
Chapter 6
Negative Association Rules

Luiza Antonie, Jundong Li and Osmar Zaiane

Abstract Mining association rules associates events that took place together. In
market basket analysis, these discovered rules associate items purchased together.
Items that are not part of a transaction are not considered. In other words, typical
association rules do not take into account items that are part of the domain but that
are not together part of a transaction. Association rules are based on frequencies and
count the transactions where items occur together. However, counting absences of
items is prohibitive if the number of possible items is very large, which is typically
the case. Nonetheless, knowing the relationship between the absence of an item and
the presence of another can be very important in some applications. These rules are
called negative association rules. We review current approaches for mining negative
association rules and we discuss limitations and future research directions.

Keywords Negative association rules

1 Introduction

Traditional association rule mining algorithms [11] have been developed to find pos-
itive associations between items [4, 9, 26, 14]. Positive associations are associations
between items existing in transactions (i. e. items that are present and observed). In
market basket analysis, we are generally interested in items that were purchased, and
particularly in items purchased together. The assumption is that items that appear in
transactions are more important than those that do not appear. As opposed to positive
associations, we call negative associations, associations that negate presence.
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In other words, negative association rules are rules that comprise relationships
between present and absent items. Indeed, items that are not purchased when others
are can be revealing and certainly important in understanding purchasing behaviour.
The association “bread implies milk” indicates the purchasing behaviour of buying
milk and bread together. What about the following associations: “customers who buy
Coke do not buy Pepsi” or “customers who buy juice do not buy bottled water”?
Associations that include negative items (i. e. items absent from the transaction)
can be as valuable as positive associations in many applications, such as devising
marketing strategies. Aggarwal and Yu [1] discuss some of the weaknesses and the
computational issues for mining positive association rules. They observe that current
methods are especially unsuitable for dealing with dense datasets, which is exactly
the case when one wants to mine negative association rules.

The expensive computation part of association rule mining is the phase enumer-
ating the frequent itemsets (i. e. a set of items). This enumeration takes place in a
search space of size 2k with k being the number of unique items in the data collection.
Focusing on only positive associations significantly reduces this prohibitive search
space since we only need to count the observed items in the transactions. More-
over, putting the attention on items present in transactions limits the enumeration
of relevant itemsets to a depth dictated by the largest available transaction. These
advantageous stratagems cannot be used if absent items are also considered.

Although interesting and potentially useful, the discovery of negative association
rules is both a complex and computationally expensive problem. We consider a
negative association rule either a negative association between two positive itemsets
or an association rule that contains at least a negative item in the antecedent or
consequent. The mining of negative association rules is a complex problem due to the
increase in items when negative items are considered in the mining process. Imagine
a transaction in market basket analysis where a customer buys bread and milk.
When mining for positive association rules only those two items are considered (i.e.
bread and milk). However, when negative items are considered (i.e. items/products
not present in a basket/transaction) the search space increases exponentially because
all the items in the collection, although not present in the transaction have to be
considered. Not only is the problem complex, but also large numbers of negative
patterns are uninteresting. The research of mining negative association patterns has
to take into consideration both the complexity of the problem and the usefulness of
the discovered patterns.

2 Negative Patterns and Negative Association Rules

Formally, association rules are defined as follows: Let I = {i1, i2, . . .im} be a set of
items. The total number of unique items is m, the dimensionality of the problem.
Let D be a set of transactions, where each transaction T is a set of items such that
T ⊆ I. Each transaction is associated with a unique identifier T ID. A transaction
T is said to contain X, a set of items in I, if X ⊆ T . X is called an itemset.
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Table 6.1 Transactional
database-positive and
negative items

TID Original TD Augmented TD

1 A,C,D A, ¬B, C, D, ¬E

2 B,C ¬A, B, C, ¬D, ¬E

3 C ¬A, ¬B, C, ¬D, ¬E

4 A,B,E A, B, ¬C, ¬D, E
5 A,C,D A, ¬B, C, D.¬E

Definition 1 (Association Rule) An association rule is an implication of the form
“X ⇒ Y ”, where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅.

Definition 2 (Support) The rule X ⇒ Y has a support s in the transaction set D if
s% of the transactions in D contain X ∪ Y . In other words, the support of the rule is
the probability that X and Y hold together among all the possible presented cases.

Definition 3 (Confidence) The rule X ⇒ Y holds in the transaction set D with
confidence c if c% of transactions in D that contain X also contain Y . In other words,
the confidence of the rule is the conditional probability that the consequent Y is true
under the condition of the antecedent X.

