Chapter 3 Objectives

Understand Sequential Pattern Analysis in the context of transactional data and get a brief introduction to the different algorithms for sequential pattern discovery.

Sequence of Transactions

- Association rule mining searches for relationships between items in a dataset where time is irrelevant.
- Sequential Pattern Analysis considers time (or order of transactions).

Data: sequences of evidences in time order
Target: sub-sequences that happened frequently
Sequence Pattern Examples

- Examples 1
 - 60% of customers typically rent “Star Wars”, then “Empire Strikes Back”, and then “Return of Jedi”.
 - Note: these rentals need not to be consecutive.
 - <SW>,…,<ESB>,…,<RJ>

- Example 2
 - 60% of customers buy “Fitted Sheet and flat sheet and pillow”, followed by “comforter”, followed by “drapes and ruffles”
 - Note: elements of a sequential pattern need not to be simple items.
 - <FittedSheet, FaltSheet, Pillow>, …,<Comforter>,…,<Drapes, Ruffles>

Why sequential pattern mining?

- Time or order in which actions appear or happen can be relevant in decision making.
- Many applications of sequential pattern mining
 - Customer shopping sequences (i.e., for book/video rental):
 - First buy computer, then CD-ROM, and then digital camera, within 3 months.
 - Medical treatment (e.g., symptoms and diseases)
 - Serial crime solving
 - Natural disasters (e.g., earthquakes),
 - Science & engineering processes,
 - Stocks and markets,
 - Telephone calling patterns,
 - Web access log click streams,
 - DNA sequences and gene structures, etc.

Lecture Outline

Part I: Concepts (30 minutes)
 - Basic concepts

Part II: Apriori-based Approaches (45 minutes)
 - Apriori-all
 - GSP

Part III: Pattern-Growth-based Approaches (45 minutes)
 - Free-Span
 - Prefix-Span

Sequence Database

Converts the original transaction database into a database of customer sequences.

Transaction database

- Cust1 (30)
- Cust2 (10,20)
- Cust3 (30, 50, 70)
- Cust4 (30)
- Cust5 (90)
- Cust2 (40, 60, 70)
- Cust4 (90)
- Cust5 (90)

Sequence database

- Cust1 (30)
- Cust2 (10,20)
- Cust3 (30, 50, 70)
- Cust4 (30)
- Cust5 (90)

Sort transactions:
- Customer ID = Major key
- Transaction Time = Minor key

- <a1, a2, a3> not contained in <(10,20)(30)(40,60,70)>
- <(20)(30)(40) contained in <(10,20)(30)(40,60,70)>

CID=1
CID=2
CID=3
CID=4
CID=5

1, <30, 90> 2, <(10,20), 30, (40, 60, 70)> 3, <(30, 50, 70)>
4, <(40, 70), 90> 5, <90>
What Is Sequential Pattern Mining?

• Given a set of sequences, find the complete set of frequent subsequences

A sequence database:

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
<tr>
<td>20</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
<tr>
<td>40</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
</tbody>
</table>

A sequence: <(ef)(ab)(df)c(b)>

A sequence may contain a set of items. Items within an element are unordered and we list them alphabetically.

An element may contain a set of items. Items within an element are unordered and we list them alphabetically.

A sequence database:

<table>
<thead>
<tr>
<th>SID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
<tr>
<td>20</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
<tr>
<td>40</td>
<td><(ef)(ab)(df)c(b)></td>
</tr>
</tbody>
</table>

Given support threshold min_sup = 2, (ab)c is a sequential pattern (cf. SID 10 & 30)

Sequential Pattern Mining

• Find all the frequent subsequences, i.e. the subsequences whose occurrence frequency in the set of sequences is no less than min_support

Solution – 53 frequent subsequences

Given support threshold min_sup = 2, (ab)c is a sequential pattern (cf. SID 10 & 30)

Subsequence vs. super sequence

• Given two sequences α=<a₁a₂…aₙ> and β=<b₁b₂…bₘ>
 • α is called a subsequence of β, denoted as α⊆β, if there exist integers 1≤j₁<j₂<…<jₙ≤m such that a₁⊆bⱼ₁, a₂⊆bⱼ₂,…, aₙ⊆bⱼₙ
 • β is a super sequence of α
 • A sequence s is maximal if it is not contained in any other sequence.

