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ABSTRACT
Spatial data mining is a process to discover interesting, po-
tentially useful and high utility patterns embedded in spatial
databases. EÆcient tools for extracting information from
spatial data sets can be of importance to organizations which
own, generate and manage large spatial data sets. The cur-
rent approach tow ards solving spatial data mining problems
is to use classical data mining tools after \materializing"
spatial relationships. Ho w ever, the k ey property of spatial
data is that of spatial autocorrelation. Lik e temporal data,
spatial data values are inuenced by values in their immedi-
ate vicinit y. Ignoring spatial autocorrelation in the modeling
process leads to results which are a poor-�t and unreliable.
In this paper we will propose PLUMS(Predicting Locations
Using Map Similarity), a new approach for supervised spa-
tial data mining problems. PLUMS searches the space of
solutions using a map-similarity measure which is more ap-
propriate in the context of spatial data. We will show that
compared to state-of-the-art spatial statistics approaches,
PLUMS achiev es comparable accuracy but at a fraction of
the computational cost. Furthermore, PLUMS pro vides a
general framework for specializing other data mining tech-
niques for mining spatial data.

1. INTRODUCTION
Widespread use of spatial databases [14, 30, 33, 37] is lead-

ing to an increasing interest in mining interesting and useful
but implicit spatial patterns[19, 24, 12, 29]. EÆcient tools
for extracting information from geo-spatial data, the focus
of this work, are crucial to organizations which make deci-
sions based on large spatial data sets. These organizations

�This work was supported in part by the Army High Per-
formance Computing Research Center under the auspices of
Department of the Army, Army Research Laboratory Co-
operativ e agreement number D AAH04-95-2-0003/contract
number DAAH04-95-C-0008, and by the National Science
Foundation under grant 9631539.

are spread across many domains including ecology and envi-
ronment management, public safety, transportation, public
health, business logistics, travel and tourism. [2, 15, 17, 21,
28, 34, 38].
Classical data mining algorithms [1, 10] often make as-

sumptions(e.g. independent, iden tical distributions), which
violate the �rst law of Geography: everything is related to
everything else but nearby things are more related than dis-
tan t things [5, 35]. In other words, the v alues of attributes
of nearb y spatial objects tend to systematically a�ect each
other. In spatial statistics, an area within statistics devoted
to the analysis of spatial data, this is called spatial auto-
correlation [6]. Knowledge discovery techniques which ig-
nore spatial autocorrelation typically perform poorly in the
presence of spatial data. Spatial statistics techniques on
the other hand do take spatial autocorrelation directly into
accoun t [3] but the resulting models are computationally
expensive and are solved via complex numerical solvers or
sampling based Markov Chain Monte Carlo(MCMC) meth-
ods [22].
In this paper w ewill propose PLUMS(Predicting Loca-

tions Using Map Similarity), a new approach for supervised
spatial data mining problems. PLUMS searches the param-
eter space of models using a map-similarity measure which
is more appropriate in the context of spatial data. We will
show that compared to state-of-the-art spatial statistics ap-
proac hes, PLUMS achiev escomparable accuracy but at a
fraction of the cost(tw o orders of magnitude).Furthermore,
PLUMS pro vides a general framework to specialize other
data mining techniques for mining spatial data.

1.1 An Illustrative Application Domain
The availabilit y of accurate spatial habitat models is an

important tool for wildlife management, protection of crit-
ical habitat and endangered species. Since the underlying
process governing the interaction betw een wildlife and en-
vironmental factors is complex, statistical models are built
to gain some insight on the basis of data collected during
�eld work. One of authors has been involv ed in the develop-
ment of spatial model for the nesting locations of a marsh-
nesting bird species [25, 26]. We will use this application,
and the accompanying data, to explain the location predica-
tion problem and its unique aspects vis-a-vis classical data
mining.
The learning and testing datasets that w ewill be used

w as collected in 1995 and 1996 from two wetlands(Darr and
Stubble) located on the shores of Lak eErie in Ohio. For
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Figure 1: (a) Learning dataset: The geometry of the wetland and the locations of the nests, (b) The spatial
distribution of vegetation durability over the wetland, (c) The spatial distribution of water depth, and (d) The
spatial distribution of distance to open water.

