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A B S T R A C T   

Early detection and treatment of diabetic retinopathy (DR) can significantly reduce the risk of vision loss in 
patients. In essence, we are faced with two challenges: (i) how to simultaneously achieve domain adaptation 
from the different domains and (ii) how to build an interpretable multi-instance learning (MIL) on the target 
domain in an end-to-end framework. In this paper, we address these issues and propose a unified weakly- 
supervised domain adaptation framework, which consists of three components: domain adaptation, instance 
progressive discriminator and multi-instance learning with attention. The method models the relationship be
tween the patches and images in the target domain with a multi-instance learning scheme and an attention 
mechanism. Meanwhile, it incorporates all available information from both source and target domains for a 
jointly learning strategy. We validate the performance of the proposed framework for DR grading on the Mes
sidor dataset and the large-scale Eyepacs dataset. The experimental results demonstrate that it achieves an 
average accuracy of 0.949 (95% CI 0.931–0.958)/0.764 (95% CI 0.755–0.772) and an average AUC value of 
0.958 (95% CI 0.945–0.962)/0.749 (95% CI 0.732–0.761) for binary-class/multi-class classification tasks on the 
Messidor dataset. Moreover, the proposed method achieves an accuracy of 0.887 and a quadratic weighted kappa 
score value of 0.860 on the Eyepacs dataset, outperforming the state-of-the-art approaches. Comprehensive 
experiments confirm the effectiveness of the approach in terms of both grading performance and interpretability. 
The source code is available at https://github.com/HouQingshan/WAD-Net.   

1. Introduction 

Diabetic Retinopathy (DR) is a consequence of retinal microvascular 
changes triggered by diabetes. It is the most common leading cause of 
blindness and visual disability in the working-age population worldwide 
[1]. The diagnosis and grading performance of DR highly depends on the 
detection of structures such as microaneurysms (MAs) and hemorrhages, 
which are considered as early signs of DR, as shown in Fig. 1. Thus, the 
grading of DR severity level is a laborious process that is time-consuming 
and can sometimes be prone to misdiagnosis. Therefore, an automatic 
disease diagnosis on retinal fundus images is urgently required for early 
DR detection and severity level grading for assisting experts. Integrating 
machine learning algorithms can be established to predict the 
multi-class labels for the DR severity level [2,3]. Recently, deep learning 
techniques (e.g., convolutional neural networks) have emerged and 
made remarkable achievements in DR grading as a fundamental element 

of automatic disease diagnosis techniques [4,5]. The success of deep 
learning is mainly attributed to its capability of extracting highly 
representative features. The procedure is shown in Fig. 2(a). The accu
rate detection of MAs and hemorrhages is a crucial step for early 
detection of DR as these are typically the earliest clinically recognizable 
signs. However, the lack of the pixel-wise lesion annotations hinders the 
traditional deep learning algorithms from detecting and identifying the 
suspicious regions. Hence, we aim to develop a weakly-supervised 
method [6,7], which can leverage the large amount of the image-level 
annotations to significantly reduce human annotation efforts, which is 
an important problem in the medical applications. 

Multi-instance learning (MIL) is an extension of weakly-supervised 
learning by treating the whole retinal fundus image as a bag, and each 
patch as an instance in the bag. In our study, we regard the problem of 
DR grading as a multi-class multi-instance learning formulation (in 
Fig. 2(b)). More specifically, the images are divided into a regular grid of 
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small patches, and each patch is regarded as an instance. Through MIL, 
we can shift the problem of identifying the suspicious MA or hemor
rhages regions in supervised learning setting to a weakly supervised 
learning for the whole fundus images relying only on the global labels, 
which simplifies data collection tremendously and is more in accordance 
with clinicians’ reasoning. However, MIL still falls short for modeling 
the relationship between the patches and the global images due to the 
following challenges: 

Challenge 1: how to solve the domain diversities between 
different domains. To further reduce dependencies on the compre
hensive lesion annotations in the target domain, some previous methods 
leverage the auxiliary datasets with the lesion labels [8,9] to assist the 
weakly supervised model in the target domain without lesion labels in 
Fig. 2(c). However, they did not consider the domain shift between the 
auxiliary domain and target domain since the patient populations and 
the scanner protocol varied. Simply applying a classifier trained on an 
auxiliary domain to predict the lesion candidates inevitably performs 
poorly due to the domain gap [10]. 

Challenge 2: how to enable the weakly supervised deep learning 
models to be interpretable in the target domain. The inability to 

interpret the model prediction is a well-known limitation of most 
existing computer-aided DR diagnosis methods. Interpretability is 
essential as it can help in decision-making during diagnosis and treat
ment planning. From the clinical perspective, identifying task-specific 
biomarkers provides important insight into the disease to improve the 
treatment quality of patients. However, the existing deep learning 
models cannot provide intuitive illustrations for physicians and patients 
of how the diagnosis is made. 

In essence, the question then becomes how to simultaneously ach
ieve domain adaptation by transferring the knowledge from the source 
domain and build an interpretable multi-instance learning for the target 
domain with an end-to-end scheme. To address these two problems, we 
propose an interpretable end-to-end Weakly supervised learning 
network with Attention mechanism and Domain adaptation, named 
WAD-Net for simultaneously diagnosing diabetic retinopathy and 
highlighting suspicious regions (Fig. 2(d)). More specifically, 1) there 
exist a large number of irrelevant instances in each bag that hinders the 
multi-instance learning. To filter out those instances that have a nega
tive influence on the MIL performance, it is desirable to transfer the 
knowledge from a pre-trained instance classification model in the source 

Fig. 1. The red lesions and severity of DR. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)  
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domain to the target domain. Traditionally, the source and target do
mains generally share the same task but follow different distributions in 
the traditional domain adaptation. However, it is more challenging since 
both tasks are different in our work: it is an instance level DR lesion 
classification task with lesion labels in the source domain while it is an 
image level classification with only image label in the target domain. To 
address the domain shifts with respect to the distributions and tasks, the 
aim of our study is to transfer the knowledge from a source domain with 
lesion annotations to a target domain by minimizing the difference be
tween domain distributions. On the one hand, we employ cycleGAN 
[11] to achieve an image-to-image translation, and develop a two-step 
progressive training scheme for enabling the instance discriminator to 
be adapted to the target domain. On the other hand, due to the unsu
pervised learning in cycleGAN, it does not guarantee that the generated 
samples are be beneficial to the classification performance in the target 
domain. Hence, we develop a collaborative learning framework to 
combine cycleGAN, instance progressive discriminator and 
multi-instance learning into a unified framework. As such, the supervi
sion guided cycleGAN leads to better patch generation with image-level 
supervision scheme. 2) Meanwhile, we incorporate an attention mech
anism into the proposed MIL framework. Through the attention mech
anism, attention maps are generated to indicate which pixels play more 
important roles in making the image-level decision. Experiments on the 

real-world Messidor [12] and Eyepacs [13] datasets demonstrate that 
our WAD-Net method not only outperforms the state-of-the-art ap
proaches but also is effective in automatically identifying 
disease-related lesions in making the image-level decision. 

