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4 Université Jean Monnet, Saint-Etienne, France

largeron@univ-st-etienne.fr

Abstract. The most popular topic modelling algorithm, Latent Dirich-
let Allocation, produces a simple set of topics. However, topics naturally
exist in a hierarchy with larger, more general super-topics and smaller,
more specific sub-topics. We develop a novel topic modelling algorithm,
Community Topic, that mines communities from word co-occurrence net-
works to produce topics. The fractal structure of networks provides a
natural topic hierarchy where sub-topics can be found by iteratively min-
ing the sub-graph formed by a single topic. Similarly, super-topics can
by found by mining the network of topic hyper-nodes. We compare the
topic hierarchies discovered by Community Topic to those produced by
two probabilistic graphical topic models and find that Community Topic
uncovers a topic hierarchy with a more coherent structure and a tighter
relationship between parent and child topics. Community Topic is able
to find this hierarchy more quickly and allows for on-demand sub- and
super-topic discovery, facilitating corpus exploration by researchers.

Keywords: Topic Modelling · Information Networks · Graphs · Natural
Language Processing · Data Mining.

1 Introduction

Topic modelling discovers the themes of collections of unstructured text doc-
uments. Topics can act as features for document classification and indices for
information retrieval. However, one of the most important functions of these
topics is to assist in the exploration and understanding of large corpora. Re-
searchers in all fields and domains seek to better understand the main ideas and
themes of document collections too large for a human to read and summarize.
This requires topics that are interpretable and coherent to human users.

Interpretability is a necessary but not sufficient condition for a good topic
model. Topics naturally exist in a hierarchy. There are larger, more general super-
topics and smaller, more specific sub-topics. “Sports” is a valid topic in that
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it represents a concept. “Football” and “the Olympics” are also topics. They
are not completely distinct from “sports” but rather are sub-topics that fall
within sports, i.e. they are child topics of the “Sports” parent topic in the topic
hierarchy. Topics also relate to each other to varying degrees. The “movie” topic
is more similar to the “television” topic than the “food” topic. This relationship
structure is also key to understanding the topical content of a corpus. Topic
modelling methods that simply provide the user with a set of topics are not as
useful and informative as those that can provide this hierarchy and structure.

Recently, a new domain has emerged where topics can provide utility: conver-
sational agents, which are computer programs that can carry on a human-level
conversation. The conversation is an end in itself; the purpose of speaking with
a conversational agent is to converse, to be entertained, to express emotion and
be supported. The awareness and use of the topics of discussion are key abilities
that an agent must possess to be able to carry on a conversation with a hu-
man. Previous work has used the detected topic of conversation to enrich the a
conversational agent’s responses [12]. However, more can be done with topics to
improve the abilities of a conversational agent given the right topic model that
provides a topic hierarchy and structure. It can be used to detect and control
topic drift in the conversation so that the agent’s responses make sense in con-
text. If the user is engaged with the current topic, then the agent can stay on
topic or detect sub-topics to focus the conversation. The agent can detect super-
topics to broaden the range of conversation. The agent should be able to move
to related topics or, if the user becomes bored or displeased, jump to dissimilar
topics. This type of control over the flow of the conversation is crucial to human
communication and is needed for human-computer interaction as well.

The most widely used topic model, Latent Dirichlet Allocation (LDA), only
provides a simple set of topics without a hierarchy or structure and has other
drawbacks. The number of topics must be specified, requiring multiple runs
with different numbers of topics to find the best topics. It performs poorly on
short documents. Different runs on the same corpus can produce different topics,
especially if the order of the documents is different [25]. Common terms can
appear in many different topics, reducing the uniqueness of topics [31].

Neural networks have pushed forward the state-of-the-art in topic modelling.
While neural topic models have produced topics of greater coherence, they retain
many of the weaknesses of LDA, such as the need to specify the number of
topics, while having a tendency to find models with many redundant topics [7]
and demanding greater computational resources and specialized hardware.