the purpose of data collection, a local coordinate system
was established for each wetland and a regular grid con-
sisting of approximately 5000 cells was superimposed. The
cells of the grid had square geometries of size 5 meters by 5
meters. In each cell the values of several structural and en-
vironmental variables were recorded, including water depth,
dominant vegetation durability index and distance to open
water. These three factors play the role of most signi�cant
explanatory variables. At each cell was also recorded the
fact whether a bird-nest(red-winged blackbird) was present
or not. The presence of the nest played the role of depen-
dent variable. The geometry of the Darr wetland, locations
of the nests and spatial distribution of the explanatory vari-
ables are shown in Figure 1. The corresponding maps for
the Stubble wetland are shown in Figure 2.
One of the authors has applied classical data mining tech-

niques like logistic regression[26] and neural networks[25] to
build spatial habitat models. Logistic regression was used
because the dependent variable is binary(nest/no-nest) and
the logistic function \squashes" the real line onto the unit-
interval. The values in the unit-interval can then be inter-
preted as probabilities. They concluded that using logistic
regression the nests could be classi�ed at a 24% rate bet-
ter than random[25]. The use of neural networks actually
decreased the classi�cation accuracy[25] but led to a better
understanding of the interaction between the explanatory
and the dependent variable.
There are two important reasons why, despite extensive

domain knowledge, the results of classical data mining are
not \satisfactory". First, classical techniques, e.g. logis-

tic regression, make assumption about independent distri-
butions for the properties of each pixel, ignoring spatial au-
tocorrelation. Figure 3(a) shows a spatial distribution con-
sistent with assumption of classical regression. It looks like
\white noise" as properties of pixel are generated from in-
dependent and identical distributions. Note that the maps
of explanatory variable in Figure 1 have much more grad-
ual variation indicating high spatial autocorrelation. Figure
3(b) shows a random distribution of nest locations which is
quite di�erent from the distribution of actual nests shown
in Figure 1(a).
A second, more subtle but equally important reason is the

objective function of classi�cation measure accuracy. For
a two-class problem the standard way to measure classi�-
cation accuracy is to calculate the percentage of correctly
classi�ed objects. This measure may not be the most suit-
able for spatial data. Spatial accuracy is as important in
this application domain due to the e�ects of discretization
of continuous marsh into discrete pixels, as shown in Fig-
ure 4. Figure 4(a) shows the actual locations of nests and
4(b) shows the pixels with actual nests. Note the loss of in-
formation during the discretization of continuous space into
pixels. Many nest location barely fell within the pixels la-
beled `A' and were quite close to other pixels with label of
no-nest. Now consider two predictions shown in Figure 4(c)
and 4(d). Domain scientists prefer prediction 4(d) over
4(c), since predicted nest locations are closer on average to
some actual nest locations. Classi�cation accuracy measure
cannot distinguish between 4(c) and 4(d), and one needs
a measure of spatial accuracy to capture this preference.
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Figure 2: (a) The geometry of the wetland and the locations of the nests, (b) The spatial distribution
of vegetation durability over the wetland, (c) The spatial distribution of water depth, and (d) The spatial
distribution of distance to open water.

A simple and intuitive measure of spatial accuracy is the
Average Distance to Nearest Prediction(ADNP) from the
actual nest sites, which can be de�ned as

ADNP (A;P ) =
1

K

KX

k=1

d(Ak; Ak:nearest(P )):

Here the Ak's are the actual nest locations, P is the map
layer of predicted nest locations and Ak:nearest(P ) denotes
the nearest predicted location to Ak. K is the number of
actual nest sites. We now formalize the spatial data mining
problem by incorporating notions of spatial autocorrelation
and spatial accuracy in the problem de�nition.