Our contributions can be summarized as follows. 
1. In the medical field, it is difficult to obtain pixel-level annotations. 

We attempt to address the issue of missing lesion labels from a new 
perspective. To make full use of the existing labeled data, we propose a 
unified weakly-supervised domain adaptation framework to model the 
relationship between the instances and bags in the target domain with a 
multi-instance learning scheme, and to incorporate all available infor
mation from both source and target domains with a jointly learning 
mechanism. Therefore, we do not require a large number of pixel-wise 
annotated samples anymore. 

2. Different from the traditional cycleGAN which is an unsupervised 
model, our generative model aims to produce more effective samples for 
the multi-instance learning in the target domain. It better generates 
patches by a domain adaptation with an end-to-end weak supervision 
scheme, which is more effective in both the instance generation and 
classification in the target domain. 

3. We propose a MIL based DR framework with an attention mech
anism. This mechanism benefits the performance from two aspects: 1) 
the obtained attention map can highlight the suspicious regions for 

Fig. 2. The comparison among the traditional DR classification methods and the proposed weakly-supervised domain adaptation method.  
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providing the decision-making during diagnosis; 2) the attention 
weights can enhance the contribution of the relevant instances for 
improved classification performance. 

4. Our method outperforms the state-of-the-art methods on the two 
independent DR datasets (Messidor and Eyepaces) with a binary class 
(diagnosis) or a multi-class (grading) classification task, respectively. 
The quantitative and qualitative results on the two different datasets 
confirm that the proposed unified framework could boost the perfor
mance in the target domain by jointly training with the pixel-wise an
notated lesions from the source domain and the images with grading 
labels from the target domain. Moreover, our WAD-Net can identify the 
localization of the suspicious lesion regions. 

2. Related work 

2.1. DR diagnosis with deep learning 

Recent years have witnessed the growing interest in the automated 
DR severity grading. Existing DR grading methods can be divided into 
two categories. The first category is to determine DR grading by iden
tifying the location information of the DR related lesions, e.g., micro
aneurysms, hemorrhage. The accurate detection of microaneurysms 
(MA) and hemorrhage is a crucial step for early detection of DR as these 
are typically the earliest clinically recognizable signs. Recent works 
show that deep learning can produce promising results in lesion seg
mentation or detection for early DR diagnosis [14]. Chudzik et al. 
employed convolutional neural network architecture to detect micro
aneurysms from fundus images [15]. Adem developed a CNN-based 
exudate detection system with Circular Hough Transformation to auto
matically detect the exudates in the retinal image [16]. Yan et al. 
detected DR red lesions by integrating the handcrafted features and the 
learned features by pretrained LeNet using a Random Forest classifier 
[17]. Van et al. proposed a method to improve and speed up the CNN 
training for hemorrhage detection by dynamically selecting mis
classified negative samples [18]. Yang et al. proposed an automatic DR 
analysis algorithm with a two-stage deep learning algorithm [19]. It can 
identify the location as well as the type of lesions, and produce the 
severity level of DR by integrating both local and global networks to 
learn more complete and specific features for DR analysis. Lin proposed 
a new attention-based network for unifying lesion detection and DR 
identification [20]. Tahira et al. proposed a Fast Region-based Con
volutional Neural Network (FRCNN) algorithm with fuzzy k-means 
(FKM) clustering for automated localization and recognition of 
diabetes-based eye diseases [21]. Although these deep learning based 
methods have dramatically improved the performance for the DR le
sions, it requires large annotated sets of these lesions. It is expensive to 
annotate the lesions on the medical images in a pixel-wise manner. 

Another category is to train a deep learning model, such as ResNet, 
Inception and DenseNet, for distinguishing the disease severity with 
only image-level grading label supervision [22]. These methods aim to 
adopt image-level labels to train DR grading models, saving ophthal
mologists’ labors for costly pixel-level annotations. For example, Zhou 
et al. developed a jointly learning framework for simultaneously DR 
grading and lesion segmentation with an attention mechanism [23]. By 
exploring the cross-disease relationship, Zhu et al. presented a 
cross-disease attention network for jointly grading DR and DME [24]. 
Jiang et al. proposed a deep learning-based multi-label classification 
model with Gradient-weighted Class Activation Mapping (Grad-CAM) 
for DR classification and lesions lactation [25]. Wang proposed a hier
archical multi-task deep learning framework for the diagnosis of DR 
severity and DR related features at the same time [26]. Quellec et al. 
applied L2 regularization over the best performed DCNN in the KAGGLE 
competition for DR detection named o-O [27]. Wang et al. proposed a 
multi-channel based generative adversarial network (MGAN) with 
semisupervision to make full use of both labeled data and unlabeled data 
[28]. Li et al. proposed a cross-disease attention network (CANet) to 

jointly grade DR and DME by exploring the internal relationship be
tween the two relevant diseases with only image-level supervision [24]. 

It is expensive to annotate the lesion labels on the medical images in 
a pixel-wise manner, hence we choose the second category to construct a 
disease grading model in our study. However, these deep learning 
methods with image-level supervision suffer from two main limitations. 
First, deep learning is considered a black box, hence the identification of 
the suspicious regions is not a straightforward process. It is the major 
problem that hinders the deep learning methods on the clinical appli
cation. Second, they did not appropriately make full use of all the 
valuable information from the auxiliary domains because of the domain 
gap. Hence, we aim to develop a weakly-supervised domain adaptation 
paradigm for the DR grading, which leverages the limited number of 
pixel-level annotated images available along with a large number of 
image-level annotations to enhance the performance of the DR severity 
prediction. 

