
A Reference-free Self-supervised Domain Adaptation Framework
for Low-quality Fundus Image Enhancement

Qingshan Hou
School of Computer Science and

Engineering, Northeastern University
Shenyang, Liaoning, China
Key Laboratory of Intelligent

Computing in Medical Image of
Ministry of Education, Northeastern

University
Shenyang, Liaoning, China
houqingshancv@gmail.com

Peng Cao∗
School of Computer Science and

Engineering, Northeastern University
Shenyang, Liaoning, China
Key Laboratory of Intelligent

Computing in Medical Image of
Ministry of Education, Northeastern

University
Shenyang, Liaoning, China
caopeng@cse.neu.edu.cn

Jiaqi Wang
School of Computer Science and

Engineering, Northeastern University
Shenyang, Liaoning, China
Key Laboratory of Intelligent

Computing in Medical Image of
Ministry of Education, Northeastern

University
Shenyang, Liaoning, China
wjq010222@gmail.com

Xiaoli Liu
School of Computer Science and

Engineering, Northeastern University
Shenyang, Liaoning, China
Key Laboratory of Intelligent

Computing in Medical Image of
Ministry of Education, Northeastern

University
Shenyang, Liaoning, China
neuxiaoliliu@gmail.com

Jinzhu Yang∗
School of Computer Science and

Engineering, Northeastern University
Shenyang, Liaoning, China
Key Laboratory of Intelligent

Computing in Medical Image of
Ministry of Education, Northeastern

University
Shenyang, Liaoning, China
yangjinzhu@cse.neu.edu.cn

Osmar R. Zaiane
Alberta Machine Intelligence Institute,

University of Alberta
Edmonton, Canada

zaiane@cs.ualberta.ca

ABSTRACT
Retinal fundus images have been applied for the diagnosis and
screening of eye diseases, such as Diabetic Retinopathy (DR) or
Diabetic Macular Edema (DME). However, both low-quality fundus
images and style inconsistency potentially increase uncertainty in
the diagnosis of fundus disease and even lead to misdiagnosis by
ophthalmologists. Most of the existing fundus image enhancement
methods mainly focus on improving the image quality by leverag-
ing the guidance of high-quality images, which is difficult to be
collected in medical applications. In this paper, we tackle image
quality enhancement in a fully unsupervised setting, i.e., neither
paired images nor high-quality images. To this end, we explore
the potential of the self-supervised task for improving the quality
of fundus images without the requirement of high-quality refer-
ence images, and proposed a Domain Adaptation Self-supervised
Quality Enhancement framework, named DASQE. Specifically, we
construct multiple patch-wise domains via a well-designed rule-
based quality assessment scheme and style clustering. To achieve
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robust low-quality image enhancement and address style inconsis-
tency, we formulate two self-supervised domain adaptation tasks to
disentangle the features of image content, low-quality factors and
style information by exploring intrinsic supervision signals within
the low-quality images. Extensive experiments are conducted on
four benchmark datasets, and results show that our DASQE method
achieves new state-of-the-art performance when only low-quality
images are available.
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1 INTRODUCTION
Medical fundus images have been extensively used for clinical
analysis of various ocular diseases [7, 26, 36, 50]. However, the
real clinical fundus datasets usually contain a large number of
low-quality images. The quality of fundus images is critical to
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Figure 1: Some cases of low-quality fundus images, where
the red box and the yellow box mark the different quality
regions in the low-quality images, respectively.

the diagnosis and screening of eye diseases. In contrast, the low-
quality fundus images easily mislead the clinical diagnosis and lead
to unsatisfactory results of downstream tasks like vessel/lesion
segmentation. Existing deep learning methods [5, 12, 34] rely on a
large amount of high-quality fundus images or paired images, which
limits their practicality and generalization in clinical applications
due to lack of availability of high-quality fundus images. To this
end, this paper explores a new perspective: could a model achieve
quality enhancement without requiring high-quality images?

In low-quality fundus images, we observe some interesting phe-
nomena shown in Figure 1: not all the regions are low quality,
as shown in Figure 1 (I). Besides, there are significant differences
among regions in low-quality images with respect to the image
styles, as shown in Figure 1 (III). Taking all of the above into con-
sideration, the major challenges of the fundus image quality
enhancement lie in: How to disentangle the low-quality factors
and image content information for simultaneously 1) improving the
quality and 2) unifying the style of images under the condition that
only low-quality images are available. Specifically, inter-domain
variations include two aspects: the variation between high-quality
domain and low-quality domain, and the variation between source
high-quality style domain and target high-quality style domain.