The problem of discovering all association rules from a set of transactions D
consists of generating the rules that have a support and confidence greater than given
thresholds.

Definition 4 (Negative Item and Positive Item) A negative item is defined as
¬ik , meaning that item ik is absent from a transaction T . The support of ¬ik is
s(¬ik) = 1 − s(ik). ik , a positive item, is an item that is present in a transaction.

Definition 5 (Negative Association Rule) A negative association rule is an impli-
cation of the form X ⇒ Y , where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅ and X and/or Y

contain at least one negative item.

Definition 6 Negative Associations between Itemsets A negative association be-
tween two positive itemsets X,Y are rules of the following forms ¬X ⇒ Y , X ⇒ ¬Y

and ¬X ⇒ ¬Y .
Table 6.1 shows a toy transactional database with 5 transactions and 5 items. “Orig-

inal TD” column shows the items present in each transaction, while “Augmented TD”
column shows both present and absent items.

Mining association rules from a transactional database that contains information
about both present and absent items is computationally expensive due to the following
reasons:

1. The number of items in the transactional database swells when their negative
counterparts are added to a transactional database. The maximum number of
patterns that can be found in a transactional database with d items is 2d − 1. The
number of items in the “Original TD” in Table 6.1 is n = 5. Even for the small set
in Table 6.1, the number of itemsets jumps dramatically from 31 to 1023 when
the negative items are added.
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Table 6.2 Example 1 data CM ¬CM
∑

row

SM 20 60 80
¬SM 20 0 20∑

col 40 60 100

2. The length of the transactions in the database increases dramatically when nega-
tive items are considered. Picture the length of the transaction in a market basket
analysis example where all products in a store have to be considered in each
transaction. For example, to a basket where bread and milk are bought (i.e. milk
and bread are the positive items), all the other products in the store become part
of the transaction as negative items.

3. The total number of association rules that can be discovered when negative items
are considered is 5d − 2 × 3d + 1. A detailed calculation for the formula can be
found in [18]. The number of association rules for positive items in a transactions
is 3d − 2d+1 + 1. For our small example, it means that we can find up to 180
positive rules and up to 2640 when the negative items are considered as well.

4. The number of candidate itemsets is reduced when mining positive association
rules by the support based pruning. This property is no longer efficient in a
transactional database that is augmented with the negative items. Given that the
support of a negative item is s(¬ik) = 1− s(ik), either the negative or the positive
item will have a big enough support to pass the minimum support threshold.

Given the reasons above, the traditional association rule mining algorithms can not
cope with mining rules when negative items are considered. This is the reason new
algorithms are needed to efficiently mine association rules with negative items. Here
we survey algorithms that efficiently mine some variety of negative associations from
data.

3 Current Approaches

In this section we present current approaches proposed in the literature to discover
negative association rules. We illustrate in Example 1 how rules discovered in the
support confidence framework could be misleading sometimes and how the negative
associations discovered in data can shed a new light on the discovered patterns.

Example 1 Let us consider an example from market basket data. In this example
we want to study the purchase of cow’s milk (CM) versus soy milk (SM) in a grocery
store. Table 6.2 gives us the data collected from 100 baskets in the store. In Table 6.2
“CM” means the basket contains cow’s milk and “¬ CM” means the basket does not
contain cow’s milk. The same applies for soy milk.

In this data, let us find the positive association rules in the “support-confidence”
framework. The association rule “SM ⇒ CM” has 20 % support and 25 % confidence
(support(SM ∧ CM)/support(SM)). The association rule “CM ⇒ SM” has 20 %
support and 50 % confidence (support(SM ∧ CM)/support(CM)). The support is
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considered fairly high for both rules. Although we may reject the first rule on the
confidence basis, the second rule seems a valid rule and may be considered in the
data analysis. However, when a statistical significance test is considered, such as
statistical correlation between the SM and CM items, one would find that the two
items are actually negatively correlated. This shows that the rule “CM ⇒ SM” is
misleading. This example shows not only the importance of considering negative
association rules, but also the importance of statistical significance of the patterns
discovered.

The problem of finding negative association rules is complex and computationally
intensive as discussed in Sect. 2. A common solution to deal with the complexity
is to focus the search on special cases of interest. Some techniques employ domain
knowledge to guide the search, some are focusing on a certain type of rules of in-
terest, while others are considering interestingness measures to mine for statistically
significant patterns. We give more details about some approaches that have been
proposed in the literature for mining association rules with negations.