2.2. Multi-instance learning 

Multi-instance learning (MIL) has been successfully applied to 
various problems including object detection and computer-aided diag
nosis. In a MIL problem, only the labels of the bags are known whereas 
the individual labels of the instances contained in the bags are not 
provided. This is different from the supervised classification approach, 
where the label of each instance is known. The learning process is 
weakly supervised due to the ambiguous instance labels. In the DR 
grading study, only a few works formulate weakly supervised DR 
grading as a MIL problem where each image is represented by a bag 
(labeled as healthy or abnormal), and the unlabeled lesion candidates in 
the images are considered as instances. Cao et al. proposed a multi- 
kernel multi-instance learning method to solve the multi-class DR 
grading problem [10]. Zhou et al. proposed a deep MIL method by 
jointly feature learning and classifier training for an improvement on 
detecting DR images [29]. 

3. Methods 

3.1. Formulation 

The task in our study is described as follows: 
(i) Source domain DS =

{(
xs

1, ys
1),…, (xs

Ns , ys
Ns )

}
: the instance-level 

(lesion-wise) labels are available. 
(ii) Target domain DT =

{(
Xt

1,Yt
1),…, (Xt

Nt ,Yt
Nt )

}
: only image-level 

labels are observed. Each Xt contains a series of patches. We denote the 
instance set in the target domain as xt = {xt

1,…, xt
Nt×B}, where B rep

resents the patch size in each target image. 
(iii) There exists a domain gap between the two domains. 
In this work, we propose an end-to-end Weakly-supervised network 

with Attention mechanism and Domain adaptation (WAD-Net). As 
illustrated in Fig. 3, the architecture of WAD-Net consists of three 
components: domain adaptation, instance progressive discriminator and 
multi-instance learning with attention. Given the domains of DS and DT, 
the aim of WAD-net is to jointly optimize a generative model GθG (⋅) for 
domain adaptation, an instance progressive discriminator model CθI (⋅) 
from the instance level perspective, and a multi-instance learning model 
CθM (⋅) from the image level perspective. 

To train the domain adaptation model GθG (.), a mapping function is 
need to be optimized to achieve a transformation from source domain DS 
to target domain DT, as follows: 

min
θG ,θG′

max
θQ

∑NS

n=1
LG

(
GS→T

θG (xSn),G
T→S
θ
G′

(x̂S
n),Q

T
θQ (x

S
n, xt)

)
(1) 

Where GS→T
θG

(⋅) and GT→S
θ′G

(⋅) denote two generators for domain adap

tation, ̂xS
n is the transformed instance by GS→T

θG
(⋅), QT

θQ 
is a discriminator to 

distinguish whether instances are translated from another domain. The 
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optimization function for the instance progressive discriminator model 
CθI (⋅) is defined as: 

Pre − training : min
θI

1
NS

∑NS

n=1
LCI

(
CθI

(
xSn
)
, ySn

)
(2)  

Fine − tuning : min
θI

1
NS

∑NS

n=1
LCI

(
CθI

(
x̂S
n

)
, ySn

)
(3) 

Where CθI (⋅) denotes an instance progressive discriminator model, NS 
is the total number of instance level data and yS is the patch-level label 
(yS = 1 indicates lesion and yS = − 1 indicates background). The multi- 
instance learning model CθM (⋅) can be formulated as: 

min
θM ,α

1
NT

∑NT

n=1
LCM

(
CθM

(
XT

n

)
,YT

n ,α,Sn
)

(4) 

Where CθM (⋅) represents a multi-instance learning model, α is the 
attention weights for patches, Sn is a score map for suspected lesion 
patches obtained by CθI (⋅), NT is the total number of image level data and 
YT is the DR severity classification label for the image-level annotated 
data. Therefore, in order to jointly optimize the three components, the 
most important consideration is how to design and optimize GθG (⋅), CθI (⋅) 
and CθM (⋅). 

In the target domain, no pixel-wise labeled data is available for 
training. Our idea is to leverage information from auxiliary pixel-wise 
labeled images in a source domain. Hence, two domain data are 

leveraged during the training stage. During testing, given an unseen 
image from the target domain, the outputs are a predicted DR severity 
level and a corresponding lesion attention map. 

3.2. Overview 

In this paper, we propose WAD-Net that jointly does multi-instance 
learning and domain adaptation with CycleGAN for the weakly super
vised DR classification. As shown in Fig. 4, our proposed method con
tains four steps: 

(1) Instance discriminator pre-training(source domain): First, we 
pre-train an instance discriminator with the instance level annotations 
in the source domain. 

(2) Domain adaptation with CycleGAN(cross two domains): the aim 
is to learn a mapping function for the cross-domain with unpaired ex
amples. In our study, it acts as an image-image translation by con
structing a mapping function between two domains. With CycleGAN, we 
train a generative model that translates the pixel-wise annotated lesion 
information from the source domain DS to the target domain DT. Then, 
we can obtain the domain-transferred instances accompanied by the 
instance-level annotations. 

(3) Fine-tuning the instance discriminator with the generated in
stances: with the pre-trained discriminator (the first step) and the 
domain-transferred instances (the second step), we fine-tune the 
discriminator with the generated instances to achieve domain 

DR Grading

DR Grading

Training 

Testing 

Stage2 C I  (·)Pre-training

Fine-tuning

C I  (·)

Stage3 C M  (·)

C M  (·)

. . .
. . .

Data Processing

Stage1 G G  (·)

Fig. 3. The overview of our proposed WAD-Net for DR grading diagnosis.  
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Fig. 4. The detail pipeline of our proposed WAD-Net for the DR grading prediction.  
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adaptation. The aim is to learn an instance discriminator that can 
perform well in the target domain with a domain shift. Actually, we 
develop a two-step progressive training strategy for the instance 
discriminator. Finally, the trained instance discriminator produces a 
score for each patch in the target. The score indicates the suspicious 
lesion probability of each patch. 

(4) MIL with attention mechanism(target domain). With the initial 
score map of each image produced by the instance discriminator (the 
third step), the proposed multi-class multi-instance learning framework 
is able to predict the DR level and locate the highly suspicious lesions at 
the same time. 

Noting that all modules are simultaneously trained in an end-to-end 
manner to achieve the highest performance. 