Our work rethinks the image quality enhancement problem from
a self-supervised learning perspective, without the requirement of
any high-quality image. Based on the design of the self-supervision,
we propose two assumptions to formulate the self-supervised image
quality enhancement:
1) the patches from the same position of the source and translated
images should have consistent content. Hence, the low-quality im-
age patches are assumed to be composed of low-quality factors
and image content embedding. The procedure of image quality en-
hancement can be formulated as disentangling the quality factors
from the image content.
2) The low-quality image patches consist of style embedding and
image content embedding. To unify the styles, we aim to factorize
style-related and content-related embeddings without any auxiliary
supervisory signals.
Specifically, we propose a high-quality unaware self-supervised

domain adaptation framework, namedDASQE. The proposed frame-
work first detects the high-quality regions inside the low-quality
images by a rule-based quality assessment scheme. Given the high-
quality patch-wise domain consisting of high-quality patch-wise
images, we obtain multiple style domains by clustering and choose
a target style domain consisting of high-quality patch-wise images
with uniform illumination style. Then, we disentangle patch-wise
images into content-related, quality-related and target style-related
embedding by separate encoders, and further reconstruct them into
original images by different image generators to reduce quality
and style variations. The overall procedure involves the cycle con-
sistency loss and the adversarial losses in the latent embedding
and image spaces to achieve a self-supervised quality enhancement
without any explicit supervision of high-quality data.

In summary, our contributions can be summarized as follows.
1) A major limitation of most current low-quality fundus image
enhancement methods is that they rely on the guidance of paired
images or the presence of high-quality images. Hence, we propose
a medical fundus image quality enhancement method to loosen
the requirement of pair-wise training images and only require low-
quality input images. To the best of our knowledge, this is the first
attempt to apply a self-supervised reference-free method coupled
with domain adaptation to the medical fundus image quality en-
hancement task. We tackle fundus image quality enhancement in a
fully unsupervised setting.
2) To enhance low-quality fundus images while preserving patho-
logical features and major retinal structures, we propose a represen-
tation decoupling strategy for disentangling content-related, style-
related and quality-related embeddings. The low-quality fundus
images are enhanced by recombining the learned content-related
and target style-related embeddings. It is worth mentioning that
our method not only improves the quality of fundus images by the
proposed strategy, but also unifies the image style to eliminate style
variations.
3) Our self-supervised domain adaptation framework without the
guidance of any high-quality data significantly outperforms the
state-of-the-art methods by a considerable 28.32 PSNR / 91.5% SSIM
and 29.14 PSNR / 89.2% SSIM on EyeQ and Messidor benchmark
datasets, a 0.96/2.41 PSNR and 0.7/1.8% SSIM improvement com-
pared to the previous best results. Moreover, the proposed method
is easily expanded to the quality enhancement task of other medical
images. We also further verify that our method is beneficial for a va-
riety of fundus imaging analysis tasks in the appendix section, such
as retinal vessel segmentation, lesion segmentation and disease
grading.

2 RELATEDWORK
2.1 Quality enhancement challenges for natural

and medical fundus images
The data-driven deep learning methods have been widespread used
in natural image enhancement and other fields [27, 28, 38, 39, 44, 45]
due to their impressive feature extraction and representation abil-
ities. However, natural image enhancement methods usually fo-
cus only on a specific aspect, such as low-light image enhance-
ment [13, 30, 42, 43], dehazing and deraining [3, 4, 23], and deblur-
ring [6, 24]. Unlike the focus of natural image enhancement tasks,
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Figure 2: Comparison of different image quality enhancement schemes. Previous fundus image quality enhancement methods
(A) require paired images of high-quality and low-quality as training data, which are often difficult to acquire. Although these
semi-supervised and unsupervised methods (B) and (C) eliminate the need for paired images, they still need the guidance of
high-quality images. (D) In contrast, our method is a truly unsupervised image quality enhancement, requiring neither paired
fundus images nor high-quality images.

Figure 3: The low-quality factors in fundus images include: (a)
uneven illumination, (b) noticeable blurring, and (c) artifacts.

medical image enhancement aims to obtain a clear and accurate
representation of internal anatomy or physiological processes from
medical imaging modalities for the purposes of clinical diagnosis,
treatment planning, and monitoring of disease progression. There-
fore, enhancing low-quality fundus images is more challenging than
natural images. The challenges mainly lie in: (1) Low-quality factors
(e.g. artifacts, noticeable blurring and uneven illumination, as shown
in Figure 3.) on fundus images are more diverse compared to natural
images. (2) The local lesion regions are critical for clinical decisions.
However, the lesion-related regions on the fundus image are small
and complex, which require that clear lesion boundaries and fundus
structures to be recognized. Hence, the natural image enhancement
methods (e.g. low-light image enhancement, deblurring and so on.)
are not adequate for low-quality fundus image enhancement.

2.2 Technical progress for fundus image quality
enhancement

The quality enhancement methods for fundus images mainly con-
tain traditional non-parametric methods based on hand-crafted
priors and data-driven methods based on deep learning. For ex-
ample, Shome et al. [35] enhance the contrast of fundus images
by the contrast limited adaptive histogram equalization method.
Tian et al. [37] design a global and local contrast enhancement
method for the quality enhancement of non-uniform illumination
images. Zhou et al. [48] adjust the luminosity of fundus images

