaluate the effectiveness of multi-graph clus- 

ering. At first, we visualize two groups of samples with ASD and 

ormal controls to explore the differences between the coarsened 

raphs and the original graphs. In Fig. 9 , we can observe that each 

ubject of the original graphs is very irregular. Through the multi- 

raph clustering, the inconsistency of all subjects is mitigated and 

he indicative edges are highlighted. Moreover, by comparing the 

esults in Fig. 9 (a) and (b), we can notice that the discriminabil- 

ty between ASD subjects and NCs is enhanced on the coarsened 

raphs. 

In addition, to enhance the interpretability of MGC, we exploit 

he corresponding relationship between the brain regions in the 

C200 atlas and the functional subnetworks to identify the subnet- 

orks that are most informative for predictive targets. At first, the 

abel of each brain region in CC200 was aligned according to the 

aximum overlap with the AAL atlas. Then, we cluster the con- 

ectivity values belonging to the same brain regions defined in the 

AL template. Specifically, given a subnetwork Sn p , we calculate 

he average indicator factor of an edge within it. The subnetwork 

n p score is calculated as: 

core p = 

2 

| R p | 2 
∑ 

i, j ∈ Sn p ∧ i ∈ S e ∧ j ∈ S d ∧ e � = d 
f i · f j , (34) 
rks identified by our MGC. 



W. Yang, G. Wen, P. Cao et al. Computer Methods and Programs in Biomedicine 219 (2022) 106772 

Table 11 

The top 3 subnetworks and the top 6 inter-subnetworks selected and the corre- 

sponding scores optimized by MGC. 

Subnetworks name Scores Inter-subnetworks name Scores 

DMN 0.0023 (SN, VN) 0.0018 

SN 0.0019 (DMN, VN) 0.00067 

CEN 0.0017 (DMN,SN) 0.00065 

- - (CEN,VN) 0.00061 

- - (CEN, SN) 0.00056 

- - (DMN, SMN) 0.00053 
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here f i and f j indicates the importance of node i and j, S e and

 d are the supernodes obtained by MGC, R p is the brain regions 

elonging to the subnetwork p. Therefore, the score p can be ex- 

lained as the sum of the products of the importance of any two 

odes belonging to the subnetwork Sn p but different cluster. More- 

ver, we also explore the important inter-subnetwork correlations, 

he score of two subnetworks Sn p and Sn q are computed as fol- 

ows: 

core pq = 

2 

| R p || R q | 
∑ 

i ∈ Sn p , j∈ Sn q ∧ i ∈ S e ∧ j∈ S d ∧ e � = d 
f i · f j , (35) 

here the score pq can also be explained as the sum of the products 

f the importance of any two nodes belonging to the subnetwork 

n p and Sn q . 

In the experiment, we evaluate six networks including the de- 

ault mode network (DMN), the central executive network (CEN), 

he salience network (SN), the auditory network (AN), the somato- 

otor network (SMN) and the visual network (VN). Through ana- 

yzing the scores calculated by Eq. (34) and Eq. (35) , the top sub-

etworks and inter-subnetworks selected by our model are shown 

n Table 11 . We can find that the top three subnetworks are DMN, 

N and CEN, as shown in Fig. 10 . It is consistent with the previous

euroscience research that ASD is associated with the altered func- 

ional connectivity of the CEN, DMN and SN, which are thought to 

e central to the symptomatology of ASD [41] . In addition, we ob- 

ain the top six inter-subnetworks including (SN, VN), (DMN, VN), 

DMN, SN), (CEN, VN), (CEN, SN), (DMN,SMN), as shown in Fig. 11 . 

his is also consistent with the discoveries that the triple networks 

ncluding CEN, SN and DMN are dysfunctional in the ASD [42] . The 

esults also demonstrate that visual engagement difficulties are an 

arly signature of ASD, and VN play a central role in initiating the 

ransition between SN, CEN and DMN. It is a process necessary for 

ttention and flexible cognitive control [43] . In particular, it has 

een reported that the FC of VN and SMN is disrupted in ASD, and

he subjects who are less sensitive to visual feedback during motor 

earning will display more severe autistic traits [44] . 

. Conclusion 

Recently, GCN-based deep learning methods have made a mas- 

ive breakthrough in the field of brain networks. However, training 

n accurate GCN model for brain networks faces several challenges, 

ncluding high dimensional and noisy correlation in the brain net- 

orks and limited labeled training data. Indeed, a large amount 

f labeled data is the essential cornerstone to reach this success. 

owever, in the field of medical imaging, it is challenging or of- 

en impossible to obtain a sufficient amount of data for training. 

onsequently, to preserve the continuous information in brain net- 

orks data, we remove the noisy connections through a multi- 

raph clustering approach at first. In addition, we propose a novel 

raphGAN++ model, which can generate realistic brain networks 

ith coarsened structure starting with a small amount of train- 

ng samples. By combining the strengths of multi-graph clustering 

nd GraphGAN++ components, the proposed GraphCGC-Net signif- 
14 
cantly improved upon the state-of-the-art results in ASD classifi- 

ation on benchmark datasets. In the future work, we will evaluate 

ur method on the other brain disorders, such as major depressive 

isorder. Moreover, the proposed generative model is unsupervised 

uring adversarial learning, which may lack sufficient discrimina- 

ive ability for graph classification. We will construct an end-to- 

nd framework that simultaneously trains the GAN and GCN, thus 

he classification loss will help the GAN to produce a more realistic 

rain networks. Furthermore, tremendous progress has been made 

n neural architecture search (NAS) approaches for automatically 

earching the network architectures. Several effort s have yielded 

ignificant results in the search architectures for CNNs to achieve 

etter performance [45–47] , and we will leverage the NAS meth- 

ds to design more efficient architectures for the GANs and GCNs 

o improve the capability of ASD diagnosis. 
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