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ABSTRACT
In our paper, we deal with the challenge of extending
automatically the classic image indexing by visual relationship
features. The visual relationship features are discovered
automatically from images. They contribute to make more
efficient the content-based indexing. More particularly, we
develop an advanced content-based indexing articulated around
the following notions : - classic indexing, - clustering algorithm, -
visual feature book and relationship qualification.
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1. INTRODUCTION
In large image databases, finding images that contain semantic
content, such as flowers during autumn or goals during football
plays, is not simple. To do so, images should be well annotated by
experts when inserted in the database. So, the quality of retrievals
depends on the quality of the manual annotations. This solution
characterizes classic information retrieval systems initiated by
[Moo 51], and developed by [Sal 68], [Rij 79], and others.
However, manual annotations tend to be incomplete and
inconsistent, and they do not allow visual content-based image
indexing and retrieval. Visual information systems, also known by
content-based indexing and retrieval systems, such as in [Dje 00],
[Jai 98] and others, overcome some of these shortcomings. The
index is, generally, created automatically, and the final users have
the possibility to formulate content-based queries. In spite of these
appreciable advantages, the automatic indexing, which is the most
important advantage of visual information systems, support weak
semantic description, and therefore weak semantic queries. So
finding images that contain flowers during autumn remains a very

difficult query.

Content-based image indexing associated to knowledge discovery
may be seen as a new way of thinking and regarding retrieval of
multimedia information and it opens up to a lot of new
applications which have not been possible, previously. For image
archives the new possibilities given by content-based image
indexing and knowledge discovery lies in the ability to perform
"advanced queries-by-example’’, meaning that we can present an
image of an object, pattern, texture, etc., and fetch the images in
the database that most resemble the example of the query. For
image databases the new possibilities lie in the ability to access
efficiently and directly selected images of the database.

Our paper deals with the following challenge : how do we build
automatically the semantic content of images, based on basic
content descriptions ? We believe that discovering hidden
relations among basic features contributes to extract semantic
descriptions useful to make the content-based image retrieval
more efficient. In our case, the relationship discovery are held into
two important steps : symbolic clustering based on the new
concept of visual feature book and relevant relationships
discovery.
The originality of our work concerns the following points :
• the definition of a new algorithm of global/local clustering

and classification, based on : - visual quantization, powerful
image descriptors and - suitable similarity measures,

• the creation of an efficient feature (texture, color) book
which is the most representative of database image features,

• the power qualification of the relationship among visual
features. They are composed of conditional probability and
implication intensity measures,

• the extension of the classic indexing by relevant relationships
that are automatically discovered.

The implementation of these notions together in the same
framework constitute our advanced content-based indexing which
is the scope of the paper.
We organize the paper as follow : in section 2, we describe the
classic and advanced content based indexing and retrieval. We
answer to the following questions : how images are searched in
image database. We will not focus on speed data structures
necessary to support the index, however, we will focus on the
knowledge necessary to advanced content-based retrieval. In
section 3, we present how the content of images are extracted and
represented, how descriptors of images may be used to discover



relations between descriptors, and how the discovered relations
are useful to content-based image retrieval. In section 4, we
describe some experiment results.

2. YOU SAID CONTENT-BASED IMAGE
INDEXING AND RETRIEVAL ?

The content-based image indexing and retrieval architecture
is composed of three important components : extraction,
representation and retrieval. Extraction and representation
components constitute the heart of the architecture, together, they
constitute the indexing component. The extraction component
extract, automatically or semi-automatically, regions in images
and compute features such as color, texture and shape of these
regions. The whole image may constitute itself a region. The
extracted contents are represented as or transformed into suitable
models and data structures, and then stored in a persistent index.

The retrieval component constitute the eyes of the
architecture. It searches images by selecting target images or
content properties such as color, sketched shape, texture of image
regions, or combinations of these. The retrieval process computes
distances between source (example) and target features, and sorts
the most similar images.

The central question is : how to extract and represent the content
in order to make the retrieval process efficient ? Before answering
this question, we will start by presenting the classic approach, and
we will compare the benefits of the knowledge discovery to image
indexing and retrieval efficiency.

2.1 Classic indexing
Indexing responds to how the content should be extracted and
represented to allow efficient and effective search and access ?