based on the luminance gain matrix to achieve enhancement of
fundus images with uneven illumination. However, these methods
rely heavily on hand-crafted priors, which are hardly applicable
to all cases of low-quality fundus image enhancement, such as
artifacts. In addition, they also do not provide any learnable param-
eters to prevent the over-enhancement of fundus images. Recently,
deep learning has shown its advantages in a wide range of fields,
such as vessel segmentation [22], lesion detection [40], disease
classification [2]. For the quality enhancement of fundus images,
the most common quality enhancement methods [34, 41] based
on deep learning belong to the fully supervised learning scheme
(Figure 2 (A)), which requires supervision with high-quality refer-
ence images corresponding to the input during the training stage.
However, obtaining paired fundus images is expensive and time-
consuming, resulting in limited applications due to the requirement
for pairwise training data. In addition, the supervised enhancement
methods limit their generalization and practicality across different
datasets owing to inter-domain variations between datasets. To
loosen the limitations of paired fundus images, a semi-supervised
quality enhancement method (Figure 2 (B)) [5] is proposed, which
requires only a portion of paired images during the training phase.
Inspired by generative adversarial learning, some unsupervised
methods (Figure 2 (C)) [31, 46] based on bi-directional GAN have
been proposed to enhance low-quality fundus images, which elim-
inates the requirement for paired fundus images. However, such
methods usually require learning knowledge representation in the
high-quality domain, and transferring it to the low-quality domain.
Its heavy reliance on high-quality data proves to be the pain point
of image quality enhancement methods.

Furthermore, most existing unsupervised methods are usually
under-constrained, which may introduce undesirable artifacts or
fail to preserve the fine retinal structures and pathological signa-
tures in the real clinical fundus images, and the high-quality image
domains are similarly uncommon. From the above analysis and
comparison of related work, further exploration of unsupervised
quality enhancement method without any guidance of high-quality
images is significant and needed for adapting the extensive clinical
applications.
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Figure 4: The overall architecture of the proposed framework. It involves two stages: 1) Construction of patch-wise image
domains:The low-quality input images 𝑿 are first serialized as the patch-wise fundus images 𝑿 = {𝑥1, . . . , 𝑥𝑚}. With the help of
the rule-based quality assessment scheme, the patch-wise fundus images are divided into low-quality and high-quality patch
domains, e.g. L,H. Then, a style clustering is performed on H, and a Source/Target style patch domain S/T is determined. 2)
Disengagement of multiple features: We factorize content-related, quality-related and style-related for patch-wise domains
through the supervision derived from the image data itself to enhance the image quality and align style features. The framework
involves content-related encoders {𝑬L

𝐶
, 𝑬S

𝐶
, 𝑬T

𝐶
} for extracting latent content embeddings {𝑍L

𝐶
;𝑍S

𝐶
;𝑍T

𝐶
} of {𝑙 ; 𝑠; 𝑡 }, quality-related

encoder 𝑬L for extracting low-quality factor embedding 𝑍L of 𝑙 , target style-related encoder 𝑬T for extracting target style
embedding of 𝑍T of 𝑡 , generators 𝑮L, 𝑮S, 𝑮T for generating low-quality patch, source and target style patches.

3 METHODOLOGY
In this section, we present a clinically oriented fundus image quality
enhancement method DASQE to address the low-quality image
enhancement problem. Specifically, our framework is designed
and built to address two challenges: How to construct the patch-
wise domains? How to design auxiliary supervision to improve the
representation disentanglement for better generalization ability of
DASQE? An overview of the method is illustrated in Figure 4. A
summary of key notations used in this paper is reported in Table 1.

3.1 Construction of patch-wise image domains
The goal of this part is to obtain the patch-wise low-/high-quality
domain and select a high-quality target style domainwhich contains
the highest number of patches. Formally, the low-quality fundus im-
ages 𝑿 are serialized into a patch-wise image set 𝑿 = {𝑥1, . . . , 𝑥𝑚}
as shown in Figure 4. Then, according to the rule-based quality as-
sessment scheme, 𝑿 are divided into the low-quality patch domain
L = {𝑙1, . . . , 𝑙𝑛} and high-quality patch domain H = {ℎ1, . . . , ℎ𝑛′ },
where𝑚 = 𝑛 + 𝑛′.

More specifically, the peak signal-to-noise ratio (PSNR) is gener-
ally higher between the patches with the similar quality compared
to the patches with different qualities. Consequently, the proposed

rule-based patch quality assessment scheme involves the following
main steps:
Initializing the high-/low-quality quality domains.

Utilizing an auto-encoder to encode the patches into embeddings
for the following cluster, which aims to group the patches into a
high-quality domain H and a low-quality domain L.
Updating the high-/low-quality domains.

1) The average PSNR 𝐴𝑉𝐺PSNR between patches within H is
calculated as following:

𝐴𝑉𝐺PSNR =
2
∑𝑛′
𝑖=1

∑𝑛′
𝑗=𝑖+1 𝑃

(
ℎ𝑖 , ℎ 𝑗

)
𝑛′ ∗ (𝑛′ − 1) (1)

where 𝑃 (·) indicates a function of calculating the PSNR between a
pair of patch ℎ𝑖 and patch ℎ 𝑗 , and 𝑛′ denotes the number of patches
in H.