1.2 Location Prediction: Problem Formula-
tion

The Location Prediction problem is a generalization of the
nest location prediction problem. It captures the essential
properties of similar problems from other domains includ-
ing crime prevention and environmental management. The
problem is formally de�ned as follows:

Given :

� A spatial framework S consisting of sites fs1; : : : ; sng
for an underlying geographic space G.

� A collection of explanatory functions fXk : S !
Rk; k = 1; : : : K. Rk is the range of possible val-
ues for the explanatory functions.

� A dependent function fY : S ! RY

� A family F of learning model functions mapping
R1 � : : : RK ! RY .

Find : A function f̂Y 2 F .

Objective : maximize similarity(mapsi2S(f̂
Y (fX1

;
: : : ; fXK ));map(fY (si)))

= (1� �) classi�cation accuracy(f̂Y ; fY ) +

(� )spatial accuracy((f̂Y ; fY )

Constraints :

1. Geographic Space S is a multi-dimensional Eu-
clidean Space 1.

2. The values of the explanatory functions, the fXk 's
and the response function fY may not be indepen-
dent with respect to those of nearby spatial sites,
i.e. spatial autocorrelation exists.

3. The domain Rk of the explanatory functions is
the one-dimensional domain of real numbers.

4. The domain of the dependent variable, RY =
f0; 1g.

The above formulation highlights two important aspects
of location prediction. It explicitly indicates that (i) the
data samples may exhibit spatial autocorrelation and, (ii)
an objective function i.e., a map similarity measure is a
combination of classi�cation accuracy and spatial accuracy.
The similarity between the dependent variable fY and the
predicted variable f̂Y is a combination of the traditional
accuracy" and a representation dependent \spatial classi�-
cation" accuracy. The regularization term � controls the

1The entire surface of the Earth cannot be modeled as a
Euclidean space but locally the approximation holds true.
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Figure 4: (a)The actual locations of nest, (b)Pixels with actual nests, (c)Location predicted by a model,
(d)Location predicted by another mode. Prediction(d) is spatially more accurate than (c).

degree of importance of spatial accuracy and is typically
domain dependent. As � ! 0, the map similarity measure
approaches the traditional classi�cation accuracy measure.
Intuitively, � captures the spatial autocorrelation dependent
in the data.
The study of nesting location of red-winged black bird [25,

26] is an instance of the location prediction problem. The
underlying spatial framework is the collection of 5mX5m
pixels in the grid imposed on marshes. Explanatory vari-
ables, e.g. water depth, vegetation durability index, dis-
tance to open water, map pixels to real numbers. Depen-
dent variable, i.e. nest locations, maps pixels to a binary
domain. The explanatory and dependent variables exhibit
spatial autocorrelation, e.g. gradual variation over space,
as shown in Figure 1 and 2. Domain scientist prefer spa-
tially accurate predictions which are closer to actual nests,
i.e, � > 0.
Finally, it is important to note that in spatial statistics the

general approach for modeling spatial autocorrelation is to
enlarge F , the family of learning model functions(see Section
2.3). The PLUMS 2 approach(See Section 3) allows exibil-
ity of incorporating spatial autocorrelation in the model, the
objective function or both. Later on we will show that re-
taining the classical regression model as F but modifying
the objective function leads to results which are comparable
to those from spatial statistical methods but incur only a
fraction of the computational costs.