These drawbacks have inspired us to search for a new approach to topic mod-
elling. We desire a method that can operate quickly on commodity hardware and
that provides not only a set of topics but their relationships and a hierarchical
structure. It is natural to take an information network-based approach given the
growing importance of relational data and graphs in representing complex sys-
tems [34]. Our topic modelling algorithm, Community Topic (CT), mines com-
munities from networks constructed from term co-occurrences. These topics are
collections of vocabulary terms and are thus interpretable by humans. The frac-
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tal nature of the network representation provides a natural topic hierarchy and
structure. The topic hyper-vertices form a network with connections of varying
strength between the topic vertices derived from the aggregated edges between
their constituent word vertices. Super-topics can be mined from this topic net-
work. Each topic itself is also a sub-graph with regions of varying density of
connections. This sub-graph can be mined to find sub-topics. Our algorithm has
only a single hyperparameter and can run quickly on simple hardware which
makes it ideal for researchers from all fields for exploring a document collection.

In this paper, we review related work on topic modelling. We describe our
algorithm, how it constructs term co-occurrence networks, and how it mines
topics from these networks. We describe how it discovers the topic hierarchy and
how this can be done on-the-fly as needed by the user. We empirically evaluate
our algorithm and compare it to two probabilistic graphical topic models. Our
results show that our approach is able to find a topic hierarchy with a more
coherent structure and a tighter relationship between parent and child topics.
Community Topic is able to find this hierarchy more quickly and allows for
on-demand sub- and super-topic discovery.

2 Related Work

Topic modelling emerged from the field of information retrieval and research to
reduce the dimensionality of and more effectively represent documents for in-
dexing, query matching, and document classification. The performance of topic
models on these tasks has been surpassed by deep neural models but topic models
have become extremely popular tools of applied research both inside and outside
of computing science [18]. One early approach is Latent Semantic Analysis (LSA)
[10] which decomposes the term-by-document matrix to find vectors represent-
ing the latent semantic structure of the corpus and can be viewed as (uninter-
pretable) topics that relate terms and documents. Another matrix decomposition
method is Non-negative Matrix Factorization [23]. Researchers unsatisfied with
the lack of a solid statistical foundation to LSA developed Probabilistic Latent
Semantic Analysis (pLSA) [17] which posits a generative probabilistic model of
the data with the topics as the latent variables.

A drawback of pLSA is that the topic mixture is estimated separately for
each document. Latent Dirichlet Allocation (LDA) [5], not to be confused with
Linear Discriminant Analysis, was developed to remedy this. LDA is a fully
generative model as it places a Dirichlet prior on the latent topic mixture of
a document. The probability of a topic z given a document d, p(z|d; θ), is a
multinomial distribution over the topics parameterized by θ where θ is itself a
random variable sampled from the prior Dirichlet distribution. The number of
topics must be specified and the model provides no topic hierarchy or structure.

There have been many methods developed that attempt to improve upon
LDA. Promoting named entities to become the most frequent terms in the doc-
ument has been tried [22]. In [39], the authors use a process to identify and
re-weight words that are topic-indiscriminate. To improve the performance of
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LDA on tweets, the authors of [27] pool tweets into longer documents. The Met-
aLDA model [41] incorporates meta information such as document labels. The
author-topic model [37] extends LDA by conditioning the topic mixture on doc-
ument author. The Correlated Topic Model (CTM) [3] models the correlations
between topics. The Dynamic Topic Model [4] allows for the modelling of topic
evolution over time. Most relevant to our work are two methods that discover a
hierarchy of topics. The Hierarchical LDA model (HLDA) [16] models the topic
hierarchy using a tree structure. The depth of the tree must be specified but the
number of topics is discovered. A flexible generalization of LDA is the Pachinko
Allocation Model (PAM) [24]. Like HLDA, PAM allows for a hierachy of topics
but this hierarchy is represented by a directed acyclic graph rather than a tree
of fixed depth, allowing for a variety of relationships between topics and terms
in the hierarchy, although this structure must be specified by the user.