Sequential searching of images with simple similarity
computations is quite appropriate in a small database. However,
the larger the database is, the slower the sequential approach is.
So efficiency will not be respected. Classic access structures such
as B-trees [Bay 72], K-D trees [And 85], point quadtrees [Fin 74]
and R-trees [Gut 84] have advantages and disadvantages. Point
quadtrees are simple to implement. However, there is a
complexity of both insertion and search. Furthermore, deletion in
point quadtrees is complex because finding a candidate
replacement node for the node being deleted is generally difficult.
Finally, the range retrieval in point quadtrees is time consuming.
It takes O(2√n), where n is the number of image references in the
tree. K-D-trees are very simple to implement. However, the search
and insertion complexity in k-d-tree is high. In MX-quadtrees,
range retrieval is very efficient, and the insertion, deletion and
search take time proportional to O(n). We assume that the image
(ex. map) is split up into a grid of size (2n x 2n) cells. R-trees have
been preferred over k-d trees and point quadtrees, because they
store a large number of rectangles in each node. So, they are
suitable for disk accesses by reducing the height of the tree, this
leading to fewer disk accesses. The disadvantage of R-trees is that,
in certain cases, instead of following one path in the search
process, multiple paths may be followed, because bounding
rectangles associated with different nodes may be overlapped.
Multiple paths means more disk accesses that might be compared
to disk accesses of the other quadtrees.

These representations are physical access structures, they deal
with applications that require massive amounts of storage and disk
accesses. So they concern low level representation of the access
structures. These access structures are necessary, but not enough
to access effectively image materials. They need to be completed
by high level representations (logical representation) that organize
efficiently the descriptors of images, independently of their
physical representations.

2.2 Advanced indexing
To obtain efficient access data structures, we should combine
physical and logical representations of high-dimensional features.
In our context, to effective up the content-based retrieval, we
consider semantic representations that include image class
hierarchy (images of flowers, panorama, etc.) characterized by
knowledge and access speed data structures (K-D-trees). The K-D
trees are implemented for high-dimensional features, at least
eleven-dimension color and texture attributes, and voluminous
classes. However sequential search is used for low-dimensional
features and less voluminous classes. The K-D-trees are
implemented at eleven-dimension because the color is represented
by one dimension and the texture is represented by ten dimensions
(ten couple of coefficients).   

For example, when the user asks for images that contain waterfalls
(figure 1), the system matches the user examples with the
knowledge in the form of rules. In certain case, the image may
belong to several classes, because the distance between the gravity
center of the examples and the knowledge of the image classes are
near together. In all cases, the retrieval process focuses its
matches in the sub-classes of the current ones. In the sub-class, it
triggers the same match process. When the leaf class is reached,
the physical data structure is used to find the best images. When
the number of the images in a class is low (ex. less than 100), than
the search process is limited to sequential order.

In the example presented bellow, the first images returned contain
waterfall, and the other images contain flowers. The whole images
are visually similar to the example images. This example
illustrates the « advanced query by examples » that is based on
combination of visual features (texture and color) and knowledge.
«advanced query by examples» specifies a query that means «find
images that are similar to those specified». The query may be
composed of several images. Several images accurate the quality
of retrieval. For example, Several images of a «waterfall» accurate
the description of the waterfall. This property makes possible the
refinement of retrieval based on the feed backs (results of
previous queries).

In the retrieval task (figure 2), features (colors, textures) of the
query specification are matched with the knowledge associated to
classes (ex. natural, people, industries, etc.). The suited classes are
« Natural », then the matching process focus the search on the
sub-classes of Natural : « Flowers », « Mountain », « Water »,
« Snow », etc. The knowledge associated to flowers and waterfalls
are verified, so the matching process focuses the search on the
« Flower » and « Water » classes. « Flowers » and « Water »
classes are leaves, so the matching process compares the features
of the examples with features of the image database to determine
which images are similar to the example features. The matching
task is based on computing the distance between target and source



image regions. When mixing several features, such as colors and
textures, the resulting distance is equal to the Sum taking into
account the ponderation values of the considered features. The
resulting images are sorted, the shortest distance corresponds to
the most similar images.

User’s query composed of four
examples (four images)

Sorted results

Image
results of
the user’s

query

Figure 1 : «find images that contain waterfalls».