2) Randomly select patch pairs ℎ𝑖 and ℎ 𝑗 from H and calcu-
late their PSNR 𝑝 (ℎ𝑖 , ℎ 𝑗 ). If the value of 𝑝 (ℎ𝑖 , ℎ 𝑗 ) is lower than
𝐴𝑉𝐺PSNR, we calculate the average PSNR between ℎ𝑖 and the
patches in H, and the one between ℎ 𝑗 and the patches in H, re-
spectively. Choose the patch with the larger average PSNR as the
reference patch.
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Table 1: Important notations in this study

Notation Description
L; 𝑙

𝑙 ′

𝑙

Low-quality patch domain; Low-quality patch;
Conversion of low-quality patch to high-quality patch;
Reconstruction of low-quality patch

S
𝑠

High-quality Source style patch domain;
High-quality Source style patch

𝑠′1
𝑠1

Conversion of high-quality source style patch to low-quality patch;
Reconstruction of high-quality source style patch during the quality
disentanglement

𝑠′2

𝑠2

Conversion of high-quality source style patch to high-quality target
style patch;
Reconstruction of high-quality source style patch during the style
disentanglement

T
𝑡

𝑡 ′

𝑡

High-quality Target style patch domain;
High-quality Taget style patch;
Conversion of high-quality target style patch to high-quality source
style patch;
Reconstruction of high-quality target style patch

𝐸L
Quality-related encoder for extracting low-quality
factor embedding of 𝑙

𝐸T
Target Style-related encoder for extracting target
style embedding of 𝑡

𝐸L
𝐶
; 𝐸S

𝐶
; 𝐸T

𝐶

Content-related encoders for extracting latent
content embeddings of 𝑙 ; 𝑠; 𝑡

𝑍L Low-quality factor embedding of 𝑙
𝑍T Target style embedding of 𝑡
𝑍L
𝐶
; 𝑍S

𝐶
; 𝑍T

𝐶
Latent Content embeddings of 𝑙 ; 𝑠; 𝑡

𝐺L Low-quality patch generator
𝐺S High-quality Source style patch generator
𝐺T High-quality Target style patch generator

3) In order to more accurately remove low-quality patches from
the high-quality domain, repeat step 2) to obtain multiple reference
patches.

4) Calculate the average PSNR between each remaining patch in
H and the chosen reference patches, respectively. Remain the patch
in H if its average PSNR is higher than 𝐴𝑉𝐺PSNR, otherwise move
it to L.

For the patch-wise high-quality domains H, there are several
distinct illumination styles. This poses significant challenges to the
enhancement of low-quality images. In order to align the style of
patch-wise images, it is essential to construct a target style domain
for the subsequent style disentanglement. More specifically, our
primary goal is to learn an embedding function De(·) mapping H to
embeddings 𝒁 = {𝑧1, 𝑧2, ..., 𝑧𝑛′ } in a D-dimension representation
space. The loss L𝑒 of latent embedding learning is defined as:

L𝑒 = Eℎ [∥De (En(ℎ)) − ℎ∥1] , (2)

where ℎ indicates the patch-wise images from H, En(·) and De(·)
denote the encoder and decoder, respectively. Subsequently, we
cluster the obtained embeddings 𝒁 = En(H) to obtain the style
domains {H1,H2, · · · ,H𝑘 }. Finally, we select a domain containing
the highest number of patches as the Target style domain T, and
the others are considered as Source style domains S.

3.2 Multiple Feature Disentanglement
To maintain the consistency of image-content and enforce the dis-
entanglement of the low-quality factors and the target style during
quality enhancement without any extra annotations, the multiple

feature disentanglement consists of two main aspects: 1) the pur-
pose of the quality disentanglement is to eliminate interference
factors from low-quality patches, and 2) as shown in Fig1 (III), we
consider that the original patch style may be changed during the
quality disentanglement, and in light of the inconsistency of the
high-quality patch styles obtained from low-quality images. The
target style disentanglement is introduced for aligning the style of
patches.

We are given the unpaired low-quality patch 𝑙 ∈ L, high-quality
source style patch 𝑠 ∈ S, and high-quality target style patch 𝑡 ∈ T.
The encoders 𝐸T

𝐶
, 𝐸S

𝐶
, and 𝐸T

𝐶
are employed to extract the content

embedding 𝑍L
𝐶
, 𝑍S

𝐶
, and 𝑍T

𝐶
of 𝑙 , 𝑠 , and 𝑡 , respectively. For 𝑙 and

𝑡 , quality-related encoder 𝐸L and style-related encoder 𝐸T are de-
signed to extract low-quality factor embedding𝑍L and style-related
embedding 𝑍T. For the quality disentanglement, the process of fea-
ture extraction and image generation can be formulated as:

𝑙 ′ = 𝐺S
(
𝐸L𝐶 (𝑙)

)
; 𝑠′1 = 𝐺L

(
𝐸L (𝑙) ⊕ 𝐸S

𝐶
(𝑠)

)
, (3)

where ⊕ indicates the channel-wise concatenation. The learned
𝑍S
𝐶

= 𝐸S
𝐶
(𝑠) and 𝑍L = 𝐸L (𝑙) are recombined to generate low-

quality patch 𝑠′1 via generator𝐺
L. For 𝑙 ′,𝐺S only utilizes the content

embedding 𝑍L
𝐶
= 𝐸L

𝐶
(𝑙) of 𝑙 .