Brin et al. [8] mentioned for the first time the notion of negative relationships in
the literature. They proposed to use the chi-square test between two itemsets. The
statistical test verifies the independence between the two itemsets. To determine the
nature (positive or negative) of the relationship, a correlation metric is used. The
negative association rules that could be discovered based on these measures are the
following: ¬X ⇒ Y , X ⇒ ¬Y and ¬X ⇒ ¬Y . One limitation for this method is
that the computation of the χ2 measure can become expensive in large and dense
datasets.

Aggarwal and Yu [2, 3] introduced a new method for finding interesting itemsets
in data. Their method is based on mining strongly collective itemsets. The collective
strength of an itemset I is defined as follows:

C(I ) = 1 − v(I )

1 − E[v(I )]
× E[v(I )]

v(I )
(6.1)

where v(I ) is the violation rate of an itemset I and it is the fraction of violations over
the entire set of transactions and E[v(i)] is its expected value. An itemset I is in a
violation of a transaction if only a subset of its items appear in that transaction. The
collective strength ranges from 0 to ∞, where a value of 0 means that the items are
perfectly negatively correlated and a value of ∞ means that the items are perfectly
positively correlated. A value of 1 indicates that the value is exactly the same as its
expected value, meaning statistical independence. The advantage of mining itemsets
with collective strength is that the method finds statistical significant patterns. In
addition, this model has good computational efficiency, thus being a good method in
mining dense datasets. This property, along with the symmetry of collective strength
measure, makes this method a good candidate for mining negative association rules
in data.

In [19] the authors present a new idea to mine strong negative rules. They combine
positive frequent itemsets with domain knowledge in the form of a taxonomy to mine
negative associations. The idea is to reduce the search space, by constraining the
search to the positive patterns that pass the minimum support threshold. When all the
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positive itemsets are discovered, candidate negative itemsets are considered based
on the taxonomy used. They are considered interesting if their support is sufficiently
different than the expected support. Association rules are generated from the negative
itemsets if the interestingness measure of the rule exceeds a given threshold. The type
of the rules discovered with this method are implications of the form A ⇒ ¬B. The
issue with this approach is that it is hard to generalize since it is domain dependant
and requires a predefined taxonomy. However, it should be noted that taxonomies
exist for certain applications, thus making this method useful. A similar approach is
described in [25].

Wu et al. [24] derived another algorithm for generating both positive and nega-
tive association rules. The negative association discovered in this paper are of the
following forms: ¬X ⇒ Y , X ⇒ ¬Y and ¬X ⇒ ¬Y . They add on top of the
support-confidence framework another measure called mininterest for a better prun-
ing of the frequent itemsets generated (the argument is that a rule A ⇒ B is of
interest only if supp(A ∪ B) − supp(A)supp(B) ≥ mininterest). “Mininterest”
parameter is used to assess the dependency between the two itemsets considered,
A and B are not independent if they satisfy the condition. The authors consider as
itemsets of interest those itemsets that exceed minimum support and minimum inter-
est thresholds. Although [24] introduces the “mininterest” parameter, the authors do
not discuss how to set it and what would be the impact on the results when changing
this parameter.

The algorithm proposed in [20, 21], named SRM (substitution rule mining), dis-
covers a subset of negative associations. The authors develop an algorithm to discover
negative associations of the type X ⇒ ¬Y . These association rules can be used to
discover which items are substitutes for others in market basket analysis. Their al-
gorithm discovers first what they call concrete items, which are those itemsets that
have a high chi-square value and exceed the expected support. Once these itemsets
are discovered, they compute the correlation coefficient for each pair of them. From
those pairs that are negatively correlated, they extract the desired rules (of the type
X ⇒ ¬Y , where Y is considered as an atomic item). Although interesting for the
substitution items application, SRM is limited in the kind of rules that it can discover.

Antonie and Zaïane [7] proposed an algorithm to mine strong positive and negative
association rules based on the Person’s φ correlation coefficient. For the association
rule X ⇒ Y , its φ correlation coefficient is as follows:

φ = s(XY )s(¬X¬Y ) − s(X¬Y )s(¬XY )√
(s(X)s(¬X)s(Y )s(¬Y ))

(6.2)