An important advantage of the advanced indexing is the efficiency
of the content-based retrieval. When the user gives examples of
image to formulate his query, and asks "find images similar to the
examples", the system will not match the source image with all the
images in the database. It will match the source image features
with only the target image features of suited classes. If the
knowledge associated to a class is globally verified, then the
considered class is the suited one. Then, the system will focus the
search on the sub-classes of the current one. In the target classes
that contain few instances, the search is limited to sequential
accesses. Another advantage is the richness of descriptions
contained in the results of queries since the system presents both
similar images and their classes.

2.3 New architecture
The advanced approach for content-based image indexing needs
an advanced architecture. The advanced architecture extends the
classic architecture by knowledge in the form of simple rules.
Simple rules that characterize each semantic class (flowers,
natural, mountain, etc.) are automatically extracted. The classic
indexing is base exclusively on low level representations of
images and physical access structures, without any knowledge and
logical representations of the content. The rules describe
relationships between visual features (colors and textures of
images). Each set of rules associated to a class summarizes image
contents of the class. Rules contribute in the discrimination of
each class, so they represent knowledge shared by the classes.
When images are inserted in the database, it is classified

"automatically" in the class hierarchy. At the end of the
classification process, the image is inserted in a specific class. In
this case, the distance between the image and the knowledge
associated to the class is the shortest one, compared to the
distance between the image and the other classes. Otherwise, the
instantiation relationship between the image and the class, will not
be considered.

Root

Natural TransportsIndustriesPeople

Water MountainsFlowers

Classification process Classes matched with success

Snow

D4D3D2D1D11

D12

D11 ≤ D12

D1 ≤ D2 ≤ D3 ≤ D4

Figure 2 : Example of image insertion into the class hierarchy

This architecture avoids efficient retrievals and browsing through
classes. For example, the user may ask "find images similar to the
source image but only in People classes" or "find me all images
that illustrate the bird class with such colors and such shapes".

3. DISCOVERY HIDDEN RELATIONS
Based on image content description, the knowledge are
discovered. The discovered knowledge characterizes visual
properties shared by images of the same semantic classes (Birds,
Animals, Aerospace, Cliffs, etc.).
The discovery is held into two steps : symbolic clustering and
relationship discovering and validation.

1-  symbolic clustering
2-  relationship discovery and validation

In the first step, numerical descriptions of images are transformed
into symbolic form. The similar features are clustered together in
the same symbolic features. Clustering simplifies, significantly,
the extraction process. For example, in the figure presented
bellow (figure 3), the image is composed of region1 and region2.
Region1 is characterized by light red color, and region2 by water
color and water texture.

Region1

- texture : (….((ai,
bi),(ci, di))….)
10 ≥ i ≥ 0

- color : I

Region2

- color : I

- texture : (….((ai, bi),(ci, di))….)
10 ≥ i ≥ 0

Figure 3 : Original representation of the image. Numeric
representation of image B8169



Light red color is not described by a simple string, but by a color
histogram. Even if the region colors of different images of the
same class, as presented in figure 4, are similar (i.e. light red), the
histograms (numerical representation of color) associated with
them are not generally identical.

Region1

- texture : bird_texture

- color : red_light

Region2

- color : water_color

- texture : water_texture

- texture : bird_texture 

Figure 4 : Symbolic description of image B8169

/* Declaration of composition relations
between images and regions. */

is_composed_of(imageB8169, [region1,
region2]).
/* Region features declaration. A region is
usually described by texture and color */
/* text  attributes.  */

features(region1, [texture,
bird_texture], [color, red_light]]).

features(region2, [[texture,
water_texture], [color, water_color]]).
/* Image features declaration. An image is
usually described by the texture, color.  */
features(imageB8169, [[text, text1]]).

In the second step, the knowledge discovery engine automatically
determines common features between the considered images in
rule form. These rules are relationships in the form of Premise
=> Conclusion with a certain accuracy. These rules are called
statistical as they accept counter-examples.

(texture, water_texture) => (color,
water_color) (CP 100%, II 96.08%)

(texture, waterfall_texture) => (color,
white_color) (CP 100%, II 87.43%)

(texture, texture_bird) => (color,
red_light) (CP 100%, II 40.45%)

Before presenting the algorithm of discovering, we will present
how the image content (color, texture) are represented and
extracted automatically. More details about image descriptors
have been presented in [Dje 00].