In recent years, new topic models have emerged based on neural networks.
The Embedded Topic Model (ETM) [11] combines word embeddings trained us-
ing the Skip-gram algorithm [29] with the LDA probabilistic generative model.
Another approach is to use a variational autoencoder (VAE) [20][21] to learn
the probability distributions of a generative probabilistic model, as with the
neural variational document model (NVDM) [28], the stick-breaking variational
autoencoder (SB-VAE) [30], ProdLDA [36], and Dirichlet-VAE [7]. These models
discover topics that are qualitatively different than those found by traditional
LDA, although there is debate as to whether they are truly superior [18]. Neural
models that provide a topic hierarchy have also been developed. In [40], the au-
thors develop Weibull hybrid autoencoding inference (WHAI) to model multiple
layers of priors for deep LDA and thus multiple layers in a topic hierarchy. The
number of hyperparameters, complicated training process, and need for special
hardware makes this type of model unsuitable for applied researchers seeking a
tool for corpus exploration.

3 Community Topic

We call our community detection-based topic modelling algorithm Community
Topic (CT). The design of CT was driven by the results of experimentation
detailed in our previous paper [2] and the version presented here is the final
result of this process of experimentation. The algorithm has three main steps.

3.1 Co-occurrence network construction

First, a network is constructed from the document corpus with terms as vertices.
An edge exists between a pair of vertices vi and vj if the terms ti and tj co-occur
in the same sentence. The weights of edges are derived from the frequency of
co-occurrence. One method is to use the raw count as the edge weight. However,
this does not adjust for the frequency of the terms themselves so more common
terms will tend to have higher edge weights. An alternative weighting scheme is
to use normalized pointwise mutual information (NPMI) between terms (Eq. 1).
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NPMI(ti, tj) =
log

p(ti,tj)
p(ti)p(tj)

−log(p(ti, tj))
(1)

NPMI assigns higher values to pairs of terms ti and tj whose co-occurrence,
p(ti, tj), is more frequent than what would be expected if their occurrences in the
texts were random, p(ti)p(tj). This is normalized to adjust for the frequencies
of the terms in the corpus. The edges of the network are thresholded at 0, i.e.
those edges with weights ≤ 0 are removed from the network. This is because
the community mining algorithm we will use to discover topics uses modularity
Q [32] to discover the more densely connected regions of the network. This
formula uses the product of the weighted degrees of two vertices to determine
the expected value of the strength of their connection if the graph were random,
which does not work if a vertex has a negative weighted degree.

Q =
1

2m

∑
ij

(
Ai,j −

kikj
2m

)
δ(Ci, Cj) (2)

Here m is the sum of weights of all edges in the network, Ai,j is the weight
of the edge connecting vi and vj , ki (kj) is the sum of weights of edges incident
to vi (vj), Ci (Cj) is the assigned community of vi (vj), and δ is an indicator
function that returns 1 when the two arguments are equal and 0 otherwise.

The distribution of edge weights differs greatly between the raw count and
NPMI. The raw count weights follow a power law distribution with the vast
majority of edges having very low weight and very few edges with very high
weight. This mirrors the power law distribution of term frequencies. Given this
distribution of term frequencies, a given edge weight value can carry very dif-
ferent information. An edge weight of 2 could indicate a significant relationship
between two terms that occur 5 times each. Between two terms that occur hun-
dreds of times each, an edge weigh of 2 would be noise. When we convert the edge
weights to NPMI values, they are scaled to the range [-1,+1] and high values are
assigned to edges that represent frequent co-occurrence relative to the frequen-
cies of the connected terms. This distribution resembles a bell curve. We see very
few edge weights ≤ 0 that will be removed by thresholding. This indicates that
conditioned on co-occurring at least once, two terms are likely to co-occur more
often than would be expected by chance. In our experiments we found slightly
better results using the NPMI edge weights. We refer the interested reader to
our previous work [2] for a visualization of these edge weight distributions.