In their algorithm, itemset and rule generation are combined and the relevant rules are
generated on-the-fly while analyzing the correlations within each candidate itemset.
This avoids evaluating item combinations redundantly. For each generated candidate
itemset, all possible combinations of items are computed to analyze their correla-
tions. In the end, only those rules generated from item combinations with strong
correlations are considered. The strength of the correlation is indicated by a cor-
relation threshold, either given as input or by default set to 0.5. If the correlation
between item combinations X and Y of an itemset XY , where X and Y are itemsets,
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is negative, negative association rules are generated when their confidence is high
enough. The produced rules have either the antecedent or the consequent negated:
(¬X ⇒ Y and X ⇒ ¬Y ), even if the support is not higher than the support threshold.
However, if the correlation is positive, a positive association rule with the classical
support-confidence idea is generated. If the support is not adequate, a negative asso-
ciation rule that negates both the antecedent and the consequent is generated when
its confidence and support are high enough. They define the negative associations as
confined negative association rules. A confined negative association rule is one of
the following: ¬X ⇒ Y or X ⇒ ¬Y , where the entire antecedent or consequent is
treated as an atomic entity and the entire entity is either negated or not. These rules
are a subset of the entire set of generalized negative association rules.

In [22], authors extend an existing algorithm for association rule mining, GRD
(generalized rule discovery), to include negative items in the rules discovered. The
algorithm discovers top-k positive and negative rules. GRD does not operate in
the support confidence framework, it uses leverage and the number of rules to be
discovered. The limitation of the algorithm is that it mines rules containing no more
than 5 items (up to 4 items in the left hand side of the rule and 1 item in the right
hand side of the rule).

Cornelis et al. [10] proposed a new Apriori-based algorithm (PNAR) that exploits
the upward closure property of negative association rules that if support of ¬X

meets the minimum support threshold, then for every Y ⊆ I such that X ∩ Y =
∅, ¬(XY ) also meets the support threshold. With this upward closure property,
valid positive and negative association rules are defined in the form of C1 ⇒ C2,
C1 ∈ {X, ¬X}, C2 ∈ {Y , ¬Y }, X, Y ⊆ I, X ∩ Y = ∅, if it meets the following
conditions: (1) s(C1 ⇒ C2) ≥ minsup; (2) s(X) ≥ minsup, s(Y ) ≥ minsup; (3)
conf (C1 ⇒ C2) ≥ minconf ; (4) If C1 = ¬X, then there does not exist X′ ⊆ X such
that s(¬X′ ⇒ C2) ≥ minsup (analogously for C2). Then, the algorithm of mining
both positive and negative valid association rules is built up around a partition of the
itemset space by 4 steps: (1) generate all positive frequent itemsets L(P1); (2) for all
itemsets I in L(P1), generate all negative frequent itemsets of the form ¬(XY ); (3)
generate all negative frequent itemsets of the form ¬X¬Y ; (4) generate all negative
frequent itemsets of the form X¬Y or ¬XY . The complete set of valid positive
and negative association rules are derived after frequent itemsets are generated. No
additional interesting measures are required in this support-confidence framework.
Wang et al. [23] gave a more intuitive way to express the validity of both positive
and negative association rules, the mining process is very similar to PNAR.

MINR [15] is a method that uses Fisher’s exact test to identify item sets that do
not occur together by chance, i.e. with a statistical significant probability. Let X

and Y denote the disjoint itemsets in the antecedent and consequent part of a rule,
respectively. The probability that X and Y occur together with c times by chance is:

Pcc(c|n, s(X), s(Y )) =
(
s(X)

c

)(
n−s(X)
s(Y )−c

)
(

n

s(Y )

) (6.3)
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where n is the total number of transactions. The chance threshold is calculated
independently for each candidate itemset:

chance(n, s(X), s(Y ), p) = min

{
t |

i=t∑
i=0

Pcc(i|n, s(X), s(Y )) ≥ p

}
(6.4)

Normally, for a positive association, p-value is set to be very high (usually 0.9999),
on the other hand, for a negative association, p-value is set to be very low (usually
0.001). The whole algorithm develops in an iterative way with rule generation and
rule pruning. An itemset with a support greater than the positive chance threshold
is considered for positive rule generation, while itemset with a support less than the
negative chance threshold is considered for negative rule generation. In this way, the
algorithm discovers three different types of negative association rules in the form of
X ⇒ ¬Y , ¬X ⇒ Y and ¬X ⇒ ¬Y . The first two types X ⇒ ¬Y , ¬X ⇒ Y can be
generated from the negative itemsets if the rule X ⇒ Y satisfies the negative chance
threshold and minimum confidence threshold. On the other hand, the rules in the
form of ¬X ⇒ ¬Y are derived from the positive itemsets if they meet the positive
chance threshold and minimum confidence threshold.