3.1 Image descriptors
3.1.1 Color
The color is the first descriptor of image content. The color
feature is extracted automatically from an image or a region. In
the first step of the extraction process, based on a physical format,
the region or image color is extracted and represented in the RGB
model. Based on the RGB model, the color is transformed into
HSV model, characterized by three means H, S and V. The HSV
model is more suited than the RGB model, in which certain
ambiguities appear between colors (ex. Yellow and Green).

In the object-oriented modeling, we define a class of colors called
HSV. HSV class includes color histogram and methods (ex.
distance measures). The color of a region is represented by a
histogram of 256 colors. Each element of the histogram represents
the number of pixels that have the suited color (see figures 5, 6).
So, comparing the colors of two regions is equivalent to compute
the distance between the histogram of the target and the source
regions. Before submitting the query, the user may choice the
distance, by default quadratic distance is activated.

Design of the
region histogram

000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
000011100000000000000000000000
000011111000000000000000000000
000001111100000000000000000000
000000111111000000000000000000
000000111111110000000000000000
000000111111111100000000000000
000000011111111111000000000000
000000001111111111110000000000
000000000011111111111100000000
000000000000111111111111000000
000000000000001111111111100000
000000000000000011111111110000
000000000000000001111011111000
000000000000000000111000011110
000000000000000000001110000000
000000000000000000000011100000
000000000000000000000000111000
000000000000000000000000010000

Design of the whole
image histogram

& Database

Figure 5 : Extraction of colors.

In figure 5, the color is represented by a histogram. One histogram
represents the color of the whole image, and other histograms
represent image region colors. An image region is designed by a
binary mask. For example, the binary mask designs the image
region that characterizes the bird. The binary mask is equal to 1
inside the region, and 0 outside the region. The histogram of
colors are calculated on the basis of the binary mask and the
photo.

Image
y = histogram
of the color x

Color x

Figure 6 : Color histogram.

In figure 6, the graphic representation of the image color
histogram is displayed. For example, y is the histogram of the
color x � y = number of pixels that have the color x.

3.1.2 Texture
The texture is an important aspect of human visual perception,
and it is the second important feature extracted automatically from
image regions.
When two patterns differ only in scale, the magnified one is
coarser. The variance measures the dispersion of the difference of
gray-level with a certain distance. The contrast measures the
vividness of the texture and is a function of the gray-level



difference histogram. The directionality measures the
« peakedness » of the distribution of gradient directions in the
image. For example the region may have a favored direction. It is
not a powerful texture representation, but may be interesting for
retrieval process when mixing it with color features.

The approach, considered, implements a powerful texture
representation. Thus, we use a mathematical model which is one
of the best : Fourier model [Zah 72]. Fourier model has very
interesting advantages : - the texture can be reconstructed from the
descriptors. – it has a mathematical description rather than a
heuristic one. - And finally, the model supports the robustness of
description to translation, rotation and scale transformations. An
important contribution of our representation is our extension of
Fourier model to texture description. This extension considers the
matching process. In this extension, we consider texture(t)
composed of two functions : x(t) and y(t).
So texture(t) =(x(t), y(t)). x(t) represents the different level of gray
of x, and y(t) represents the different level of gray of y. t indicates
the different indices of the signal texture. t = 0, N-1. N is the
period of the function, and N = number of x values and y values =
length of the normalized image. So, we have two suites of
coefficients S(an, bn) and S(cn, dn) that represents Fourier
coefficients of x(t) and y(t) respectively.

x(t)

y(t)

Figure 7 : x(t), y(t)

x(t) = a0 + ∑ k=1,N an cos(2πkt/N) + bn

sin(2πkt/N)

y(t) = b0 + ∑ k=1,N cn cos(2πkt/N) + dn

sin(2πkt/N)

and

an = 2/N ∑ k=1,N x(t) cos(2πkt/N)

bn = 2/N ∑ k=1,N x(t) sin(2πkt/N)

cn = 2/N ∑ k=1,N x(t) cos(2πkt/N)

dn = 2/N ∑ k=1,N x(t) sin(2πkt/N)

Figure 8 : Fourier Coefficients formulas

We consider only eleven coefficients of Fourier that select the
lowest frequencies of the sub-band k ∈  [0-10]. In this extension,

we modify the similarity measures (Euclidean distance) in order to
consider the coefficients of the two signals x(t) and y(t), as we
will see in the following section.