3.3. Domain adaptation by cycleGAN 

A common approach to solve this problem is to directly apply a pre- 
trained model of a source domain to the target domain. However, there 
exists a large domain gap between the source and target domains due to 
different illumination or camera versions. The aim of the task is to learn 
a model CθM (⋅) that correctly predicts the DR grading output and iden
tifies the suspicious region as accurately as possible in the target domain 
under the conditions that sufficient instance-level annotations in the 
source domain and image-level annotations in the target domains are 
available, respectively. 

To mitigate the effects of domain shift, it is desirable to learn a 
mapping function between the DS domain and the DT domain. We aim to 

learn the mapping function by CycleGAN, of which the advantage is that 
it allows each input image of the source domain to be converted into a 
target domain by image-to-image translation, and then be reconstructed 
to the source domain. The CycleGAN consists of a generator GS→T is 
trained to produce convincing target samples that fool an adversarial 
discriminator QT, and a discriminator QT which attempts to discriminate 
the real target data from the generated target data by GS→T. 

These correspond to the loss function as follows: 

Ladv =
(

Ext∼Pdata(xt )

[
log

(
QT(xt)

) ] )
+ Exs∼Pdata(xs )

[
log

(
1 − QT (GS→T(xs)

) ) ]

(5) 

The overall loss function in Eq. (5) involves two parts: 

LG = Exs∼P(xs)

[
log

(
1 − QT (GS→T(xs)

) ) ]
(6)  

LQ = Ext∼P(xt)

[
log

(
QT(xt)

) ]

+Exs∼P(xs)

[
log

(
1 − QT (GS→T(xs)

) ) ] (7)  

where the data distribution is denoted as xs ~ P(xs) and xt ~ P(xt). 
We also apply a cycle consistency loss to ensure the content is well- 

preserved during the image translation process. The cross-cycle consis
tency loss is defined as: 

Lcyc = Exs∼Pdata(xs)

[
‖‖GT→S(GS→T(xs)

)
− xs‖‖1

]
(8)  

where GS→T and GT→S are two mapping functions. Our generator model 
GS→T architecture has an overall architecture consisting of an encoder 
and a decoder symmetrically on the two sides. The encoding phase is 

Fig. 5. Network architectures of generator.  
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used to encode input images in a lower dimensionality with richer fil
ters, while the decoding phase is designed to do the inverse process of 
encoding by upsampling and merging low dimensional feature maps. 
The encoder consists of 13 convolutional layers combined with 5 down- 
sampling layers (Fig. 5). The decoder module consists of a set of layers 
that upsamples the feature map of the encoder to recover spatial infor
mation. Besides, skip connection can help propagate the spatial infor
mation that gets lost during the pooling operation to help recover the 
full spatial resolution. Our discriminator involves 5 convolutional layers 
combined with 3 batch normalization layers (Fig. 6). 

3.4. The two-step progressive Instance Discriminator Training 

The training scheme for our instance discriminator consists of two 
stages. In the first step, we pre-train the instance discriminator model 
using the pixel-level annotated data in the source domain, and then fine- 
tune it with the generated target data. Both are trained in a fully- 
supervised manner. The aim is to learn a generalized classifier in the 
presence of a shift between source and target domain distributions. 

Source domain: supervised Instance Discriminator Training. 
Before training the entire retinal image, it is desirable to remove the 

irrelevant instances for achieving a better MIL learning performance. To 
perform lesion identification, our model aims to learn image features 
with discriminative property to distinguish between the lesions and 
background. Thus, we define the classification loss with a cross-entropy 
loss in Eq. (9). 

LCI = −
1
NS

∑NS − 1

i=0

(
ysi ∗ log

(
ŷsi
)
+
(
1 − ysi

)
∗ log

(
1 − ŷsi

) )
(9)  

where ŷs
i and ys

i are a prediction label and a ground-truth label, 
respectively. 

Concretely, we adopt different backbone networks to extract the 
image features from the source domain DS. Noting that VGG16 is used as 
the backbone for the Messidor dataset whereas Resnet50 is chosen as the 
backbone for the Eyepacs dataset. However, the above supervised model 
CθI (⋅) cannot be directly applied to alternative domains due to the 
domain shift. Thus, we further consider the adaption technique to 
generalize the discriminative ability to target domain. 

Target domain: Fine-tuning the instance discriminator with pseudo 
labels. 

In the target domain, if we use CθI (⋅) that is trained only in the source 
domain, it fails to discriminate the true lesions from the backgrounds 
due to the domain gap. We will later verify it in the experiment. To 
mitigate the domain gap, we further fine-tune the instance discriminator 
with the generated samples by CycleGAN to achieve a progressive 
domain adaptation. 

3.5. Attention based multi-instance learning for weakly supervised 
learning 

MIL aims to alleviate the labeling and segmentation burden on the 
ophthalmologist by learning the mapping between a bag of instances 
and the bag-level label. We firstly train a MIL model on the target 
domain and predict the bag labels of unseen images. The major chal
lenge of this MIL lies in building the multi-instance learning mechanism 
to model the relation between the instances and bag. To solve it, we 
propose a multi-class multi-instance learning model with an attention 
mechanism, which can learn a better image representation through a 
local-global scheme for improved DR graded diagnosis. In the MIL 
framework, the relationships among instances are very important for 
learning the mapping between a bag of instances and the bag-level label. 
Therefore, to avoid that all the patches are treated equivalently when 
generating bag representations using the instance embeddings, we 
propose an attention mechanism to selectively learn useful instances and 
appropriately represent the image embedding with a form of weighted- 
sum pooling scheme. The interpretation of model decisions can be 
achieved through the attention mechanism, which will be discussed in 
Sec. 4.4. More specifically, with the instance embedding h(j)

i ∈ RD 

learned by the feature learning module in CθM (⋅), the weight of an in
dividual instance can be calculated through an attention mechanism as 
follows: 

α(j)
i =

exp
{

WT
(

tanh
(

V
(

h(j)
i

)T
)

⊙ sigm
(

U
(

h(j)
i

)T
))}

∑B
k=1 exp

{

WT
(

tanh
(

V
(

h(k)
i

)T
)

⊙ sigm
(

U
(

h(k)
i

)T
))} (10)  

where α(j)
i ∈ RC denotes the attention weights for the j-th instances in the 

i-th image, W ∈ RM×C, U ∈ RM×D and V ∈ RM×D are learned parameters, 
B = b × b and C denote the patch size in each bag and the class number. 