After disentangling the low-quality factors, there is a visible per-
ceptual disparity among the high-quality patches, which suggests
the presence of a style gap among the patches. Hence, the target
style disentangling is proposed for aligning patch style. Analogous
to the quality disentangling, generator𝐺S is used to convert a high-
quality patch 𝑡 with the target style into a high-quality patch 𝑡 ′ with
the source style, while generator 𝐺T jointly takes the 𝑍T = 𝐸T (𝑡)
and 𝑍S

𝐶
= 𝐸S

𝐶
(𝑠) to generate a new style-changing patch 𝑠′2. We

align different style domains by extracting the style embedding 𝑍T
of the target style domain T, and re-feeding the content embed-
dings 𝑍S

𝐶
from source domain S with the disentangled target style

embedding 𝑍T to be reconstructed into the image conversion space,
thereby alleviating the domain shift problem.

Meanwhile, we define feature-level adversarial loss L𝐸
𝑎𝑑𝑣

to fur-
ther encourage the content-related encoders 𝐸L

𝐶
, 𝐸S

𝐶
and 𝐸T

𝐶
to pull

their embedding 𝑍L
𝐶
, 𝑍S

𝐶
and 𝑍T

𝐶
together, so that inter-domain

content variations are reduced.

L𝐸
𝑎𝑑𝑣

= E𝑙

[
1
2
log𝐷𝐶

(
𝑍L𝐶

)
+ 1
2
log

(
1 − 𝐷𝐶

(
𝑍L𝐶

))]
+ E𝑠

[
1
2
log𝐷𝐶

(
𝑍S
𝐶

)
+ 1
2
log

(
1 − 𝐷𝐶

(
𝑍S
𝐶

))]
+ E𝑡

[
1
2
log𝐷𝐶

(
𝑍T𝐶

)
+ 1
2
log

(
1 − 𝐷𝐶

(
𝑍T𝐶

))]
,

(4)

where 𝐷𝐶 denotes a feature-level content representation discrimi-
nator.

In addition to the adversarial loss on the embedding, we define an
image-level adversarial loss L𝐼

𝑎𝑑𝑣
to constrain the generation of 𝑠′1,

𝑙 ′ 𝑡 ′ and 𝑠′2, which can force the content-related, quality-related and
target style-related encoders to capture their respective embedding.
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L𝐼
𝑎𝑑𝑣

= E𝑠 [log𝐷𝐼 (𝑠)] + E𝑙 [log𝐷𝐼 (𝑙)] + E𝑡 [log𝐷𝐼 (𝑡)]
+ E{𝑠,𝑙 }

[
log

(
1 − 𝐷𝐼

(
𝑠′1
) ) ]

+ E{𝑠,𝑡 }
[
log

(
1 − 𝐷𝐼

(
𝑠′2
) ) ]

+ E{𝑙,𝑠 }
[
log

(
1 − 𝐷𝐼

(
𝑙 ′
) ) ]

+ E{𝑡,𝑠 }
[
log

(
1 − 𝐷𝐼

(
𝑡 ′
) ) ]

,

(5)

where 𝐷𝐼 denotes an image-level domain discriminator.
Besides the adversarial loss for constraining the patch generation

in the image conversion space, to supervise the adversarial patch
generation and fully exploit the low-quality images for the quality
enhancement model, self-supervised learning can be naturally har-
nessed for providing additional supervision. A re-feeding strategy is
designed to re-disentangle and reconstruct newly generated patches
for image-level self-supervision in the original input image space
and the image reconstruction space. Specifically, we reconstruct 𝑙 ′

and 𝑠′1 as 𝑙 and 𝑠1 in the original image space via the encoders {𝐸L,
𝐸L
𝐶
, 𝐸S

𝐶
} as well as the generators {𝐺L, 𝐺S} according to the same

procedure as Eq.3. Hence, the quality-related self-supervision loss
L𝑄 for supervision on the reconstructed patches can be defined as:

L𝑄 = LL𝑟𝑒𝑐
(
𝑙, 𝑙

)
+ LS𝑟𝑒𝑐 (𝑠, 𝑠1)

= E𝑙

[
∥𝑙 − 𝑙 ∥1

]
+ E𝑠 [∥𝑠1 − 𝑠 ∥1] ,

(6)

where ∥ · ∥1 indicates the L1 norm that is widely adopted in self-
supervised learning for preserving the consistency of the recon-
structed patches. Similarly, due to the lack of reference patches cor-
responding to the inputs, we reconstruct 𝑡 ′ and 𝑠′2 into the patches
𝑡 and 𝑠2. An identical style-related self-supervised learning loss
L𝑇 =LT𝑟𝑒𝑐

(
𝑡, 𝑡

)
+ LS𝑟𝑒𝑐 (𝑠, 𝑠2) is proposed to align style while main-

taining pathological and structural features.
In summary, through the self-supervised domain adaptation

strategy, we can disentangle quality-related, target style-related
and content-related embeddings, and further recombine content-
related and style-related embeddings so as to unify the style of the
patch-wise fundus image while removing low-quality interference
factors. As a result, the proposed method enables the improvement
of fundus image quality without any high-quality reference images.