3.2 Symbolic clustering algorithm
The clustering of numeric features in symbolic form raises several
problems. The first problem is that a feature may belong to one or
several symbol(s). The problem is the same for texture and color
features. The second problem is a consequence of the first one.
After the symbol creation, we can obtain two different symbols
that may be either composed of the same numerical features
(equal symbols), or composed of several symbols that differ on
only one feature. If we obtain two different symbols composed of
the same features, the system keeps only one symbol among
symbols composed of the same features. If we obtain several
symbols that differ on only one numerical feature, then, it is more
difficult to resolve. The problem is the same for the other features.
The third problem is that the system generates a symbolic feature
base bigger than the numeric feature base since the system
computes for one fact containing numeric values, several facts
containing symbolic values. The figure presents a part of a
symbolic feature and illustrates the possibility of feature fact
explosion.
To resolve these problems, we implemented a technique that
clusters numerical representation of color, texture, by using data
quantization of colors and textures, we use also the term of feature
book creation. The color and texture clustering algorithms are
similar, the difference is situated in the distance used.

3.2.1 Principle of the algorithm
The algorithm is a classification approach based on the following
observation. The scalar quantification of Lloyd developped in
1957 is valide for our vectors (color histogram, fourier
coefficients), four rate distribution and for a large variety of
distortion criteria. It generalizes the algorithm by modifying the
feature book iteratively. This generalization is known by k-means
[Lin 80]. The objective of the algorithm is to create a feature
book, based on automatic classifications themselves based on a
learning set. The learning set is composed of feature vectors of
unknown probability density. Two steps should be distinguished :

- A first step of classification that clusters each vector of the
learning set around the initial feature book that is the most similar.
The objective is to create the most representative partition of the
vector space.

- A second step of optimization that permits the correct
adaptation in a class of the feature book vector. The gravity center
of the class created in the previous step is computed.
The algorithm is reiterated in the new feature book in order to
obtain a new partition. The algorithm converges to stable position
by evolving at each iteration the distortion criteria. Each
application of the iteration of the algorithm should reduce the
mean distortion. The choice of the initial feature book will
influence the local minimum that the algorithm will achieve, the
global minimum corresponds to the initial feature book. The
creation of the initial feature book is inspired of the splitting
technique [Gra 84].
The splitting method decomposes a feature book Yk into two
different feature books Yk-ε and Yk+ε, where ε is a random vector
of weak energy, and its distortion depends of the distortion of the



splited vector. The algorithm is then applied to the new feature
book in order to optimize the reproduction vectors.

Texture learning set of length T

Texture book of length L

Clustering

Color learning set of length T

Color book of length L

Clustering

L <<< T

Figure 9 : Clustering and reduction algorithm. In our
experiments T = 30.000 and L = 256

3.2.2 Distances
The system clusters similar colors together in a symbolic form by
using a suitable distance. In our case, for the color, we implement
the quadratic distance which is one of the most accurate distances.

[ ]
                or D H I H I A H I D H I a h i h i

With  A: the similarity matrix (n n), A= a , a : weight of the similarity between the p and q bins

Q
T

Q pq
q

n

c c c c
p

n

pq pq

p p q q
( , ) ( ). .( ) ( , )= − − = −



 −





×

==
∑∑2

11

Figure 10 : Quadratic_distance definition.

This distance takes into account the color similarity between
the histogram bins by using the symmetrical similarity matrix A.
The matrix weights may be normalized to obtain 0 1≤ ≤a pq . So,

the matrix diagonal is equal to 1, since any color is identical with
itself (app=1). A coefficient apq close to 0, represents a
dissimilarity between p and q bins. For example, in QBIC, the
quadratic distance between two color histograms, is used with a
similarity matrix A whose elements are defined by [Haf 95]: aij =
(1 – dij/dmax), with dmax = maxij(dij), dij being Euclidean distance
between the color i and j in any color space. The two distributions
H and I, may also be normalized in order that 10 ≤≤

pp cc ,ih

∑∑ ==
p

c
p

c .ihand
pp

1 

D H I h iL c c
l

n

l l2
2

1
( , ) ( )= −

=
∑

Figure 11 : L2-distance or Euclidean distance definition.