Sequential Patterns

• Given a set of sequences, where each sequence consists of a list of elements and each element consists of a set of items
 • user-specified min_support threshold

Solution – 53 frequent subsequences

Given support threshold min_sup = 2, (ab)c is a sequential pattern (cf. SID 10 & 30)

Subsequence vs. super sequence

• Given two sequences α=<a₁a₂…aₙ> and β=<b₁b₂…bₘ>
 • α is called a subsequence of β, denoted as α⊆β, if there exist integers 1≤j₁<j₂<…<jₙ≤m such that a₁⊆bⱼ₁, a₂⊆bⱼ₂,…, aₙ⊆bⱼₙ
 • β is a super sequence of α
 • A sequence s is maximal if it is not contained in any other sequence.
Sequence Support Count

- A sequence database is a set of tuples \(<\text{sid}, s> \).
- A tuple \(<\text{sid}, s> \) is said to contain a sequence \(\alpha \), if \(\alpha \) is a subsequence of \(s \), i.e., \(\alpha \subseteq s \).
- The support of a sequence \(\alpha \) is the number of tuples containing \(\alpha \).

<table>
<thead>
<tr>
<th>id</th>
<th>Sequence</th>
<th>(\alpha_1 = <\text{a} >)</th>
<th>support((\alpha_1)) = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(abc)(ac)(cf)></td>
<td>(\alpha_2 = <\text{a} >)</td>
<td>support((\alpha_2)) = 4</td>
</tr>
<tr>
<td>20</td>
<td><(ad)(bc)(ae)></td>
<td>(\alpha_3 = <\text{ab} >)</td>
<td>support((\alpha_3)) = 2</td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(df)(cb)></td>
<td>(\alpha_4 = <\text{a} >)</td>
<td>support((\alpha_4)) = 4</td>
</tr>
<tr>
<td>40</td>
<td><(eg)(af)(be)c></td>
<td>(\alpha_5 = <\text{a} >)</td>
<td>support((\alpha_5)) = 4</td>
</tr>
</tbody>
</table>

Counting Sequences (An example)

- A Generated Candidate Pattern:
 - \(\langle 7 \rangle \langle 3,8 \rangle \langle 9 \rangle \langle 4,5,6 \rangle \langle 8 \rangle \)
 - \(\langle 8 \rangle \langle 3,8 \rangle \langle 4,5 \rangle \langle 6 \rangle \langle 7 \rangle \)
 - \(\langle 3 \rangle \langle 4,5 \rangle \langle 8 \rangle \)

- IF Min_Sup \(\leq 50\% \) THEN \(\langle 3 \rangle \langle 4,5 \rangle \langle 8 \rangle \) is Frequent

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases.
- A mining algorithm should:
 - find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold.
 - be highly efficient, scalable, involving only a small number of database scans.
 - be able to incorporate various kinds of user-specific constraints.
- Comparison of association rules and sequence mining:
 - Mining for association rules:
 - Purpose: Discovery of frequent unordered itemsets.
 - Complexity: With \(n \) items there are \(\binom{n}{k} \) \(k \)-itemsets (sets with \(k \) items).
 - Mining for Sequential Patterns:
 - Purpose: Discovery of frequent sequences of (unordered) itemsets.
 - Complexity: With \(n \) items there are \(n^k \) sequences (sequences with \(k \) items).

Association mining algorithms discover isolated item sets (intra-event patterns). Sequence mining algorithms discover series of item sets (inter-event patterns).