In Eq. (10), the tangent and sigmoid functions are introduced to in
crease the element-wise non-linearity from two aspects: 1) the tangent 
function can involve both negative and positive values for appropriate 
gradient flow; 2) the sigmoid function further removes the troublesome Fig. 6. Network architectures of discriminator.  
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linearity in the tangent function. 
With the optimized attention weights, each instance can be 

expressed by multiple weighted embeddings in Eq. (11), each of which is 
obtained through the original embedding multiplied by the specific 
attention weights of the corresponding classes (disease levels). 

ĥ
(j)
i = α(j)

i h(j)
i (11)  

where ĥ
(j)
i ∈ RC×D, D represents instance embedding dimensionality. 

With the instance weights, we proposed a global bag-level image 
representation Ĥ i by concatenating the instance embeddings with the 
attention weights as follows: 

Ĥ i = concat
[

ĥ
(1)
i ,…, ĥ

(B)
i

]
(12) 

The contribution of each instance is different from the classification, 
thus automatically identifying the task-specific regions and neglecting 
irrelevant regions enables to improve their performance. Finally, the 
multi-instance learning prediction is obtained according to the process 
in Fig. 7. 

Moreover, we develop a multi-class cross-entropy loss as follows: 

LCM = −
1
NT

∑NT

i=0

∑C

c=0

(

yti,c ∗ log
(

yt
Λ

i,c

))

(13)  

where NT is the total number of image level data, C indicates the number 
of DR grading level, yt

i,c is the DR severity classification label for the 

image-level annotated data and yt
Λ

i,c indicates the predicted label. 

3.6. Training 

Thanks to the independence of the steps, we design a learning 
strategy that can perform these steps simultaneously. Taken together, 
the overall objective function can be formulated as: 

min
θI ,θM ,θG

max
θQ

Ltotal ​ = min
θI ,θM ,θG

max
θQ

(Ladv + λcLcyc + λgLCM + λhLCI ) (14) 

During the learning stage, the model learns the parameters θG, θM 
and θI by minimizing the overall objective function in Eq. (14). This 
process enforces the three components to generate realistic instance, 
learn the discriminative property of suspicious regions, and identify the 
most relevant task-specific regions. The three components of the model 
can learn their corresponding parameters θG, θI and θM according to the 
objective function in an end-to-end manner. This optimal solution cor
responds to solving the optimization problem: 

{θI , θM , θG, θQ} = ​ arg ​ min
θI ,θM ,θG

max
θQ

Ltotal ​ (15)  

⎧
⎪⎪⎨

⎪⎪⎩

θQ←+ − ∇θQ (LQ)

θI←
+
− ∇θI (λhLCI )

θM←+ − ∇θM

(
λgLCM

)

θG←+ − ∇θG

(
LQ + λcLcyc + λgLG

)

(16) 

The main iteration steps of WAD-Net are summarized in Algorithm 1. 

Algorithm 1. Weakly-supervised network with Attention mechanism 
and Domain adaptation(WAD-Net).   

Attention

Weight patch 
Feature 
learning

Target domain 
patches: B=b b

Suspected lesion patches 
score  map:S=b b

BiDChi

Bhhhh

BDCHi

BDC

C

DR Grading 
prediction

Ci

Dhi

. . .

Fig. 7. Network architectures of the proposed MIL model. The proposed attention mechanism is implemented by an auxiliary layer. At last, a fully connected layer is 
used to produce the final predictions. 

P. Cao et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 144 (2022) 105341

9

4. Experiments 

In this section, we conduct several sets of comparative experiments 
and rigorously analyze our experimental results of DR grading. We use 
the 10-fold cross-validation to evaluate the proposed method. 

4.1. Datasets and performance metrics 

In our study, the dataset of Messidor/EyePACS with image grading 
level annotations are chosen as our target domain and the dataset of 
IDRiD as our source domain. IDRiD consists of 81 fundus images, with 
pixel-wise lesion annotations of hemorrhages, microaneurysms, soft 
exudates, and hard exudates. The Messidor dataset is a public dataset 
provided by the Messidor program partners [12]. It consists of 1200 
retinal images and for each image, two grade information including the 
DR grade and risk of macular edema are provided. Only retinopathy 
grades are used in the present work. Kaggle-EyePACS consists of 35 126 
training images and 53 576 testing images only containing grading la
bels [13]. The images are collected from different sources with various 

lighting conditions and weak annotation quality. Table 1 shows the in
formation of the IDRiD and Messidor/EyePACS datasets. 

We choose the metrics of accuracy, precision, recall, F1-score, kappa 
and area under the curve (AUC) of ROC to evaluate the performance of 
our proposed method. 

ACC =

∑n
i=0TPi +

∑n
i=0TNi

∑n
i=0TPi +

∑n
i=0FPi +

∑n
i=0TNi +

∑n
i=0FNi

(17)  

Precision =

∑n
i=1TPi

∑n
i=1TPi +

∑n
i=1FPi

(18)  

Recall =
∑n

i=1TPi
∑n

i=1TPi +
∑n

i=1FNi
(19)  

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

(20)  

kappa =
Po − Pe

1 − Pe
,Pe =

∑C
i=1Ti ∗ Pi

n2 (21)  

where Po denotes the DR grading accuracy of all fundus images, n is the 
total number of samples, C indicates the number of DR types, and Ti, Pi 
denote the number of true and predicted samples for each type of fundus 
images, respectively. 

Table 1 
The information of the IDRiD and Messidor/EyePACS datasets.  

IDRiD dataset Messidor dataset 

Lesion image 
number 

Grade Description image 
number 

MAa 81 DR-0 MA = 0 and H = 0 546 
Hb 80 DR-1 0 < MA ≤ 5 and H = 0 153 
EXc 81 DR-2 5 < MA < 15 and 0 <

H < 5 
247 

SEd 40 DR-3 MA ≥ 15 and H ≥ 5 254 

EyePACS dataset 
Manifestation Grade Train Test Image 

number 

No DR DR-0 25 810 39 533 65 343 
Mild DR-1 2443 3762 6205 
Moderate DR-2 5292 7861 13 153 
Severe DR-3 873 1214 2087 
Proliferative 

DR 
DR-4 708 1206 1914 

aMicroaneurysms, bHemorrhages, cHard Exudates, dSoft Exudates  

Table 2 
The Comparison between Our Method with the State-of-the-art Methods for DR 
Grading on Multi-class disease grading classification task.  