This distance makes it possible to obtain satisfactory results since
it appreciates color similarity correctly. However, its major
drawback is that it is time-consuming compared to the other
distances. Euclidean distance results from the quadratic distance
where A matrix is the identity matrix (no correlation between the
histogram bins).

In our example, the light red color zones in the different images
are grouped together in the symbolic form red_light as they are
similar. Water color in not clustered in red_light, because the
distance between them is not short enough. However, it is

clustered in the symbolic form water_color shared with other
images. In the same way and based on appropriate distances, the
system clusters respectively similar shapes, similar textures
together in a symbolic form.

For the texture, we implement an adaptation of the Euclidean
distance to Fourier coefficients, we call it
« texture_Fourier_distance ». So, the matching distance between
the Fourier descriptors of the texture t’ of an image image’ and the
Fourier descriptors of the texture t of an image « image », is
triggered by computing the distance between t and t’, namely:
d(t,t’) = √(∑n=1,N (|T’n - K.|Tn|)

2), N=10, for t
and t’ textures, we have a positive constant K, and for any n ≠ 0,
|T’n| = K*|T n|, where Z n =√(|X n|2 + |Y n|2)=
√(a n 2 + b n 2 + c n 2 + d n 2)
That is to say, the textures are identical near to one geometric
transformation. The translation, scale and rotation have no effect
on the module of Fourier coefficients. K = 1/N*(
∑n=1,N(|T’n|/|Tn|)) is an estimation of K which minimizes
the error on the N (e.g. 11) first coefficients of Fourier.

3.2.3 Algorithm
Based on the learning set of length equal to T, the algorithm finds
a feature book of colors and textures of length equal to L, that are
the most representative colors and textures of image databases.

Global Clustering

FeatureBook Y
f
 = SymbolicClustering (visual

feature = VisualFeature, learning set =
LearningSet, Y

0
, T, L)

{

if the VisualFeature = color then LearningSet =
{H

1
, H

2
, H

3
, ..., H

T
}, a set of T histograms.

If VisualFeature = texture then LearningSet =
{S1, S2, ...., S

T
}, a set of T sequence of Fourier

coefficients. Y
0
 is the initial feature book with distortion D

0
 and

cardinal equal to L.

Pre-conditions : L << T

Invariant : s ≤ S=L/2

1-  Initialization : D
0 

= Distortion (Y
0
) ; E

0 
=

Entropy(Y
0
) ; s = 0 ; s = number of splitting

activated. Class
0 
= {Class

0,k
 ; k = 1, ..., L}

Classe1 Classe2

Figure 12 : Distorsion(Classe1) < Distorsion(Classe2)

While (s < S)

{

2 - s = s + 1



3 - Splitting of the VisualFeature of the feature book Y
s-1 that

support the highest apparition probability p
i
. p

i
 corresponds to

the class
s,i

 that has the maximum number of instances. The
VisualFeature of the feature book corresponds to the gravity
center of the class

s,i
. (Y

s-1,i’
, Y

 s-1,i’’
) =

splitting(Y
s-1,i

).

4 - Deletion of the VisualFeature of the feature book Y
s-1

that support the lowest apparition probability p
j
. p

j
 corresponds

to the class
s,j

 that has the minimum number of of instances.
The VisualFeature of the feature book corresponds to the
gravity center of the class

s,j
.

Each splitting is followed by a deletion, so the cardinal of the
feature book remains constant (equal to L).

5 - A local clustering with the parameter E
1
 is executed on the

class class
s,i

 on the local feature book composed of Y
s-1,i’

,
Y
s-1,i’’

 and E
1
 the stop criteria of the algorithm.

Y
s
 = Clustering(visual feature =

VisualFeature, feature book = (Y
s-1,i’

, Y
s-1,i’’

),
E
1
, learning set = class

s,i
). 

6 - A global clustering is executed on the global feature book
composed of Y

s
 with the parameter E

2. 
E
2
 is the stop criteria of

the algorithm.