Studies on Sequential Pattern Mining

- Concept introduction and an initial Apriori-like algorithm:
- GSP—An Apriori-based, influential mining method (developed at IBM Almaden):
- From sequential patterns to episodes (Apriori-like + constraints):
- Data Projection-based approaches:
 - FreeSpan (Han et al. “frequent pattern-projected sequential pattern mining” SIGKDD 2000).
- Mining sequential patterns with constraints:
Lecture Outline

Part I: Concepts (30 minutes)
• Basic concepts

Part II: Apriori-based Approaches (45 minutes)
• Apriori-All
• GSP

Part III: Pattern-Growth-based Approaches (45 minutes)
• Free-Span
• Prefix-Span

AprioriAll: The idea

• Basic method to mine sequential patterns
 – Based on the Apriori algorithm
 – Count all the large sequences, including non-maximal sequences
 – Use Apriori-generate function to generate candidate sequences: get candidates for a pass using only the large sequences found in the previous pass and make a scan over the data to find their support

AprioriAll Algorithm(1)

• AprioriAll Algorithm
 \[C_k : \text{Candidate sequence of size } k \]
 \[L_k : \text{frequent or large sequence of size } k \]

\[L_1 = \{\text{large 1-sequence}\}; \quad \text{//result of itemset phase} \]

\[\text{for } (k = 2; L_{k-1} \neq \emptyset; k++) \text{ do begin} \]
 \[C_k = \text{candidates generated from } L_{k-1}; \]
 \[\text{for each customer-sequence } c \text{ in database do} \]
 \[\text{Increment the count of all candidates in } C_k \text{ that are contained in } c \]
 \[L_k = \text{Candidates in } C_k \text{ with minimum support} \]
\[\text{end} \]

\[\text{Answer=Maximal sequences in } \bigcup \text{ } L_k; \]

• Candidate Generation --Join Step:
 \[C_k \text{ is generated by joining } L_{k-1} \text{ with itself} \]
 \[\text{Insert into } C_k; \]
 \[\text{Select } p.litemset_1, \ldots, p.litemset_{k-1}, q.litemset_{k-1} \]
 \[\text{From } L_{k-1}, p, q \]
 \[\text{Where } p.litemset_1 = q.litemset_1, \ldots, \]
 \[p.litemset_{k-2} = q.litemset_{k-2} \]

For example:
\[\{1,2,3\} \times \{1,2,4\} = \{1,2,3,4\} \]
and
\[\{1,2,4,3\} \]

AprioriAll: The big picture

Five-phase algorithm
1. Sort phase:
 Create the sequence database from transactions.
2. Large itemset phase
 Find all frequent itemsets using Apriori
3. Transformation phase:
 Do integer mapping for large itemsets
4. Sequence phase:
 Find all frequent sequential patterns using Apriori.
5. Maximal phase:
 Eliminate non maximal sequences.
Sequence Database Example

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>TransactionTime</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10,20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>40,60,70</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>30,50,70</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>40,70</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

MinSupport = 40%, i.e. 2 customers

Answer: (<30><90>) (CID1,4) (<30><40,70>) (CID2,4)

Not Answer: <30> <40><70><90> (<30><40>) (<30><70>) (<40><70>)

Why?

Sort Phases

- Sort Phases
 CID: major key, TID: secondary key

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>TransactionTime</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10,20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>40,60,70</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>30,50,70</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>40,70</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

Transformation Phase

- Transformation Phase:
 Each large itemset is then mapped to a set of contiguous integers
 (Why? to be able to compare two frequent itemsets in constant time)
 - Represent transactions as sets of large itemsets.

Litemset Phase

- Litemset Phase:
 - Find all large itemset
 (Why? Because each itemset in a large sequence has to be a large itemset.)
 - To get large (frequent) itemsets → Use Apriori algorithm
 - Need to modify support counting. (For sequential patterns, support is measured by fraction of customers.)

