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Abstract describe the communities they are looking for by providing
initial parameters, e.g., community size, density value, e
Communities in social networks may overlap, with someHowever, appropriate parameters are usually extremely har
hub nodes belonging to multiple communities. They may alsto determine without tedious and repeated testing.
have outliers, which are nodes that belong to no community. In this paper, we describe ONDOCS (Ordering Nodes to
The criterion to locate hubs or outliers is network depertiden Detect Overlapping Community Structure). Our visual data
Previous methods usually require this information as inputmining approach first generates visualizations of the neéwo
parameters, e.g., an expected number of communities, wilh question by ordering nodes based on their reachability
no intuition or assistance. Here we present a visual datascores; this helps the user understand the emerging network
mining approach, which first helps the user to make approstructure in order to choose appropriate parameters. After
priate parameter selections by observing initial data gisu the initial visualization, selected parameters are used fo
izations, and then finds and extracts overlapping communitgxtracting communities, hubs and outliers from the network
structures from the network. Experimental results vetiy t Similar visual data mining ideas are applied in [6], [7], [8]
scalability and accuracy of our approach on real network to help users determine parameters for decision tree con-
data and show its advantages over previous methods. struction, rule discovery, etc. Our work makes the follogvin
contributions:

1. Introduction « Avisual data mining approach to assist the user in find-
ing appropriate parameters to describe the communities
There has been a recent surge of research on finding they are looking for.
communities in networks, which can be used to represent , A scalable and accurate method to discover communi-
various kinds of complex systems in the real world. A ties, hubs, and outliers in social networks.
community (orclustel) can be considered a subgraph such . . .
that the density of edges within is greater than the densit¥ The rest of the paper is organized as follows. We discuss

of edges between its nodes and nodes outside [1]. Recen%lated work in Section 2. Section 3 presents the ONDOCS

studies have also revealed that network models of man?cﬁl%rv?lzght.)yv::/sn:;(Ieupsci);tn:)i(r?esr:erzt?:;ag results in Section 4,

real world phenomena exhibit an overlapping community
structure, i.e., a node can belong to more than one commu-
nity. The participation of nodes in two or more communities2- Related Work
is hard to manage with classical graph clustering methods
where every vertex of the graph belongs to exactly one com- In general, there are two ways to detect overlapping
munity [2]. This is especially true for social networks, whe communities in a network. One natural idea is to first
individuals can connect to several groups in the networlglobally partition the network and then locally expand the
as hubs However, in real networks we also have anotherdiscovered communities to locate overlapping components.
node category, which belongs to no community, obeitliers For example, for overlapping community discovery in a
Therefore, a typical social network consists of commusijtie name-entity network, Li et al. [9] generate community cores
hubs and outliers. It is essential for community discoveryby merging triangles (3-cliques) so that one vertex can be
methods to identify nodes in these three categories, singeart of different communities if it belongs to several ckgu
the isolation of hubs and outliers can be crucial for manySimilarly, Baumes et al. [10] initialize community cores
community-based applications. using the Link Aggregate (LA) Algorithm and then refine
Unfortunately, there doesn't yet exist a precise desaipti the peripheries by an Iterative Scan (IS) procedure. Anothe
of what a communityreally is. Moreover, the definition mainstream research direction for this problem is based on
would naturally be different across domains, or even acrosfuzzy clustering. Zhang et al. [11] combine modularity and
different networks of the same domain. Therefore, most fuzzy c-means clustering algorithm to identify overlagpi
proposed approaches [1], [3], [4], [2], [5] require the user communities. Nepusz et al. [4] propose a similarity funetio



based on membership, and solve the fuzzy communitghe maximum ofP (i) and P(j). In other words, with respect
detection problem as a constrained optimization problemto 4, the probability of selecting as one ofi’s neighbours
Recently, Palla et al. [2] propose the CFinder system tds —“-. We cannot achieve a higher score unléss> k;,
partition complex networks té-clique communities, where thus the probability of the fact that two nodes are connected
k is a given as clique size. Gregory proposes the CONGAnN our model is decided by the node with the higher degree.
algorithm [1] based on the "betweenness” score [12] andNote thatP(i < j) # P(i) = P(j) since the two events
later extends it to the CONGO algorithm to improve scal-connecting tgj and;j connecting ta are dependent on each
ability [3]. He also shows that CONGO provides the sameother. Therefore we have
level of performance as CFinder, on synthetic networks. , . . . maz(ki, kj)
While all these methods successfully detect overlapping P(i < j) = max(P(i), P(j)) = ——————
communities, some major problems remain. Most method
do not consider outliers, thus many outliers would be clas-
sified into communities. These methods also intentionally (ir]) = Ay — maz(ki, k;) 3)
focus on overlapping communities to the extent they find n—1

or force overlap even for data without such structure. MOVQNhereAw = 1if i andj are connected) otherwise. The

importantly, many approaches [1], [3], [9], [2], [11] rege@i  generalization for directed or weighted graphs is strdight
initial parameters that are not only difficult to determing b \yard.

also highly sensitive.