Y
s
 = Clustering(visual feature =

VisualFeature, feature book = Y
s
, E

2
,

learning set = class
s
) ;

D
s 
= Distortion (Y

s
) ;

E
s 
= Entropy(Y

s
).

D
s
 < D

0
 : the distortion is reduced and H

s
 > H

0
 : the entropy is

augmented}}

Ideally, the stop criteria of the algorithm should depend of
the distortion D

s
, however, the distortion D

s
 depends of the

number of splitting.

Local clustering

FeatureBook Y
f
 = Clustering(visual feature =

VF, learning set = LS, Y
0
, Y

f
, T, L, E) 

{

Y
0
 is the initial feature book with distortion D

0
 and length equal to

L. LS is the learning set with a length is equal to L. E is the
stop criteria.

Pre-conditions : L << T

1 - Initialization : D
0 
= Distortion (Y

0
) ; s = 0 ; s =

number of splitting activated.

Do

{

2 - Based on the feature book Y
s
 = {Y

s,k
 k=1,..,L} and the

learning set LS; we extract the partition Class
s 
= {Class

s,k
 ;

k = 1, ..., L}, in which distance(x, y) is minimal.
So :

x
t
 ∈  Class

i,k
 when distance(x

t
, y

k
) ≤

distance(x
t
, y

j
) ∀  j ≠ k.

D
s
 = 1/T ∑

t=1,T 
min

Y
 distance(x

t
, y), y ∈  Y

s

if VF = texture then distance =
texture_fourier_distance, presented bellow.

if VF = color then distance =
quadratic_distance, presented bellow.

3 - Creating the optimal catalogue Y
s+1
 =

{centroid(Class
s,k
) k=1,..,L} ;

centroid(Class
s,k
) corresponds the gravity center of the

class Class
s,k

. centroid(Class
s,k
) = (1/|Class

s,k
|)*

∑ x
t
 / t : x

t
 ∈  Class

s,k
. |Class

s,k
| is the number of

instances in Class
s,k

.

4 - s = s + 1

} Until (D
s-1
 - D

s
)/D

s 
< E}

The distortion D
s
 is a positive and decreasing function.

Each iteration of the algorithm reduce the distortion. So, D
s-1
 ≥

D
s
.

The experimental results showed that the distortion values
decrease quickly compared to splitting evolution. After the quick
decreasing, the distortion values decrease very slowly.
Conversely, The entropy increase quickly compared to splitting
evolution, and then, it increases very slowly.

3.3 Relationship discovery and validation
Based on the feature book, the discovery engine is triggered to
discover the shared knowledge in the form of rules, and this
constitutes the second step the general algorithm.
Accuracy is very important in order to estimate the quality of the
rules induced. The user should indicate the threshold above which
rules discovered will be kept (relevant rules). In fact, the weak
rules are rules that are not representative of the shared knowledge.
In order to estimate the accuracy of rules, we implement two
statistical measures : conditional probability and implication
intensity. The conditional probability formula of the rule a =>
b makes it possible to answer the following question: ‘‘what are
the chances of proposition b being true when proposition a is

true ? The definition of this measure is P(b/a) = Card(A∩
B)/Card(A)
More intuitively, conditional probability allows us to estimate the
accuracy of a rule, considering the number of counter-examples.
For example, let us consider p

1
 (a => b) and p

2
 (b => a)

conditional probabilities are respectively 100% and 5.6%. So, the
rule b =>a has a lot of counter-examples. In E (universe set),
there are lots of objects that belong to B, but not to A. Conversely,
the rule a => b has no counter-example. So, objects that respect
proposition a, respect also proposition b.
Conditional probability allows the system to determine the
discriminating characteristics of considered images. Furthermore,
we completed it by the intensity of implication [Gra 82]. For
example, implication intensity requires a certain number of
examples or counter-examples. When the doubt area is reached,
the intensity value increases or decreases rapidly contrary to the
conditional probability that is linear. In fact, implication intensity
simulates human behavior better than other statistical measures
and particularly conditional probability. Moreover, implication
intensity increases with the considered population sample
representativity. The considered sample must be large enough in



order to draw relevant conclusions. Finally, implication intensity
takes into consideration the sizes of sets and consequently their
influence. For example, conditional probability of a => b is P