1.3 Related Work and Our Contributions
Related work includes spatial statistics and spatial data

2An interesting piece of trivia is that there is actually
a PLUM bird island just o� the coast of Boston, Mas-
sachusetts.

mining.
Spatial Statistics: The goal of spatial statistics is to

model the special properties of spatial data. The primary
distinguishing property of spatial data is that neighboring
data samples tend to systematically a�ect each other. Thus
the classical assumption that data samples are generated
from independent and identical distributions is not valid.
Current research in Spatial Econometrics, Geo-statistics and
Ecological modeling [3, 23, 13] has focused on extending
classical statistical techniques in order to capture the unique
characteristics inherent in spatial data. In Section 2 we will
briey review some basic spatial statistical measures and
techniques.
Spatial Data Mining: Spatial data mining [9, 18, 19,

20, 29], a sub�eld of data mining [1, 10], is concerned with
discovery of interesting and useful but implicit knowledge
in spatial databases. Challenges in Spatial Data Mining
arise from the following issues. First, classical data min-
ing[1] deals with numbers and categories. In contrast, spa-
tial data is more complex and includes extended objects
such as points, lines, and polygons. Second, classical data
mining works with explicit inputs, whereas spatial predi-
cates (e.g. overlap) are often implicit. Third, classical data
mining treats each input to be independent of other inputs,
whereas spatial patterns often exhibit continuity and high
autocorrelation among nearby features. For example, popu-
lation density of nearby locations are often related. In the
presence of spatial data the standard approach in the data
mining community is to materialize spatial relationships as
attributes and rebuild the model with these \new" spatial
attributes [20, 19].
Our contributions: In this paper we will propose a new

framework for spatial data mining. This framework con-



sists of a combination of statistical model, a map similarity
measure along with a search algorithm and a discretization
of the parameter space. We will show that the characteris-
tic property of spatial data, namely, spatial autocorrelation,
can be incorporated in the statistical model or the objective
function. We will also conduct experiments on the \bird-
nesting" data to compare our approach with spatial statis-
tical techniques. The rest of the paper is as follows. In
Section 2 we will briey review some important spatial sta-
tistical concepts. In Section 3 we will propose PLUMS, a
new framework for spatial data mining. Experiments car-
ried out to compare PLUMS and spatial statistical methods
will be elaborated upon in Section 4. We will close in Section
5 with some comments and directions for future work.

2. BASIC CONCEPTS: MODELING SPATIAL
DEPENDENCIES

2.1 Logistic Regression Modeling
Given an n�vector y of observations and an n�m matrix

X of explanatory data, classical linear regression models the
relationship between y and X as

y = X� + �:

Here X = [1; X] and � = (�0; : : : ; �m)
t. The standard

assumption on the error vector � is that each component is
generated from an independent and and identical and nor-
mal distribution, i.e, �i = N(0; �2).
When the dependent variable is binary, as is the case in

the \bird-nest" example, the model is transformed via the
logistic function and the dependent variable is interpreted as
the probability of �nding a nest at a given location. Thus,

Prob(y = 1) = eX�

1+eX�
. This transformed model is referred

to as logistic regression.
The fundamental limitation of classical regression model-

ing is that it assumes that the sample observations are in-
dependently generated. This may not be true in the case of
spatial data. As we have shown in our example application,
the explanatory and the independent variables show a mod-
erate to high degree of spatial autocorrelation(see Figure
1). The inappropriateness of the independence assumption
shows up in the residual errors, the �i's. When the sam-
ples are spatially related, the residual errors reveal a sys-
tematic variation over space, i.e., they exhibit high spatial
autocorrelation. This is a clear indication that the model
was unable to capture the spatial relationships existing in
the data. Thus the model is a poor �t to the data. Inciden-
tally the notion of spatial autocorrelation is similar to that
of time autocorrelation in time series analysis but is more
diÆcult to model because of the multi-dimensional nature of
space. We now introduce a statistic which quanti�es spatial
autocorrelation.