Methods Accuracy Validation Images 

Fractal-based [31] 0.483 5-fold 1200 
Expert [33] 0.681 Manual 1200 
GLCM/SVM [32] 0.470 5-fold 1200 
GLCM/RF [32] 0.459 5-fold 1200 
CANet [24] 0.680 10-fold 1200 
SKD [30] 0.608 10-fold 1200 
WAD-Net(ours) 0.712 10-fold 1200  
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4.2. Comparison with the state-of-the-art methods on the Messidor 
dataset 

4.2.1. Multi-class disease grading 
To more comprehensively evaluate our model, we compare WAD- 

Net with several recent state-of-the-art methods reported on the Messi
dor dataset in Table 2. The comparison includes two deep learning 
methods: CANet [24] and SKD [30]. By exploring the internal rela
tionship between the diseases, CANet [24] is proposed to jointly grade 
DR and DME through a cross-disease attention scheme. SKD [30] is 
proposed for grading DR with a combination of self-knowledge distil
lation and CAM-Attention. Both of them are trained with only 
image-level supervision. Moreover, we compared the traditional ma
chine learning approaches including the Fractal-based feature [31] and 
GLCM feature combined with different classifiers [32]. Besides, we 
compare our model with an expert [33]. 

Experimental results are reported in Table 2 where the best results 
are boldfaced. Experimental results on the Messidor database demon
strate that the proposed WAD-Net achieves the best performance 
compared with the other state-of-the-art methods not just in traditional 
classification methods but also in deep learning methods. It also in
dicates that our WAD-Net is effective for multi-class DR grading prob
lems. Although the experimental setup in these references is slightly 
different, it appears that our method performs favorably compared to 
the previous state-of-the-art. 

4.2.2. Binary-class disease diagnosis 
We also compare our model with the traditional features based 

methods, deep learning based methods and experts on the task of binary- 
class disease diagnosis. The comparable methods involves: 

Dynamic Shape Features [34]: A discriminative feature is proposed 
to describe the shape evolution during image flooding. 

Splat feature [35]: An optimal set of features is extracted and 
selected from each splat to represent the lesion characteristics from a 
variety of interactions with neighboring splats, filter bank, and shape 
and texture features. 

VNXK/LGI [36]: It is inspired mainly from VGGNet, additionally it 
combines some components from GoogLeNet and ResNet. 

CKML Net/LGI [36]: It is an extension of GoogLeNet. 
Zoom-in-Net [37]: It involves three subnetworks: a main network 

(M-Net) for DR classification, an Attention Network for generating 
attention maps, and a Crop-Network (C-Net) for correcting the pre
dictions from M-Net with high resolution patches of highest attention 
values as input. 

In Table 3, we present the binary classification task (normal V.S. 
abnormal) results of various studies. Results obtained for the Messidor 
database also demonstrate that the proposed method outperforms state- 
of-the-art methods as well as two ophthalmologists A and B [38]. 

4.3. Ablation study 

4.3.1. Image reconstruction quality comparison 
In addition to the quantitative improvements, we qualitatively 

compare the images produced by the generator GθG (⋅) in our model and 
other GAN methods on the Messidor dataset. Fig. 8 shows the qualitative 
results of generated samples by different GAN methods including UNIT 
[39], DualGAN [40], MUNIT [41], DRIT [42], UGATIT [43], DiscoGAN 
[44]. From Fig. 8, it can be observed that our supervision guided 
cycleGAN is able to synthesize graphs whose quality are close to real 
images compared to the competing GAN models. 

4.3.2. The effectiveness of each component in WAD-Net 
The WAD-Net algorithm mainly involves three components: domain 

adaptation, instance progressive discriminator, multi-instance learning 
with an attention mechanism. To investigate the effectiveness of our 
WAD-Net, we compare WAD-Net with its several variants, respectively. 

ResNet50: An image-level classification model is constructed based 
on ResNet50 in the target domain; 

MIL: Only simple MIL model without attention is developed, which 
treats all patches as instances; 

WAD-Net w/o fine-tuning: The instance discriminator is only pre- 
trained in the source domain without the further fine-tuning process 
in the target domain; 

WAD-Net w/o cycleGAN: The pre-trained instance discriminator is 
employed to predict the pseudo-labels for the instances in the target 
domain rather than the generated instances. 

WAD-Net w/o attention: The instance discriminator is fine-tuned 
with the generated instances by CycleGAN. With the fine-tuned model, 
the instances are filtered and fed into the MIL model without attention 
mechanism. 

WAD-Net w/o cycle consistency: To evaluate the effectiveness of 
cycle consistency in our WAD-Net, the cycle consistency is removed in 
WAD-Net. 

WAD-Net-ts: Moreover, we compare two different learning strate
gies of WAD-Net: jointly training and two-step training. The two-step 
training means that the cycleGAN and the other modules are conduct
ed independently. The two-step training indicates that the unsupervised 
cycleGAN is trained at first, then the progressive instance discriminator 
and the multi-instance learning are trained based on the patch instances 
generated by cycleGAN. 

From Table 4, we can see that the proposed method outperforms the 
baseline and contender methods. These results reveal several interesting 
points:  

(1) ResNet50 shows the worst performance among the algorithms for 
almost all datasets/metrics. With the limited size of the training 
set, it is difficult to train a bag-level classification model for DR 
diagnosis.  

(2) MIL without any instance filtering achieves a poor result, which 
indicates that the large amount of irrelevant instances negatively 
affects the multi-instance learning. It can be verified that filtering 

Table 3 
The Comparison between our method with the state-of-the-art methods for DR 
diagnosis on binary classification task.  

Methods Accuracy AUC Sen Spec 

Expert A [38] - 0.922 0.945 0.500 
Expert B [38] - 0.865 0.912 0.500 
Comprehensive CAD [38] - 0.876 0.922 0.500 
Splat feature/kNN [35] - 0.870 - - 
Dynamic Shape Features/Random Forest 

(RF) [34] 
- 0.899 0.939 0.500 

DenseNet-201 0.878 0.959 0.878 0.881 
ResNet-50 0.878 0.951 0.878 0.905 
CKML Net/LGI [36] 0.858 0.862 0.916 0.803 
VNXK/LGI [36] 0.871 0.870 0.882 0.857 
Zoom-in-Net [37] 0.905 0.921 - - 
WAD-Net(ours) 0.949 0.958 0.927 0.957  

Table 4 
The evaluation of the three important components of WAD-Net algorithm.  