3.2 Community Mining

Once the co-occurrence network is constructed, CT discovers topics by applying
a community detection algorithm. A community is a group of vertices that have a
greater density of connections among themselves than they do to vertices outside
the group. Many community detection algoritms exist and have been surveryed in
other work [9][14][15]. CT employs the Leiden algorithm [38] as this was found to
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work best in experimentation. The Leiden algorithm has a resolution parameter
that is used to set the scale at which communities are discovered. Smaller values
of this parameter lead to larger communities being found and larger values lead
to smaller communities. This represents the only hyperparameter necessary for
CT and is less a value that needs to be carefully tuned for good performance
but is rather a way for the user to get communities of a desired size.

Fig. 1. Distribution of community sizes found by Leiden with resolution parameter 1.0.

Figure 1 Shows the distribution of community sizes found when using a Lei-
den resolution parameter of 1.0 on the BBC News dataset5. CT returns 5 large
topics that correspond to the five article categories of the dataset. In Figure 2,
we see the a resolution parameter of 1.5 returns a greater number of small topics
with a greater varience of topic size, from hundreds of terms to just a few.

3.3 Topic Filtering and Term Ordering

Once the communities are discovered, small communities of size 2 or less are
removed as outliers. Probabilistic graphical topic models such as LDA produce
topics that are probability distributions over vocabulary terms. The most im-
portant terms for a topic are simply those that have the highest probabilities.
The communities discovered by the Leiden algorithm are sets of vertices, so CT
needs a way of ranking the terms represented by those vertices. To do so, we take
advantage of the graph representation and use internal weighted degree to rank
vertices/terms, which is calculated as the sum of weights of edges incident to a

5 https://www.kaggle.com/competitions/learn-ai-bbc/data



Hierarchical topic model inference by community discovery 7

Fig. 2. Distribution of community sizes found by Leiden with resolution parameter 1.5.

vertex that connect to another vertex in the same community/topic. This gives
higher values to terms that connect strongly to many terms in the same topic
and are thus most representative of that topic. Once the filtering and ordering
is complete, the set of topics is returned to the user.

3.4 Topic Hierarchy

This basic formulation of CT produces a set of topics like vanilla LDA. However,
there exists a natural structure to the graph representation and it is straight-
forward to adapt CT to return a hierarchy. By iteratively applying community
detection to each topic sub-graph, CT discovers the next level of the topic hi-
erarchy. This can be done to a specified depth or we can allow CT to uncover
the entire hierarchy by stopping the growth of the topic tree once the produced
sub-topics are smaller than three terms. An example of 3 levels of topics discov-
ered on the BBC corpus is show in Figure 3. The level 1 topics correspond to the
5 article categories of the corpus. Level 2 and then 3 show increasingly specific
sub-topics.

The topic hierarchy can also be constructed in a bottom-up fashion. If a low
Leiden resolution parameter is initially used, CT produces many small topics.
Applying community detection to the network of topic vertices groups these
small sub-topics into super-topics. We can see an example of this in Figure 4
shows the clustering of the initial small topics discovered on the BBC corpus into
super-topics which roughly correspond to the 5 article categories of the corpus.
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Fig. 3. Hierarchy of BBC corpus topics found by iteratively applying CT algorithm.

4 Empirical Evaluation

In this section we compare CT to two probabilistic graphical topic models, HLDA
and PAM6. As the implementation of PAM only allows for two non-root topic
layers in the hierarchy we generate a three-level hierarchy for each algorithm for
fair comparison, where level 0 is the root topic of all terms in the corpus, level 1
are the super-topics, and level 2 are the sub-topics. PAM requires the number of
super- and sub-topics to be specified. We used the number of topics discovered
by CT at each level for PAM.

4.1 Datasets

We use three datasets to evaluate the different topic modelling approaches:
20Newsgroups7, Reuters-215788, and BBC News9. The 20Newsgroups dataset

6 https://bab2min.github.io/tomotopy/v0.12.2/en/
7 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch 20newsgroups.html
8 https://huggingface.co/datasets/reuters21578
9 https://www.kaggle.com/competitions/learn-ai-bbc/data
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Fig. 4. Super-topics found by applying community detection on network of small topics.

consists of 18,846 posts on the Usenet discussion platform which come from 20
different topics such as “atheism” and “hockey”. The Reuters-21578 dataset con-
sists of 21,578 financial articles published on the Reuters newswire in 1987 and
have economic and financial topics such as “grain” and “copper”. The BBC News
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dataset consists of 2225 articles in five categories: “business”, “entertainment”,
“politics”, “sport”, and “tech”.