3.3 Joint Training
The final self-supervised loss L𝑠 is designed to:

L𝑠 = L𝑄 + L𝑇 + L𝐶 , (7)

where LC = E𝑠 [∥𝑠1 − 𝑠2∥1] is to constrain 𝑠1 and 𝑠2 to be similar,
for establishing an intrinsic link between the quality-related and
style-related disentanglement. Then the overall objective function
L of DASQE can be formulated as:

L = L𝑠 + 𝜆1L𝐸
𝑎𝑑𝑣

+ 𝜆2L𝐼
𝑎𝑑𝑣

, (8)

where 𝜆1 = 𝜆2 = 0.1 are regularization parameters to balance the
losses L𝑠 ,L𝐸

𝑎𝑑𝑣
and L𝐼

𝑎𝑑𝑣
.

4 EXPERIMENTS
In this section, we conduct experiments on four benchmarks in-
cluding EyeQ [9], Messidor [8], DDR [25], and DRIVE [33] datasets
for evaluating the performance of quality enhancement of the pro-
posed method. Moreover, we further investigate the effects of the

enhanced images on extensive medical image analysis tasks, such
as lesson segmentation, vessel segmentation, and disease grading.

4.1 Datasets and Evaluation Metrics
EyeQ dataset is a large-scale public benchmark for fundus image
quality assessment, which consists of 28,792 fundus images with
different quality labels, e.g. high-/ usable- and low-quality.
Messidor dataset includes 1,200 fundus images from three med-
ical institutions, and the DR grading annotations are provided to
measure the severity of diabetic retinopathy.
DDR dataset includes 13,673 retinal fundus images for Diabetic
Retinopathy diagnosis. Additionally, 775 images of the DDR are
annotated with pixel-wise lesion segmentation masks.
DRIVE dataset contains 40 retinal fundus images with pixel-level
vessel segmentation annotations.
Evaluation Metrics. We employ two types of metrics for DASQE
and the comparable methods, e.g. full-reference and non-reference
evaluation metrics. For full-reference metrics, peak signal-to-
noise ratio (PSNR) and structural index measure (SSIM) [17] are
adopted as the quantitative metrics to measure the performance
of image enhancement. It should be noted that for the PSNR and
SSIM, paired images are required. Due to the nonexistence of low-
quality images in the relevant datasets, we follow the degradation
pipeline proposed by [34] to synthesize the corresponding low-
quality dataset. For non-reference metrics, we use fundus image
quality assessment score (FIQA) [5], which indicates the ratio of the
total number of images predicted as high-quality by a pre-trained
quality assessment network [9] to the total number of the entire
dataset. Furthermore, the typical non-reference metrics inception
scores (IS) [1] and natural image quality evaluator (NIQE) [14, 47]
are also utilized to assess the quality of image enhancement. Higher
IS and lower NIQE metrics correspond to more satisfying quality
enhancement results.

Additionally, in the appendix section, in order to investigate the
influence of higher quality images enhanced by our method on
DR grading, and lesion/vessel segmentation tasks, we also further
train the DesnetNet-121 [18], UNet3+ [19], and CE-Net [11] on the
messidor, DDR, and DRIVE datasets. The accuracy and quadratic
weighted kappa [49] are chosen to evaluate the grading perfor-
mance. The intersection over union (IoU) and Dice score (DSC)[21]
are chosen to measure the segmentation performance.

4.2 Implementation
In this paper, we implement the proposed method using PyTorch
with 4 NVIDIAQuadro RTX 6000 GPUs. The architecture of encoder
and decoder is similar to the one in [29], and the weights are not
shared across encoders. Due to the large-sized and diversity of the
original images, all images are resized to 512 × 512, and the size of
patch-wise fundus images is set to 128 × 128. During the training,
we apply Adam optimizer to update the parameters with learning
rate=0.0001,momentum = 0.9, batch size = 32. Themaximumnumber
of training iterations is set to 300K. The weights of the proposed
method are initialized from a Gaussian distribution N (0, 0.02).
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4.3 Comparison with State-of-the-Art Methods
In this part, we provide a comprehensive comparison of the pro-
posed method with the traditional and deep learning-based meth-
ods. The traditional image enhancement methods include: LIME
[15], distribution fitting [10], and latent structure-drive [16]. Deep
learning-based approaches include: cofe-Net [34], I-SECRET [5],
cGAN [20], CutGAN [32], CycleCAN [46], and StillGAN [31]. Ex-
perimental results are reported in Table 2 where the best results
are boldfaced. The proposed method, DASQE, surpasses all the

Table 2: The comparison between our method with the SOTA
methods for fundus image enhancement on EyeQ dataset.