2.2 Spatial Autocorrelation and Examples
There are many measures available for quantifying spatial

autocorrelation. Each have their own strengths and weak-
nesses. Here we will briey describe the Moran I measure.
In most cases the Moran's I measure (henceforth MI)

ranges between -1 and +1 and thus is similar to the classical
measure of correlation. Intuitively, a higher positive value is
indicative of high spatial autocorrelation. This implies that
like values tend to cluster together or attract each other. A

low negative value is an indication that high and low values
are interspersed. Thus like values are de-clustered and tend
to repel each other. A value close to zero is an indication
that no spatial trend (random distribution) is discernible
using the given measure. The exact de�nition of MI is given
in the Appendix.
All spatial autocorrelation measures are crucially depen-

dent on the choice and design of the contiguity matrix W.
The design of the matrix itself is predicated on determining
\what constitutes a neighborhood of inuence?" Two com-
mon choices are the four and the eight neighborhood. Thus
given a lattice structure and a point S in the lattice, a four-
neighborhood assumes that S inuences all cells which share
an edge with S. In an eight-neighborhood it is assumed that
S inuences all cells which either share an edge or a vertex.
An eight neighborhood contiguity matrix is shown in Figure
5. The contiguity matrix of the uneven lattice(left) is shown
on the right hand side. The contiguity matrix plays a crucial
role in the spatial extension of the regression model.

2.3 Predicting Locations Using Spatial Statis-
tics

We now show how spatial dependencies are modeled in the
framework of regression analysis. This may serve as a tem-
plate for modeling spatial dependencies in other data mining
techniques. In spatial regression the spatial dependencies of
the error term or the dependent variable are directly mod-
eled in the regression equation [3]. Assume that the depen-
dent values y0i are related to each other, i.e. yi = f(yj) i 6= j:
Then the regression equation can be modi�ed as

y = �Wy+X� + �:

Here W is the neighborhood relationship contiguity matrix
and � is a parameter that reects the strength of spatial de-
pendencies between the elements of the dependent variable.
After having introduced the correction term �Wy, the com-
ponents of the residual error vector � are now assumed to be
generated from independent and identical standard normal
distributions.
We will refer to this equation as the Spatial Autore-

gressive Model(SAM). Notice when � = 0 , this equation
collapses to the classical regression model. The bene�ts of
modeling spatial autocorrelation are many: (1) The resid-
ual error will have much lower spatial autocorrelation, i.e.,
systematic variation. With proper choice of W , the resid-
ual error should, at least theoretically, have no systematic
variation. (2) If the spatial autocorrelation coeÆcient is
statistically signi�cant then it will quantify the presence of
spatial autocorrelation. It will indicate the extent to which
variations in the dependent variable (y) are explained by the
average of neighboring observation values. (3) Finally, the
model will have a better �t, i.e., higher R-squared statis-
tic(See the Appendix for a dramatic example).
As in the case of classical regression, the SAM equation

has to be transformed via the logistic function for binary
dependent variables. The estimates of � and � can be de-
rived using maximum likelihood theory or Bayesian statis-
tics. We have carried out preliminary experiments using the
spatial econometrics matlab package 3 which implements
a Bayesian approach using sampling based Markov Chain

3We would like to thank James
Lesage(http://www.econ.utoledo.edu/~lesage) for mak-
ing the matlab toolbox available on the web.
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Monte Carlo(MCMC) methods [23]. The general approach
of MCMC methods is that when the joint-probability dis-
tribution is too complicated to be computed analytically,
then a suÆciently large number of samples from the con-
ditional probability distributions can be used to estimate
the statistics of the full joint probability distribution. While
this approach is very exible and the workhorse of Bayesian
statistics, it is a computationally expensive process with
slow convergence properties. Furthermore, and at least for
non-statisticians, it is very diÆcult to decide what \priors"
to choose and what are the appropriate analytic expressions
for the conditional probability distributions.

3. PREDICTING LOCATIONS USING MAP
SIMILARITY(PLUMS)

Recall that we proposed a general problem de�nition for
the Location Prediction problem, with the objective of max-
imizing \map similarity", which combines spatial accuracy
and classi�cation accuracy. In this section, we propose the
PLUMS framework for spatial data mining.