4.2 Preprocessing

We use spaCy10 to lowercase and tokenize the documents and to identify sen-
tences, parts-of-speech (POS), and named entities. We only detect noun-type
entities which are merged into single tokens e.g. the terms “united”, “states”,
“of”, and “america” become “united states of america”. While stemming and
lemmatization have been commonly used in the topic modelling literature, the
authors of [35] found that they do not improve topic quality and hurt model
stability so we do not stem or lemmatize. We remove stopwords and terms that
occur in > 90% of documents. Following [18], we remove terms that appear in
fewer than 2(0.02|d|)1/log10 documents. It was shown in [26] that topic models
constructed from noun-only corpora were more coherent so we detect and tag
parts-of-speech to be able to filter out non-noun terms as in [8]. This is intuitive
as adjectives and verbs can be used in many different contexts, e.g. one can “play
the piano”, “play baseball”, “play the stock market”, and “play with someone’s
heart”, but music, sports, finance, and romance are separate topics. Even with
nouns there are issues with polysemy, i.e. words with multiple meanings and
thus multiple different common contexts. To help with this problem, we use
Gensim11 to extract meaningful n-grams [6]. An n-gram is a combination of n
adjacent tokens into a single token so that a term such as “microsoft windows”
can be found and the computer operating system can be distinguished from the
windows of a building. We apply two iterations so that longer n-grams such as
“law enforcement agencies” can be found.

4.3 Evaluation Metrics

To measure the quality of the topics produced by each model, we use two co-
herence measures: CV [33] and CNPMI [1]. Both measures have been shown to
correlate with human judgements of topic quality with CV having the strongest
correlation [33]. Even though CV has stronger correlation that CNPMI with hu-
man evaluations, CNPMI is more commonly used in the literature [18], possibly
due to the extra computation required by CV . We prefer the CV measures as,
in addition to being more highly correlated with human judgement, it considers
the similarity of the contexts of the terms, not just their own co-occurrence. We
use Gensim12 to compute both measures. Each dataset has a train/test split. We
train all models on the train documents and evaluate using the test documents.
We use the standard 110-term window for CV and 10-term window for CNPMI .
We use the top 5 terms of each topic for evaluation

10 https://spacy.io/
11 https://radimrehurek.com/gensim/
12 https://radimrehurek.com/gensim/models/coherencemodel.html
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To measure the quality of the topic hierarchy, we use two measures pro-
posed in [19]: topic specialization and hierarchical affinity. Topic specialization
measures the distance of a topic’s probability distribution over terms from the
general probability distribution of all terms in the corpus given by their occur-
rence frequency. We expect topics at higher levels in the hierarchy closer to the
root to be more general and less specialized and topics further down the hierar-
chy to be more specialized. Hierarchical affinity measures the similarity between
a super-topic and a set of sub-topics. We expect higher affinity between a parent
topic and its children and lower affinity between a parent topic and sub-topics
which are not its children.

HLDA produces topics at both levels that are probability distributions over
vocabulary terms and are thus compatible with our evaluation metrics with-
out modification. CT produces a list of terms ranked by the internal weighted
degree. To calculate specialization and affinity, we convert these to probability
distributions by dividing each value by the sum of the values. The super-topics
discovered by PAM are distributions over sub-topics. We convert these to dis-
tributions over terms by taking the expectation for each term in the sub-topics
given the super-topic distribution over sub-topics. Each PAM super-topic dis-
tribution gives some non-zero probability to all sub-topics so we need a way
to distinguish children from non-children. We do this by taking the top 6 most
likely sub-topics as the children of a super-topic since we are positing a topic
hierarchy with an average of 6 sub-topics per super-topic.