Methods Types
Full-reference Non-reference

PSNR ↑ SSIM ↑ FIQA ↑ IS ↑ NIQE ↓

LIME [15] Traditional 13.54 0.868 0.346 1.28 6.63
Fu et al. [10] Traditional 9.76 0.564 0.235 1.17 7.24
He et al. [16] Traditional 15.56 0.759 0.368 1.33 6.52

cofe-net [34] Supervised 20.51 0.885 0.482 1.54 5.31
cGAN [20] Supervised 26.35 0.894 0.634 1.63 4.73
I-SECRET [5] Semi-supervised 27.36 0.908 0.664 1.71 4.56
CutGAN [32] Unsupervised 22.76 0.872 0.576 1.62 5.14
Cycle-CBAM [46] Unsupervised 21.56 0.843 0.534 1.52 5.26
StillGAN [31] Unsupervised 25.38 0.896 0.619 1.67 4.84

DASQE (Ours) Unsupervised 28.32 0.915 0.683 1.76 4.13

compared methods significantly, in terms of full-reference and non-
reference metrics without the guidance of any high-quality refer-
ence images. Although these comparable deep learning methods
obtain better results than the traditional methods, the fact that they
require pairwise high-quality images largely reduces their practi-
cality for the problem that we aim to solve. Notably, no high-quality
images are available for our self-supervised learning method, and
the supervision is derived from the image data itself, we also further
visualize some cases of low-quality image enhancement for a range
of comparable methods in Figure 5. Although all methods exhibit de-
cent ability of enhancing low-quality fundus images, unsupervised
methods based on domain transfer suffer from apparent domain
shifts. For example, the enhanced images obtained by Cycle-CBAM
introduce undesired artifacts, which might mislead ophthalmol-
ogists to diagnose fundus disease. For StillGAN, the blurring of
low-quality images is not well improved. In addition, due to the
fact that the effect of style shifts on image enhancement is not
considered, the comparable methods show limited improvement for
uneven illumination. Our method presents remarkable performance
on low-quality fundus image enhancement, and alleviates the do-
main shift problem, resulting in better visual perception. In order to
prove the robustness of the proposed method for low-quality image
enhancement on other datasets, we also report the experimental
results of the proposed method on the Messidor dataset in Table 3.
From the results, we can observe that our method again achieves
competitive performance against the other methods.

4.4 Ablation Study
In this section, we perform a series of ablation experiments to
analyze the effect of patch-wise image domains and multiple fea-
ture disentanglement for image quality enhancement. During the

Figure 5: Visual comparisons on the image quality enhance-
ment between DASQE and other deep learning methods.

Table 3: The comparison between our method with the SOTA
methods for image quality enhancement on the Messidor.

Methods
Full-reference Non-reference

PSNR ↑ SSIM ↑ FIQA ↑ IS ↑ NIQE ↓
LIME [15] 12.36 0.852 0.338 1.25 6.82
Fu et al. [10] 11.32 0.573 0.263 1.21 6.87
He et al. [16] 16.23 0.764 0.374 1.42 6.14

cofe-net [34] 21.97 0.852 0.554 1.56 5.24
cGAN [20] 25.83 0.867 0.625 1.68 4.81
I-SECRET [5] 26.73 0.874 0.658 1.70 4.62
CutGAN [32] 24.37 0.883 0.617 1.64 4.93
Cycle-CBAM [46] 23.56 0.851 0.583 1.62 5.18
StillGAN [31] 26.32 0.871 0.649 1.72 4.75

DASQE (Ours) 29.14 0.892 0.694 1.78 3.94

construction of the patch-wise image domain, there are two key
hyper-parameters, including the size of the patch and the number
of style cluster centers.

We first explore the effect of the sizes of patches on quality en-
hancement. Based on the EyeQ dataset and considering the sizes
of lesions and artifacts, we report the quality enhancement per-
formance at different patch sizes in Figure 6-left. It can be found
that the best performance metrics for quality enhancement are
achieved when the patch size is 128×128. Furthermore, both over-
sized and undersized patches result in degraded performance of
image enhancement. The reason is that the number of high-/low-
quality patches is affected by the size of the patches. When the
size of patches changes from 128×128 to 64×64, the number of
high-quality patch-wise images increases. This may lead to more
incorrect quality assessment results for the rule-based quality as-
sessment framework. In contrast, when the size of patches changes
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from 128×128 to 256×256, the performance of DASQE degrades
with the reduction in the number of high-quality patches.

Figure 6: Comparison of low-quality fundus image enhance-
ment results based on the different patch sizes (left) and
different number K of style cluster centers (right).

In addition to the patch size, we also explore the intrinsic relation-
ship between the number of style cluster centers and low-quality
image enhancement as shown in Fig 6-right. We observe that the
proposed method achieves the best performance when the number
of cluster centers is set to 7. More specifically, 1) when the number
of the style cluster centers is set from [4, 6], the clustering happens
to overlap, which leads to inconsistent styles of patches in the target
style domain. 2) when the number of style cluster centers exceeds 7,
there are prominent outlier points in the clustering results, which
increases the complexity of optimizing for style disentanglement.

Table 4: Quantitative results for image enhancement onEyeQ.

Methods
Disentanglement Full-reference Non-reference

Quality Style PSNR ↑ SSIM ↑ FIQA ↑ IS ↑ NIQE ↓

DASQE % " 16.32 0.768 0.372 1.37 6.45
DASQE " % 19.24 0.832 0.475 1.51 5.42
DASQE " " 28.32 0.915 0.683 1.76 4.13

Figure 7: The effect of the different disentanglement
branches for the patch-wise image quality enhancement.