3.1 Proposed Approach: Predicting Locations
Using Map Similarity(PLUMS)

Predicting Locations Using Map Similarity(PLUMS) is
the proposed supervised learning approach. Figure 6(a)
shows the context and components of PLUMS. It takes a
set of maps for explanatory variables and a map for the
dependent variable. The maps must use a common spa-
tial framework, i.e. common geographic space and common
discretization, and produces a "learned spatial model" to
predict the dependent variable using explanatory variables.
PLUMS has four basic components, namely, a map similar-
ity measure, a family of parametric functions representing
spatial models, a discretization of parameter space, and a
search algorithm. PLUMS uses the search algorithm to ex-
plore the parameter space to �nd the parameter value tuple
which maximize the given map similarity measure. Each
parameter value tuple speci�es a function from the given
family as a candidate spatial model.
A simple map similarity measure focusing on spatial ac-

curacy for nest-location maps(or point sets in general) is the
average distance from an actual nest site to the closest pre-
dicted nest-site. Other spatial accuracy and map similarity
measures can be de�ned using nearest neighbor index [7],
principal component analysis of a pair of raster maps [31]
etc.
A special case of PLUMS using greedy search is described

in Algorithm 1. The function "�nd-A-local-maxima", takes
a seed value-tuple of parameters, a discretization of param-

parameter-value-set �nd-A-local-maxima(parameter-
value-set PVS, discretization-of-parameter-space SF,

map-similarity-measure-function
MSM, learning-map-set LMS) f

parameter-value-set best-neighbor, a-neighbor;
real best-improvement=1, an-improvement;
while(best-improvement > 0) do f

best-neighbor = PVS.get-a-neighbor(SF);
best-improvement = MSM(best-neighbor,LMS) -

MSM(PVS,LMS);
foreach a-neighbor in PVS.get-all-neighbors(SF)

do f
an-improvement = MSM(a-neighbor,LMS)

- MSM(PVS,LMS);
if(an-improvement > best-improvement) f

best-neighbor = a-neighbor; best-
improvement = an-improvement;

g
g
if (best-improvement > 0) then PVS=best-

neighbor;
g /* found a local maxima in parameter space */
return PVS;

g

Algorithm 1: greedy-search-algorithm

eter space, a map-similarity function and a learning data
set consisting of maps of explanatory and dependent vari-
ables. It evaluates the parameter-value tuple in the imme-
diate neighborhood of current parameter-value tuple in the
given discretization. An example of a current parameter-
value tuple in a red-winged-black bird application with 3
explanatory variables is (a,b,c). Its neighborhood may in-
clude the following parameter value tuples: (a+Æ,b,c), (a-
Æ,b,c),(a,b+Æ,c),(a,b-Æ,c),(a,b,c+Æ), (a,b,c-Æ) given a uniform
grid with cell-size Æ discretization of parameter space. A
more sophisticated discretization may use non-uniform grids.
PLUMS evaluates the map similarity measure on each pa-
rameter value tuple in the neighborhood. If some of neigh-
bors have higher values for the map similarity measure, the
neighbor with highest value of map similarity measure is
chosen. This process is repeated and it ends when no neigh-
bor has a higher value of map similarity measure, i.e., a lo-
cal maxima has been found. Clearly, this search algorithm
can be improved using a variety of ideas including gradi-
ent descent [4, 11] and simulated annealing [32, 36] etc.
A simple function family is the family of generalized linear
models, e.g. logistic regression [22] with or without autocor-
relation terms. Other interesting families include non-linear
functions. In the spatial statistics literature many functions
have been proposed to capture the spatial autocorrelation
property. For example, Econometricians use the family of
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Figure 6: (a)The framework for the location prediction process. (b)Space of Design Choice for PLUMS

spatial autoregression models [3, 23], Geo-statisticians [17]
use Co-Kriging and Ecologists [16] use the Auto-Logistic
models. Table 1 summarizes several special cases of PLUMS
by enumerating various choices for the four components.
The design space of PLUMS is shown in Figure 6(b).