)

n—1

We define the relation scordi, j):

3.2. Ordering Nodes to Visualize Networks
3. Our ONDOCS Approach
Now we generate network visualizations by ordering
3.1. Relationship Definition nodes based on their relation scores. Given the relatipnshi
function R, for noden;, we create a list of nodds ordered
Originally, ONDOCS is inspired by the OPTICS algo- by their relation ton; from high to low. (Note that we can
rithm proposed by Ankerst et al. [13], where points arelimit candidate nodes to those which hake> 0, i.e., they
ordered for data clustering. However, unlike their cluistgr are connected to or share at least one neighbournyi)iVe
approach, we do not have a distance measure between noddsfine thek'" value in this list to bd,;.. Here, our approach
Since the neighborhood around any two nodes in question igkes one input parameter However, as we will show in
important in assessing their relationship in social nekspr Section 4,s does not strongly affect the output. In practice,
we define the relationshigR between node and j as  we usually generate several visualizations, witihanging
follows: from 2 to 8, and let the user select anbased on their
i r(x. 7 observations. For a node, we define its community score
R(i,j) = Zren, 'l );ZIEN' (=.9) (1)  C, to be thes™ value in its node list;, i.e., Cs(n;) = L,

. . . o andC;(n;) = 0 if there are less thas nodes in the list. We
where N; is the neighbourhood of nodg including: itself define the reachability of nodgwith respect toi as
and all nodes that connecttoThe similarity between node
andj is defined as the average Bfi — 7j), representing the reachy (i, j) = { R(i,j) if Cs(ni) > R(i,j)
relations fromi to j's neighbourhood, and&(;j — i), repre- Cs(n;) otherwise
senting relations fromy to ¢'s neighbourhoodR(i — j) is  |ntuitively, the parametes represents the expected number
defined as the sum of relation scores betweend all nodes of nodes that one node is similar with in order to be a
in j's neighbourhood, similarly for?(j — i) with respect member of any community; is the lowest relation score
to j andi’s neighbourhood. Next, in order to quantify the petween nodéeand its similar neighbours in one community.
relationshipr(i, j) between node andj, we compare the |n this way, reach,(i, j) measures the community relation-
probability of the event that and j are connectedn the  ship between and ;. It is their direct distance score if
original graphG, to a random models’, where we keep and j are far away from each other, and is equal to the
only the same node number and node degreé;, ...k,  community radius ofi if j is close enough. Therefore, a
and leave the rest random. Only if the probability of havingdecreasing order of the reachability scor&sj indicates a
two nodes connected in the random model is low, doesode list fori, starting fromi’s most related neighbours to
the fact that they are indeed connected show us a stronge least ones.

relationship. InG’, it is obvious that the probability of node  we present our algorithm for generating node lists ordered
i having a connection to any other node %i) = fil by their RS scores as Algorithm 1. More specifically, our
(similarly, P(j) = n—l)' Here we assumé&’ is undirected algorithm creates an ordering of network nodes, additignal
so that the event afconnecting toj andj connectingta is  storing a reachability scor&S5(¢) for each node. It starts

equivalent, thus the probability éfand;j being connected is at a given nodeng,,; and insertsng.,; into a max-heap




Algorithm 1 The ONDOCS Algorithm represents a community. A noticeable drop of subsequent
Input: A social networkG with » nodes andn edges, a RS scores after a “mountain” indicates that this community

start nodens:q,+ and possibles valuesso, s1, s2.... has ended. The “valley” between two “mountains” represents
Output: A list of nodesL with their Reachability Scores a collection of hubs, which belong to several communities
RS for eachs. (See Figure 3). For instance, if we start from nodes in
1. Sort a node list; for each node;, ordered by their community o, the fact that hubs have neighbours from
relation score tow;, from high to low. different communities makeRB.S scores of hubs lower than
2. For eachs : that of those single-community nodes dnbut still higher