5 Results

Using a Leiden resolution parameter of 1.0, CT finds 5 or 6 super-topics on all
datasets and 5, 6, or 7 sub-topics per super topic and we use these average values
to guide the PAMmodel. HLDA finds hundreds of super-topics and about 3 times
as many sub-topics. This tendency to find many small topics at all levels leads to
poor performance on our evaluation metrics and leads to a poor hierarchy where
it is common for a child topic to appear in more documents than its parent.
PAM performs better, but benefits from using the number of topics discovered
by CT.

CT is the fastest of the algorithms, finding the topic hierarchy in under 5
seconds on all datasets. HLDA takes between 30 seconds and 5 minutes while
PAM ranges from 10 seconds to 2 minutes. All experiments were run on the
same laptop with 2.7 GHz dual core processor and 8 GB RAM.

The coherence results are presented in Table 1. We can see that CT achieves
the highest coherence scores on all datasets as measured by both metrics except
for CNPMI on the 20Newsgroup corpus where PAM comes out on top. PAM
acheives the second highest scores in all other cases. HLDA is a distant third
with much lower scores. This demonstrates that the topics found by CT will be
more interpretable to a human user.

Figure 5 shows the specialization scores for each algorithm on the three dat-
sets. We see that both the super-topics (level 1) and the sub-topics (level 2)
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Table 1. Coherence scores for CT, HLDA, PAM on three document corpora. Bold
indicates best score for each metric and dataset.

BBC 20Newsgroups Reuters
CV CNPMI CV CNPMI CV CNPMI

CT 0.641 0.079 0.645 0.044 0.702 0.182

HLDA 0.448 -0.162 0.444 -0.133 0.451 -0.093

PAM 0.600 0.063 0.636 0.090 0.555 0.056

found by HLDA have a very high specialization. This is consistent with the
large number of topics found at both levels but does not match our intuition
that topics higher in the hierarchy should be general. PAM produces general
topics at level 1 and more specialized topics at level 2, however the super-topics
are so general and similar to the overall frequency distribution as to not pro-
vide useful information for the user. CT also produces sub-topics that are more
specialized than the super-topics. Unlike PAM, the super-topics are themselves
specialized and thus useful and informative themselves.

Fig. 5. Topic specialization scores for CT, HLDA, and PAM on three corpora.

Figure 6 shows the hierarchical affinity scores for each algorithm on the three
datasets. We see that HLDA has a higher affinity between parent topics and their
children than non-children. However, the affinity is very low so the relationship
between a super-topic and its sub-topics is very weak. PAM has the opposite
problem with high affinities between parent topics and both child and non-child
topics. This is because PAM super-topics are distributions over all sub-topics
and is consistent with the super-topics being non-specialized. CT parent topics
exhibit a high affinity with their children and zero affinity with non-children.
This is because the sub-topics are a partition of the super-topic and thus do not
overlap with any other super-topic.

Our experimental results show that CT produces the most coherent and thus
interpretable topics and the best topic hierarchy. CT topic hierarchies exhibit
higher specialization for sub-topics than super-topics but with enough specializa-
tion at both levels to make the topics useful. CT super-topics have a high affinity
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Fig. 6. Hierarchical affinity scores between parent and children and between parent
and non-children for CT, HLDA, and PAM on three corpora.

with their own sub-topics and no affinity with non-child sub-topics. CT is able
to produce this coherent topic structure in less time than the other algorithms
on commodity hardware.

6 Conclusion

We have presented our novel hierarchical topic modelling algorithm, CT. This
method is based on community mining of word co-occurrence networks and is
thus fast and takes advantage of the natural network structure. Our experiments
show that CT produces more coherent topics and a more cohesive topic hierarchy
than either HLDA or PAM. The features of CT make it an ideal tool of corpus
exploration and to guide the conversation of a chat bot.

In future, we would like to extend CT by allowing for overlapping topics.
Currently topics are partitions of the vocabulary. A method such as the persona
splitting of [13] that creates multiple instances of a vertex would allow for terms
to fall into multiple topics. While our method has shown good performance on
automated metrics, the real test of a topic model is in its utility for downstream
tasks and we plan to integrate CT into a conversational agent to demonstrate
its utility.
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