Each instance of PLUMS is a point in the four dimensional
conceptual space spanned by similarity measure, family of
functions, discretization of parameter space and external search
algorithm. For example, the PLUMS implementation la-
beled A in Figure ?? corresponds to the spatial accu-
racy measure(ADNP), generalized linear model(for the fam-
ily of functions), a greedy search algorithm and uniform dis-
cretization.

4. EXPERIMENT DESIGN AND EVALUA-
TION

Goals: The goals of the experiments are (1) to evaluate the
e�ects of including the spatial autoregressive term, �Wy, in
the logistic regression model and (2) compare the accuracy
and performance of an instance of PLUMS with spatial re-
gression models. The experimental setup is shown in Figure
7. The 1995 Darr wetland data was used as the learning set
to build the classical and spatial models. The parameters
of the classical logistic and spatial regression model were
derived using maximum likelihood estimation and MCMC
methods(Gibbs Sampling). The two models were evaluated
based on their ability to predict the nest locations on the
test data. Classi�cation accuracy, which we describe next,
was used to evaluate the two models. Then we compare
these two models with PLUMS in terms of performance and
spatial accuracy(ADNP).
Metric of Comparison for Classi�cation accuracy:

Classi�cation accuracy achieved by classical and spatial lo-
gistic regression are compared on the test data. We use
the Receiver Operating Characteristic(ROC) [8] curves to
compare classi�cation accuracy. ROC curves plot the rela-
tionship between the true positive rate(TPR) and the false
positive rate(FPR). For each cut-o� probability b, TPR(b)
measures the ratio of the number of sites where the nest is
actually located and was predicted divided by the number of

actual nest sites. The FPR measures the ratio of the number
of sites where the nest was absent but predicted divided by
the number of sites where the nests were absent. The ROC
curve is the locus of the pair (TPR(b); FPR(b)) for each
cut-o� probability. The higher the curve above the straight
line TPR = FPR the better the accuracy of the model.

Metric of Comparison for Spatial Accuracy Spa-
tial accuracy achieved by PLUMS, classical regression and
SAM(Spatial Autoregressive Model) are compared based on
ADNP(Average Distance to Nearest Prediction), which is
de�ned as

ADNP (A;P ) =
1

K

KX

k=1

d(Ak; Ak:nearest(P )):

Here the Ak's are the actual nest locations, P is the map
layer of predicted nest locations and Ak:nearest(P ) denotes
the nearest predicted location to Ak. K is the number of
actual nest sites. The units for ADNP is the number of
pixels in the experiment.
Result of Comparison between Classical and Spatial
Regression (SAM) models: We use the 1995 Stubble
wetland data to make comparison between the two models.
The result is shown in Figure 8. Clearly, by including a
spatial autocorrelation term, there is substantial and sys-
tematic improvement for all levels of cut-o� probability on
both the learning data(1995 Darr) and test data(1995 Stub-
ble). However, the performance of SAM model is very slow
and not scalable. The choice of contiguity matrix w is non-
trivial, but very crucial to SAM model.
Result of comparison between PLUMS, Classical re-
gression and SAM models: We carried out experiments
to compare PLUMS with classical and spatial regression
models. For this we also used the 1995 data acquired in the
Stubble wetland. The results of our experiments are shown
in Table 2. From the experiments it is clear that PLUMS(A)
achieves similar spatial accuracy on test datasets as SAM,
while it needs order of magnitude less computational time
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to learn.
The run-time for learning location prediction models for

the three methods are shown in Table 2. We note that spa-
tial regression takes two orders of magnitude more computa-
tion time relative to PLUMS using the public domain code
[23] despite the sparse matrix techniques [27] used in the
code.
Figures 9(a) is the ROC curves for the three models built

using the Darr learning data and Figure 9(b) is the ROC
curve for the Stubble test data. It is clear that by using
spatial regression resulted in better predictions at all cut-
o� probabilities relative to PLUMS(A), a simple and naive
implementation of PLUMS. Alternative smarter implemen-
tations of PLUMS enumerated in Figure ?? need to be
explored to close the gap.