Initialize a max-heah, insertngq,+ in h with RS = 0.  than nodes in communities other thanTherefore, after all
Select thes” largest element irt; for each noder; as  single-community nodes in are visited, hubs are next to

its community score’ (n;). follow before nodes in other communities; these form the
While (there is still nodes in heap) : “valley” between “mountains.”
Pop the nodex in 7 with largest valuer. As we have discussed in the introduction, there is no
Storea in L W.'th RS, = e global community definition, thus communities in specific
For all nodesz in I, _ networks need to be defined by parameters given by the
It 2 ¢ h, insertz into b with reachs(a, z). user. While parameters for previous methods are hard to
If 2 € h, update its value ifcachs(c, z) is larger.  getermine, our visual data mining approach generates visu-
Update max-heap. alizations with different values first. After the user chooses
3. Return listL; with RS values for eacts value. the suitable one based on their observations, they need to

further provide two parameters to define the communities
in this network, Community Threshold (CTand Outlier
structureh, which is maintained to store the reachability Threshold (OT) From the first node as the starting com-
of candidate nodes. At each step, the ngdehich has the  munity, we scan all nodes along the list. One node
highest reachability score i, is chosen to be the next node s merged into the current community RS(n;) > CT.
in order and the popped score is storedr&(j). All nodes  |f ¢T > RS(n;) > OT, n; is classified as a hub. If
that are inj’'s neighbourhood are then inserted ifftovith  OT > RS(n;), it is an outlier. Since the first node of a
their reachability according tg, if they are not yet inh.  community in the list always has low RS scores, e.g., the
The value inh is updated if the node is already inand  starting node always haBS = 0, we refine the outlier
its new score is higher. Theh is updated to maintain its and hub nodes by moving any node into corresponding
max-heap property. The algorithm stops after all nodes icommunities if we havekS(n;.1) > CT.
the network are visited and produces a sequence of nodes 1, represent the idea that hubs can belong wommu-
with their reachability scores for eactvalue, which can be ities for each hub nodé we use a vector of “belonging
V'S_lﬁ’r?l'zed as”a 2D ?raph b{gyij\lgoplgg[l;] (?ee F'g_llfrr]e 2)- factors” v = (fanys fei2y - fan) where each coefficient
_ The overall complexity o i©(nlogn). The fux measures the strength of the relationship between
list generation and sort step tak€cn) where constant 1 04a; and communityk. For every community’y,, we can

is the average number of similar nodes for each node. NOtEuantify the Overall Relationship betweémnd C;, as
that, based on our relationship function, one node can only

be similar to another if they are connected or share one or . . ,

more neighbours. In step 2, there arinsertions to the heap ~ OR(; ) = { >eec, Bli:2) if Ppeo, Bli;2) >0
h and updatingh for each insertion take®(logn) time in 0 otherwise

the worst case. However, as shown in Section 4, the actual

running time of our algorithm is close t©(n). We then normalize the vector to get the coefficients so
that we havezlzjzlf(i,w) = 1. Therefore, one node can
3.3. Extracting Overlapping Communities belong to many communities at the same time, weighted

by the relationship value in the rang® 1] and the sum of

We have generated lists of nodes given spegifimlues, belonging coefficients to communities is the same for all
where we found that the ordering of the corresponditgy ~ hodes in the network, except outliers.
values has interesting community properties. For example, In summary, our approach to the community mining
if we start from one node, we will first visit other nodes in  process is aided by visual data mining. Instead of asking
1's community in sequence. This is because the reachabilitthe user to arbitrarily provide vital initial parametersgew
score from: to these nodes are always higher than nodegenerate network visualizations so that the user can observ
outsidei’s community. Therefore, each community can bethe emerging community structure before appropriate pa-
seen as a group of consecutive nodes with higfhscores. rameters can be determined. While parameters can be easily
In other words, each “mountain” in the 2D visualization altered, the impact on the change can be clearly visualized.



Runtime / s

Datasets Vertices| Edges hCSI:GO r[]3;] . CF[2] | oNDOCS
football [5] 180 787 8 2 1 <1
protein_protein [2] 2640 6600 114 11 3 11
blogs [3] 3982 6803 41 8 4 12
PGP [15] 10680 | 24316 772 104 | >20000 62
word_association [2]| 7207 31784 | 15922 | 230 102 161
blogs2 [3] 30557 | 82301 | 15148 | 380 319 269
cond-mat [16] 27519 | 116181| > 20000| 1486 490 544

Table 1. Results on Real World Networks

0 T 3 < k < 8 and ONDOCS to create dataset visualizations
& & for 2 < s < 8. From the table, we can see that ONDOCS
works well overall, while CONGO'’s running time increases
dramatically with respect td» and CF’s clique detection

o becomes slow on some specific networks. However, for lack
5 of ground truth with these datasets, to validate the acgurac
of our results we use other real world datasets for which we
have ground truth.