To investigate the effectiveness of multiple feature disengage-
ment for image quality enhancement, we compare the proposed
method with its two variants, respectively. Quantitative results
are shown in Table 4. When the quality disengagement branch

is removed, the performance metrics PSNR/SSIM for the quality
enhancements decrease to 16.32/0.768 on the EyeQ dataset. This re-
veals that the method fails to effectively improve the quality of the
fundus image. When we remove the style disengagement branch
and keep the quality disengagement branch, the PSNR also drops
to 19.24 on EyeQ dataset. Our results suggest that the simultane-
ously disengagement of both quality and style features is critical
for improving the quality of the fundus image. To demonstrate the
effectiveness of the different disengagement branches more intu-
itively, we also further visualize some patch-wise fundus images in
Figure 7.

As shown in the 2nd row in Figure 7, only the style-related
disentanglement branch is incapable of enhancing the quality of
the images. For example, the retinal vessels of patch-wise images
do not appear clearer by introducing style disentanglement. The
noticeable blurring of patches is also not eliminated. From the 3rd
row in Figure 7, we can observe that although w/o Style is able
to transform general knowledge from low-quality patch domains
to high-quality patch domains, there exist a large style gap for
the enhanced patch-wise images, which is also detrimental to the
quality enhancement of fundus images.

5 CONCLUSION
In this work, we propose a reference-free domain adaptationmethod
to extend a self-supervised learning framework to the quality en-
hancement task. Our approach is the first to address the medical
fundus image quality enhancement problem from a complete self-
supervised learning perspective. By combining the strengths of
self-supervised learning and domain adaptation, the proposed ap-
proach not only significantly improves the state-of-the-art results in
fundus image quality enhancement on multiple benchmark datasets
but also effectively aligns the illumination style of the fundus im-
ages. Herein, we focus on this more challenging and more widely
applicable approach. The results show that our DASQE framework
can produce high-quality fundus images of better generalizability
and robustness compared to state-of-the-art quality improvement
methods on the various image analysis tasks. We strongly believe
that the presented line of research is worth pursuing further.
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A APPENDICES
A.1 Clinical Image Applications and Analysis

Figure 8: Visualization of vessel segmentation (row 2) and
heatmap (row 3) on low-quality images and enhanced images.
(a) Low-quality image, (b) cofe-net, (c) StillGAN, (d) I-SECRET,
(e) DASQE, and (f) Ground Truth.

Figure 9: Visualization of lesion(HEs) segmentation (row 2)
and heatmap (row 3) on low-quality images and enhanced
images. (a) Low-quality image, (b) cofe-net, (c) StillGAN, (d)
I-SECRET, (e) DASQE, and (f) Ground Truth.

Table 5: DR grading, lesion/vessel segmentation evaluation.

Methods
Messidor

DR Grading
DDR

Lesion Seg.
DRIVE

Vessel Seg.

Acc Kappa IoU DSC IoU DSC

Low-quality image 0.681 0.657 0.413 0.539 0.483 0.678

cofe-net [34] 0.704 0.687 0.486 0.605 0.547 0.741
cGAN [20] 0.731 0.712 0.519 0.652 0.568 0.762
I-SECRET [5] 0.735 0.718 0.512 0.648 0.573 0.764
CutGAN [32] 0.717 0.694 0.497 0.625 0.558 0.746
Cycle-CBAM [46] 0.701 0.682 0.493 0.617 0.553 0.747
StillGAN [31] 0.724 0.706 0.504 0.634 0.562 0.758

DASQE (Ours) 0.748 0.736 0.537 0.664 0.586 0.782

To investigate the effects of the DASQE on downstream medi-
cal image analysis tasks, we present a series of visual comparison
results in Figure 8 & 9 and Table 5, including vessel/lesion segmen-
tation and DR grading tasks.

Vessel segmentation: For computer-aided diagnosis of ophthalmic
diseases, the precise segmentation of retinal vessels from fundus
images is an important prerequisite. Such as, in proliferative di-
abetic retinopathy (PDR), the number of neovascularisations is a
key indicator to reflect its severity. For the vessel segmentation of
fundus images, we test CE-Net pre-trained on DRIVE dataset for
vessel segmentation on the enhanced images of proposed and com-
parable methods. As shown in Figure 8, we visualize some cases of
vessel segmentation. As can be seen that CE-Net can capture more
fine-grained vessel segmentation results of the enhanced fundus
images obtained by our proposed method DASQE. Moreover, we
also report quantitative vessel segmentation results in Table 5.
Lesion segmentation: In non-proliferative diabetic retinopathy
(NPDR), the number of retinal hemorrhages (HEs) is an important
indicator of disease severity. To investigate the effect of the pro-
posed method on the segmentation of small lesions (HEs), we test
UNet3+ pre-trained on the DDR dataset for HEs segmentation on
enhanced images. The segmentation results of HEs are shown in
Figure 9 and Table 5. Our method can produce enhanced images
with more clear structures of clinical lesions, which can be precisely
identified by ophthalmologists or automated diagnostic systems.
Disease grading: To verify the influence of the quality improve-
ment by our method on the disease grading, we further conduct
the comparison among the enhanced quality images by competing
methods using a DenseNet-121 as the grading model. The DR grad-
ing results are shown in Table 5. We observe that our method is the
most beneficial for the disease grading of the classification model.
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