5. FUTURE WORK AND CONCLUSION
In this paper we have proposed PLUMS(Predicting Loca-

tions Using Map Similarity), a framework for spatial data
mining. We have shown how spatial autocorrelation, the
characteristic property of spatial data can be incorporated
in the PLUMS framework. When compared with state-of-
the-art spatial statistics method in predicting bird-nest loca-
tions, PLUMS achieved comparable spatial accuracy while
incurring only a fraction of the cost. Furthermore, PLUMS
provides a template for specializing other data mining tech-
niques for spatial data.
Our future plan is to bring in other data mining tech-

niques, including clustering and association rules, within the
PLUMS framework. We also plan to investigate other search
algorithms , new map-similarity measures and non-uniform
parameter spaces and determine their dominance zones.

110,000 draws for Gibbs sampling, 1000 burn-outs
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8. APPENDIX:SPATIAL AUTOCORRELA-
TION

8.1 Moran’s I measure
There are many measures available for quantifying spatial

autocorrelation. Each have their own strengths and weak-
nesses. The two most well known measures are Moran's I
and Geary's C measure. Here we will briey describe the
Moran I measure.
In most cases the Moran's I measure (henceforth MI)

ranges between -1 and +1 and thus is similar to the classical
measure of correlation. Intuitively, a higher positive value is
indicative of high spatial autocorrelation. This implies that
like values tend to cluster together or attract each other. A
low negative value is an indication that high and low val-
ues are interspersed. Thus like values are de-clustered and
tend to repel each other. A smooth surface will have a high
spatial autocorrelation and a chessboard-like surface a high
negative spatial autocorrelation. A value close to zero is
an indication that no spatial trend (random distribution) is
discernible using the given measure.
The formula for MI is

MI =
n

Pi=n

i=1

Pj=n

j=1 Wij

�

Pi=n

i=1

Pj=n

j=1 Wij(xi � �x)(xj � �x)
Pi=n

i=1 (xi � �x)2

where n is the number of data points, x0is are the data
values, �x is the mean and W is the design or contiguity
matrix. All spatial autocorrelation measures are crucially
dependent on the choice and design of the contiguity matrix
W.

8.2 Summary of different methods
We summarized all the methods that have been used to

build the bird habitat model in Table 3.

8.3 Example of including the spatial autore-
gressive term
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Figure 10: (a)Crime data set in 49 neighborhoods in Columbus Ohio [3],where number of crime incidents is
dependent variable, and the explanatory variables include mean income and mean house value.(b)CoeÆcient
of determination(R2) and Moran I results of this data set via ordinary regression model and Spatial Auto
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PLUMS Component Choices
Component Choices

Map similarity avg. distance to nearest prediction from actual, nearest neighbor index, ...
Search algorithm greedy, gradient descent, simulated annealing, ...
Function family generalized linear(GL) (logit, probit), non-linear, GL with autocorrelation
Discretization of parameter space Uniform, non-uniform, multi-resolution, ...

Table 1: PLUMS Component Choices

Data set PLUMS Classical SAM
Learning spatial accuracy 16.90 47.16 13.96
Testing spatial accuracy 19.19 41.43 19.30

Learning Run-time(Seconds) 80 10 19420 1

Table 2: Learning time and spatial accuracies for learning and test data set

Method Model Spatial Dependent Accuracy Solution
Name Type AC Var. Type Measure Procedure

Linear Linear No Numeric Total Square Closed Form
Regression Error(TSE)
Neural NonLinear No Numeric/ TSE Gradient Descent

Networks Categorical Back-Propagation
Probit Gen. No Binary TPR/FPR Gradient Descent

Linear
Logit Gen. No Binary TPR/FPR Gradient Descent

Linear
SAM + Gen. Yes Binary TPR/FPR ML/EM/Gibbs
Probit Linear

Table 3: Di�erent methods and their characteristics that have been used for building the bird habitat model.
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