Run Time {sec)

100

0 0.2 0.4 0.6 0.8 1
Hunber of Nodes o Edges (in millions)

. . , , 4.2. Accuracy
Figure 1. Algorithm Running Time

The first dataset we examine is the schedule for 787
games of the 2006 National Collegiate Athletic Association
(NCAA) Football Bowl Subdivision (also known as Division
) 1-A) [5]. In the NCAA network, there are 115 universities

Here we evaluate the ONDOCS approach using both syngjyided into 11 conferences. In addition, there are four
thetic and real world datasets. The performance of ONDOC%dependent schools, namely Navy, Army, Notre Dame and
is compared with CFinder [2] and CONGO (3], which are yemple, at this level, and 61 schools from lower divisions.
shown to be two of the most efficient algorithms for finding g5ch school in the division plays more often with schools
overlapping communities [3]. The comparison is measureq, the same conference than schools outside. Independent
by the well known F-measure score and Adjusted Randicnools do not belong to any conference and can play with
Index (ARI) [17]. All experiments were conducted on a PCeams in all conferences, while lower division teams only

4. Experiment Results

with & 3.0 GHz Xeon processor and 4GB of RAM. play very few games. In other words, this network contains
__ 180 vertices (115 nodes as 11 communities, 4 hubs and 61
4.1. Scalability outliers), connected by 787 edges.

First, the ONDOCS approach generates several visualiza-

To evaluate the scalability of our algorithm, we generatedions with differents values for the user to choose. We show
ten random graphs of vertices ranging from 10,000 tothree of them in Figure 2. As we can see, the images are
500,000 and the number of edges ranging from 20,00Q@ery similar. The larger thes value is, the smoother the
to 1,000,000. The edges are randomly distributed in theurves are and the fewer “spikes” we have. Nevertheless, all
network. Figure 1 shows the performance of our algorithmthree visualizations clearly represent the network stmest
on those networks. It clearly illustrates that although thewhere there are 11 communities, a few hubs and a bunch of
running time of ONDOCS i®)(n logn), in the worst case, outliers.
our approach actually runs very close to linear time with The selection of parameters is based solely on users’
respect to the number of vertices and edges. visual interpretation of the visualized network. First we

To further evaluate the efficiency of the algorithm, we choose the visualization witkh = 2, where the community
apply all three algorithms on several real-world networks.structure is shown in most detail since pair relations are
Table 1 shows the source of each network, its statisticsmostly measured as direct distance. In Figure 2, we note
and the execution times for CONGO to compute the enthat nodes in sequence from 120 to 180 are barely related
tire dendrogram, CFinder (v1.21) to generate solutions foto the rest and can be considered as outliers, therefore we
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Figure 2. Visualization for Football Dataset

Algorithm 115 Nodes in 11 Clusters Plus 4 Hubs Plus 4 Hubs and 61 Outliers
9 cluster| Hub ARI cluster| Hub | Fm# | cluster| Hub | Fm# | Outliers | Fm#
CONGO (h=2) 11* 92 0.047 11* 100 | 0.038| 11* 96 0.04 0 0
CF (k=4) 11 6 0.945 12 8 0.167 12 8 0.167 61 1.00
ONDOCS (s=2)
(CT = 4.5, OT = 2) 11 0 1.00 11 3 0.857 11 3 0.857 61 1.00

Table 2. Result Comparison on the Football Dataset. (* The right cluster number is provided as a
parameter for the CONGO algorithm.) (* Fm represents F-measure score.)
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Figure 3. Visualization for Other Datasets

setOT = 2. Furthermore, we see a community usually endshubs clearly belong to multiple communities, we do not have
with a RS score between 3 and 5, thus we 8&f' = 4.5  exact ground truth for which communities these hubs should
so that all communities are separated. The thresholds ago. Therefore, we measure the accuracy of the output hubs
shown as disconnected lines in the figure. by the F-measure score, which is defined as the harmonic
To evaluate how these algorithms detect overlapping commean of precision and recall. Finally we give the complete
munities, we provide the data to in three different ways. Atnetwork with communities, hubs and outliers. Table 2 shows
first, we only give 115 community nodes and connectionghe experimental results for three algorithms. As we can see
between them, then we measure the accuracy of outpdlie CONGO algorithm always detects overlaps, even for the
communities by the ARI score based on the ground truthfirst network where there are only community nodes. Addi-
which is the conference assignment. Then we add the #onally, it requires the cluster number as the input parame
hubs and their connections into the network. Although thesavhich is usually unavailable for real world networks, and it
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