Component Accuracy Precision Recall micro- 
F1 

AUC 

ResNet50 0.253 0.112 0.241 0.193 0.502 
MIL 0.489 0.498 0.525 0.511 0.659 
WAD-Net w/o fine-tuning 0.606 0.729 0.630 0.670 0.737 
WAD-Net w/o cycleGAN 0.507 0.594 0.548 0.561 0.672 
WAD-Net w/o attention 0.547 0.574 0.630 0.597 0.698 
WAD-Net w/o cycle 

consistency 
0.669 0.673 0.669 0.671 0.779 

WAD-Net-ts 0.764 0.765 0.616 0.676 0.749 
WAD-Net 0.712 0.716 0.713 0.713 0.808  
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the irrelevant instances contribute to the performance improve
ments of MIL.  

(3) WAD-Net w/o fine-tuning performs worse than the WAD-Net 
method, which demonstrates that the cross-domain distribution 
complicates the traditional classification. Thus employing the 
classifier merely trained on the labeled data from the source 
domain produces a poor transferring classification performance. 
Our results seem to yield a piece of solid evidence that imposing a 
domain adaptation method during the training of the network is a 
viable method for improving the cross-domain classification 
performances. Another important conclusion is that WAD-Net w/ 

o cycleGAN may generate wrong labels due to the inconsistent 
distribution from multi-domain data. It is even worse than WAD- 
Net w/o fine-tuning. Without considering the cycleGAN for the 
domain adaptation, the different domain confuses the instance 
discriminator, which results in lowering the performance of 
instance filtering.  

(4) WAD-Net-ts achieves the best accuracy and precision but a lower 
recall and AUC, which indicates that the quality of the fake 
patches generated by the unsupervised cycleGAN is worse than 
the MIL guided cycleGAN. It verifies that collaboratively learning 
is critical once again.  

(5) Our WAD-Net further improves the performance over WAD-Net 
w/o attention by incorporating the attention mechanism. Be
sides the interpretability support provided, it indicates that the 
contribution of instances is different for the MIL performance. 

Besides, we investigate the effectiveness of pooling strategy and the 
generation module in our framework in Tables 5 and 6. More specif
ically, we compare our attention method with global max pooling 
(GMP), global average pooling (GAP) and global log-sum-exp pooling 
(GLP) [45]. Results in Table 5 show that the proposed pooling strategy 
with attention provides better performance by emphasizing critical local 
regions and filtering irrelevant information. Furthermore, we explore 
the generation module in the cycleGAN based domain adaptation and 
demonstrate that the role of the consistency loss during the generation is 
important and only the direction from the source domain to the target 
domain can sufficiently solve the domain gap. 

4.3.3. Influence of the size of image patches 
In the previous experiments, the patch size is empirically fixed as 

128 × 128 for the WAD-Net method. We also investigate the influence of 
the patch size by comparing the WAD-Net-128 with WAD-Net-256 on 

Fig. 8. The reconstruction quality comparison among the multiple GAN models.  

Table 5 
Influence of the pooling operations on WAD-Net algorithm.  

Pooling Method Accuracy Precision Recall micro-F1 AUC 

Attention(ours) 0.712 0.716 0.712 0.713 0.808 
GMP 0.558 0.598 0.586 0.592 0.706 
GAP 0.567 0.574 0.620 0.595 0.710 
GLP 0.526 0.524 0.552 0.537 0.684        

Table 6 
Influence of the variation of GAN loss function in the WAD-Net algorithm.  

Loss variation Accuracy Precision Recall micro- 
F1 

AUC 

only adv 0.669 0.673 0.669 0.671 0.779 
single direction (S → T → 

S) (ours) 
0.712 0.716 0.713 0.713 0.808 

two directions (S → T → S) 
+ (T → S → T) 

0.764 0.765 0.616 0.676 0.749  
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the Messidor dataset. From Fig. 9, it can be observed that a better 
classification performance is obtained with the smaller patch size in 
terms of all the metrics. It suggests that the patch size is critical for 
instance representation learning and multi-instance learning 
performance. 

4.4. Interpretability 

The deep learning-based models can not typically provide inter
pretability, which lacks the evidence support for doctors. Investigating 
the performance comparison through ablation studies and quantitative 
evaluations alone may not be sufficient to fully understand the benefits 
and behavior of our model. Although the proposed MIL with attention 
contributes to the performance improvement, it is interesting to inves
tigate the attention mechanism working as expected. Therefore, we 
improve the interpretability ability of deep learning through the atten
tion mechanism to support the decision-making by producing the loca
tion information of highly suspected lesions. Fig. 10 shows the 
interpretable results of WAD-Net. An attention map is calculated by 
multiplying the pixel intensity values with the corresponding attention 
weights of the patches. The lesion regions can be identified through the 
attention map. 

4.5. Comparison with the state-of-the-art methods on the Eyepacs dataset 

In addition to diagnosing diabetic retinopathy, we also verify the 
generality of the proposed WAD-Net for DR grading on other datasets. 
Hence, we also compare our method with other DR grading models re
ported on the large scale EyePACS dataset in Table 7. We use multiple 
baselines to evaluate the DR grading performance of our WAD-Net 
method. The first kinds of baselines adopt a basic classification-only 
model with different classic backbones, including VGG-16, ResNet-50, 
Inception v3 and DenseNet-121. The second kind of baselines are 
ensemble models proposed by the top three places from the Kaggle 
challenge [46], including Min-pooling, o_O and Reformed Gamblers. 
Last but not least, we compared the DR grading performance of the 
WAD-Net method with five other methods on EyePACS datasets. There 
are two main branches for DR grading: employing auxiliary information 
[47–49] and multi-task joint learning [50]. 

Lesion-based CL [48]: Instead of taking entire images as the input, 

lesion-based CL uses lesion patches to encourage the feature extractor to 
learn representations that are highly discriminative for DR grading via 
contrastive learning. 

MMCNN [49]: It is proposed to predict the label with both classifi
cation and regression to consider the relationships of images with 
different stages. 