1

(100%) and implication intensity of a =>b is ϕ
1
 (23%) values are

very different because conditional probability does not take into
consideration the fact that proposition b is verified by lots
of objects. On the contrary, implication intensity considers that it
is not surprising that an object of A verifies proposition b
because proposition b is verified by many objects of the
considered sample.
Let A,B and E sets respectively be the sets of instances that verify
proposition a, the set of instances that verify
proposition b, and the set of all instances or the universe
set. From a theoretical point of view, implication intensity
measures the degree of statistical astonishment of

size  BA ∩ (this set contains objects that verify proposition
a and that do not verify proposition b) considering the sizes
of A, B and E sets, and assuming there is no a priori link
between A and B. The cardinals or the sizes of A and B subsets of
E are determined by the objects of the database belonging to A
and B.
The knowledge discovery engine returns the rules in the form of
Premise => Conclusion whose intensity and conditional
probability are greater than or equal to a certain threshold. For the
moment, this threshold is defined manually (ex. 90 %). Samples
of extracted rules by the prototype are (texture,
water_texture) => (color, water_color),
(texture, waterfall) => (color, white) with
respective conditional probability values of  100% and 100%, and
implication intensity values of 96.08% and 87.08 %.

3.4 Some comments
The set of induced rules corresponds to knowledge shared by
classes. This knowledge is helpful for user‘s comprehension of the
class. Extracted rules are validated when the conditional
probability and the rule intensity are greater than a special value
(i.e. 90% for conditional probability and 80% for implication
intensity). For example, (texture, bird_texture) =>
(color, red_light) has 100% conditional probability and
40.4598% implication intensity. Since the rule intensity is less
than 80%, the system will not store it. We explain this weak
measure of rule intensity by the fact that there are few examples
that respect this rule.
In our example, the searched class is characterized by a set of
rules such as  rule 1. So, if we have the ‘‘water_texture’’ texture
in an image of the class, then the region color inside the image is
red_light with 100% conditional probability and 96,08 % rule
intensity. So, during image database creation, the classification of
an image in a class is possible if the class rules, previously
extracted and validated, are globally respected. At least 50 % of
rules are respected. If not, we will  not consider the instantiation
relationship between the image and the class.
x => y has 15.3846% conditional probability and 61.79%
implication intensity, that is to say that the conditional probability
value is less than 90%. So, the system did not store this rule. We
explain this weak measure of conditional probability by the fact
that there are a lot of counter-examples of the considered rule.
(texture, waterfall) => (color, white) is a good
rule because the conditional probability value is 100% and the
implication intensity is 81.79%. This rule means that when we

have a texture that includes water, then we would have a white
region color.
In the retrieval task, when the user specifies an image (called
source image) as the basis of his query, and asks ‘‘find images
similar to the source image’’, the system will not match the source
image with all the images of the database. It will match the source
image features with all the target images of the appropriate
classes. These classes contain rules globally respected by the
source image.
For example, if we have a source image that contains a
‘‘texture_waterfall’’, but it does not globally verify the rules
associated with this concept, we can deduce the weakness of the
relationship between the source image and the class. The system
matches the source image with classes through their rules stored
in the database.

4. EXPERIMENTAL RESULTS AND
CONCLUSION
We have conducted extensive experiments of varied data sets to
measure the performance of the advanced content-based query.
The recall and precision graphic for our system are computed as
follows. References («query») of images are selected from a test
collection. A sub-set of images is selected per class (waterfalls,
fires, panorama, etc.). For each image, a knowledge content-based
query is formulated. For an image reference, we associate a
knowledge content-based query that includes visual features
(color, texture, color + texture). We also associate a classic
content-based query that uses classic indexing (there is no
knowledge integration).
To demonstrate the efficiency of the knowledge content-based
queries, the results of the advanced content-based queries are
compared with the results of queries that do not use classic
content-based queries. Since it is not possible to retrieve all
relevant images, our experiment evaluates only the first ranked
images.
Judging on the results, it is obvious that the use of knowledge
leads to improvements in both precision and recall over majority
queries tested. The average improvements of advanced content-
based queries over classic content-based queries are 23% for
precision and 17 % for recall. Precision and recall are better for
concept-based queries (queries that mix visual features and textual
descriptions with different degrees of importance) than for queries
that use only visual features such as color or shapes or textures or
textual descriptions, but not both.
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