Kingfisher [12, 13] is an algorithm developed to discover positive and negative
dependency rules. The dependency rule can be formulated on the basis of association
rule, that the association rule X ⇒ Y is defined as a dependency rule if P (X, Y ) �=
P (X)P (Y ). The dependency is positive, if P (X, Y ) > P (X)P (Y ); and negative,
if P (X, Y ) < P (X)P (Y ). Otherwise, the rule is an independent rule. The author
concentrated on a specific type of dependency rules, the rules with only one single
consequent attribute. It can be noticed that the negative dependency for the rules
X ⇒ Y or ¬X ⇒ ¬Y are the same as the positive dependency for the rules X ⇒ ¬Y

and ¬X ⇒ Y , therefore, it is enough to only consider the positive dependency rules
X ⇒ ¬Y or ¬X ⇒ Y . The statistical dependency of the rule X ⇒ Y , is measured
by Fisher’s exact test, the p-value, can be calculated:

pF (X ⇒ Y = y) =
min{s(XY �=y),s(¬X,Y=y)}∑

i=0

(
s(X)

s(XY=y)+i

)(
s(¬X)

s(¬XY �=y)+i

)
(

n

s(Y=y)

) (6.5)

where y ∈ {0, 1} denotes the presence or absent of Y , and n is the total number of
transactions. It can also be observed that pF (X ⇒ ¬Y ) = pF (¬X ⇒ Y ), therefore,
it is enough to consider the negative rules in the form of X ⇒ ¬Y . An important task
of rule mining is to find the non-redundant rules. Rules are considered as redundant
when they do not add new information to the remaining rules. In order to reduce
the number of discovered rules, Kingfisher focused on finding non-redundant rules.
The rule X ⇒ Y = y is non-redundant, if there does not exist any rules in the form
of X′ ⇒ Y = y such that X′ � X and pF (X′ ⇒ Y = y) < pF (X ⇒ Y = y),
otherwise, the rule is considered as redundant. However, the statistical dependency
is not a monotonic property, it is impossible to do some frequency-based pruning
as Apriori-like algorithms. A straightforward solution is to list all possible negative
rules in the form of X ⇒ ¬Y in the whole search space via an enumeration tree, and
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then calculate their pF -values to see if they are significant. The items are ordered in
an ascending order (by frequency) in the enumeration tree and the tree is traversed
by a breadth-first manner. In this way, more general rules are checked before their
specializations, therefore, it is possible that redundant specializations can be pruned
without checking. If the task is to search for the top K rules, the threshold of pF -
value, needs to be updated consistently, when a new K-th top rule is found with
a lower pF -value. However, in both cases, the size of the whole search space is
|P(I)|, where P(I) is the power set of I, it grows exponentially with the size of
attributes. In order to reduce the search space, the author fully exploits the property
of pF -value, and describes the basic branch-and-bound search by introducing three
lower bounds for the measure of pF -value, therefore, some insignificant rules can
be pruned without further checking. Apart from the three lower bounds of pF -value,
anther two pruning strategies (pruning by minimality and pruning by principles of
Lapis philosophorum) are also introduced to speed up the search.

4 Associative Classification and Negative Association Rules

Associative classifiers are classification models that use association rules discovered
in the data to make predictions [5, 16, 17]. Training data is transformed into transac-
tions and constrained association rules are discovered from these transactions. The
constraints limit the frequent itemsets to those including a class label, and limit the
rules to those with a class label as the consequent. After a pruning phase to remove
noisy and redundant rules, the remaining rules, classification rules, are used as a
learned classification model. Negative association rules have been used for associa-
tive classifiers [6] and it was shown that the performance of the classifiers improved
when negative association rules were employed in the training and the classification
process. The negative association rules generated and used in addition to the positive
rules are of the form ¬X ⇒ Y (if feature X absent then class Y) or X ⇒ ¬Y (if
feature X present then cannot be class Y), where |Y | = 1 and Y is a class label.

5 Conclusions

In this chapter we have surveyed some methods proposed in the literature for mining
association rules with negations. Although the problem of mining these types of
rules is an interesting and challenging one there is a limited body of work. None of
the existing methods find all the possible negative association rules. This is due to
the complexity and size of the problem. A user should choose the algorithm that is
most useful for the application considered. If a taxonomy is available or substitution
rules are useful, the algorithms in [19] and [20, 21] are good candidates. If a user
is interested in all the negative associations between pairs of itemsets, the methods
proposed in [24] and [7] should be considered. Another research direction that can
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be useful in some situations is the mining of top-K rules with positive and negative
items. This is investigated in [22] and [12, 13] which may be of interest to users who
want to investigate and use a limited number of rules.
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