DeepMT-DR [50]: It is a hierarchical deep multi-task learning 
structure that simultaneously processes the low-level task of image 
super-resolution, the mid-level task of lesion segmentation and the 
high-level task of DR grading. 

As shown in Table 7, we conduct the comparison experiment on 
EyePACS dataset to evaluate the performance of our proposed method 
by quadratic weighted kappa (QWK) which works well for unbalanced 
datasets and accuracy. From Table 7, we can observe that our model 
usually achieves competitive performance against the state-of-the-art 
methods. 

5. Discussion 

Although state-of-the-art DR grading methods have achieved great 
success, they did not make full use of all valuable information because of 
the domain gap and classification performance. We point out four key 
issues that are previously ignored concerning the severity of DR, and we 
hope this work can inspire further research on the DR grading 
prediction. 

1. How to leverage the information from another domain? 
Existing DR grading methods suffer from a major limitation which is 

the insufficient available annotations. More and more work leverages 
information from auxiliary pixel-wise labeled images to improve the 
performance. However, few works consider the domain gap when 
borrowing the auxiliary datasets. When the source and target domains 
are related but from different distributions, simply applying the model 
trained in one domain into another might negatively affect the learner’s 
performance in the target domain due to the possible shift between 
training and test samples. In medical application scenarios, the data may 
come from multiple domains with different distributions. In our study, 
we regard cross-domain DR grading as a style adaptation with cycle
GAN. It is a weakly-supervised domain adaptation paradigm for DR 
grading domain adaptation. The aim is to learn a generalized DR grading 
model in the presence of a shift between source and target domain 

Fig. 9. Influence of the patch size on WAD-Net performance.  
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distributions. This paradigm can be easily extended to other types of 
medical images with weak label and domain gap characteristics. 

2. How to improve the classification model interpretability ? 
Another advantage of our model is simultaneously grading DR and 

highlighting lesion regions. Identifying suspicious regions for medical 
images is of significant importance since it provides intuitive illustra
tions for physicians and patients of how the diagnosis is made. Despite 
the good performance achieved by the state-of-the-art deep learning 

method, the major limitation is that the networks are trained with only 
image-level supervision, making it very challenging to find the accurate 
abnormal signs, such as soft exudates, hard exudates, microaneurysms, 
and hemorrhage. The identification of lesion regions in fundus images is 
also very important, since it provides visual clues for ophthalmologists 
to assist their diagnosis. The previous deep learning based models 
trained on the Messidor or Eyepacs datasets can only be used to predict a 
severity grade without providing any interpretability for ophthalmolo
gists. Our key contributions include the attention mechanism in the MIL 
model to automatically extract the task-specific regions and neglect the 
irrelevant information to improve their performance. Through the 
attention mechanism, our model can simultaneously grade DR and 
highlight lesion regions by generating attention maps which highlight 
suspicious regions trained with only image-level supervisions. The vi
sual attention mechanism enables our model to act in a clinicians-like 
manner, and automatically discover the suspicious regions in the image. 

3. How to design a unified DR grading framework collaborated with 
other networks? 

Compared with existing deep learning based methods, our method 
aims at improving the grading performance by combining domain 
adaptation, irrelevant patch filtering and MIL classification. The 

Fig. 10. Some examples of attention map of DR grading process.  

Table 7 
The comparison between our method with the State-of-the-art Methods for DR 
grading on the Eyepacs dataset.  

Methods Kappa ACC Methods Kappa ACC 

VGG-16 0.819 0.836 Reformed Gamblers 0.839 - 
ResNet50 0.823 0.845 Zoom-in-Net (2017) [47] 0.854 - 
Inception v3 0.811 0.839 DeepMT-DR(2021) [50] 0.839 0.857 
DenseNet- 

121 
0.834 0.853 Lesion-base CL(2021) [48] 0.832 - 

Min-pooling 0.849 - MMCNN(2018) [49] 0.841 - 
o_O 0.844 - WAD-Net(ours) 0.860 0.887  
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common strategies are that treating these components as independent 
tasks. This study explores a new perspective: could it be simultaneously 
trained in an end-to-end fashion? Our model attempts to integrate the 
three components: domain adaptation, lesion (instance) classification 
and DR grading into an end-to-end training system, and yields higher 
grading accuracy. Please refer to Figs. 3 and 4. The key contribution of 
the proposed framework lies in the joint training, which can improve the 
generalization performance from two aspects: generating more realistic 
patches and producing more accurate patch scores. More specifically, in 
the collaborative learning framework, the classification loss on the 
target domain encourages the domain adaption model to generate the 
instances which are more beneficial to the classification. Meanwhile, the 
classification loss also helps the instance classification to produce more 
accurate scores and focus on the relevant patches for its subsequent 
multi-instance learning task. Moreover, the improved performance 
confirms that the three tasks are correlated and they can benefit from 
each other. Our results suggest that the relevant tasks could be jointly 
trained to improve DR grading performance. 

4. Image (global) level or patch (local) level ? How to develop a 
patch-Aware DR grading framework? 

DR diagnosis in clinic highly depends on the detected retinal pa
thologies, such as microaneurysm. Identifying suspicious regions for 
medical images is of significant importance since it provides intuitive 
illustrations for physicians and patients of how the diagnosis decision is 
obtained. However, the lesions may only occupy a small part of the 
whole fundus image. Higher-level features with larger receptive fields 
have an abstract semantic information, tending to ignore the small le
sions. To address the aforementioned issues, we develop a lesion-aware 
framework by focusing on the patches as instances for DR severity 
grading on fundus image. Instead of using entire fundus images, patches 
combined with the suspected lesion scores are taken as the input for our 
MIL model. Moreover, the domain adaptation and instance classifier 
components are also conducted from the local view, both of which 
enable our model to be lesion-aware. By focusing on patches, the 
network is encouraged to learn more discriminative features. Therefore, 
integrating the lesion-aware components is a effective exploration for 
DR grading. 

6. Conclusion 

Focusing on improving the performance of DR diagnosis and grading 
when the lesion labeling is scarce, we formulated the problem of DR 
grading as an MIL problem, and propose an interpretable end-to-end MIL 
network with attention mechanism and domain adaptation for simul
taneously diagnosing diabetic retinopathy and highlighting suspicious 
regions. By combining the strengths of domain adaptation and multi- 
instance learning, the proposed approach significantly improved the 
state-of-the-art results in DR grading on benchmark datasets. 
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