<table>
<thead>
<tr>
<th>Customer ID</th>
<th>TransactionTime</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10,20</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>40,60,70</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>30,50,70</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>40,70</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

MinSupport = 40%, i.e. 2 customers

Litemset Result:
{30} {40} {70} {40 70} {90}

Difference from Apriori:
- the support count should be incremented only once per customer
Sequence Phase

- **Sequence Phase:**
 - Use set of large itemsets to find the desired sequences.
 - Similar structure to Apriori algorithms used to find large itemsets.
 - Use seed set to generate candidate sequences.
 - Count support for each candidate.
 - Eliminate candidate sequences which are not large.

Maximal phase

- **Maximum Phase:**
 - Find the maximal sequences among the set of frequent sequences.
 - Delete all sequences that are sub-sequences of other frequent sequences.

```
for (k=n; k>1; k--) do
  for each k-sequence S_k do
    Delete from all subsequences of S_k
```

Summary for AprioriAll

- Algorithm wastes much time in counting non-maximal sequences, which can not be sequential patterns.
- There are other variations of AprioriAll that reduce the candidates that are not maximal: AprioriSome and DynamicSome.
- Absence of time window constraints.
- AprioriALL is the basis of many efficient algorithm developed later. GSP is among them.

GSP—A Generalized Sequential Pattern Mining Algorithm

- GSP (Generalized Sequential Pattern) mining algorithm
 - Proposed by Agrawal and Srikant, EDBT’96
- Outline of the method
 - Initially, every item in DB is a candidate of length-1
 - For each level (i.e., sequences of length-k) do

  ```
  scan database to collect support count for each candidate sequence
  generate candidate length-(k+1) sequences from length-k frequent sequences using Apriori
  repeat until no frequent sequence or no candidate can be found
  ```
- Major strength: Candidate pruning by Apriori
A Basic Property of Sequential Patterns: Apriori

- A basic property: Apriori (Agrawal & Sirkant’94)
 - If a sequence S is not frequent
 Then none of the super-sequences of S is frequent
 - E.g., <hb> is infrequent → so do <hab> and <(ah)b>

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(bd)cb(ac)></td>
</tr>
<tr>
<td>20</td>
<td><(bf)ce)b(fg)></td>
</tr>
<tr>
<td>30</td>
<td><(ah)bfabf></td>
</tr>
<tr>
<td>40</td>
<td><(be)ce)d></td>
</tr>
<tr>
<td>50</td>
<td><a(bd)bcb(ade)></td>
</tr>
</tbody>
</table>

Given support threshold min_sup = 2

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td><a></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td><c></td>
<td>4</td>
</tr>
<tr>
<td><d></td>
<td>3</td>
</tr>
<tr>
<td><e></td>
<td>2</td>
</tr>
<tr>
<td><f></td>
<td>1</td>
</tr>
</tbody>
</table>

Finding Length-1 Sequential Patterns

- Examine GSP using an example
- Initial candidates: all singleton sequences
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
<th>Cand</th>
<th>Sup</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(bd)cb(ac)></td>
<td><a></td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td><(bf)ce)b(fg)></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>30</td>
<td><(ah)bfabf></td>
<td><c></td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td><(be)ce)d></td>
<td><d></td>
<td>3</td>
</tr>
<tr>
<td>50</td>
<td><a(bd)bcb(ade)></td>
<td><e></td>
<td>2</td>
</tr>
</tbody>
</table>

Generating Length-2 Candidates

51 length-2 Candidates

Without Apriori property, 8*8+8*7/2=92 candidates
Apriori prunes 44.57% candidates

The GSP Algorithm

- Take sequences in form of <x> as length-1 candidates
- Scan database once, find F_1, the set of length-1 sequential patterns
- Let k=1; while F_k is not empty do
 - Form C_{k+1}, the set of length-(k+1) candidates from F_k;
 - If C_{k+1} is not empty, scan database once, find F_{k+1}, the set of length-(k+1) sequential patterns
 - Let k=k+1;
Generating Length-2 Candidates

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
<th><a></th>
<th></th>
<th><c></th>
<th><d></th>
<th><e></th>
<th><f></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(bd)cb(ac)</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>(bf)ce(bf)fg</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>(ah)(bf)abf</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>(be)(ce)d</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>(a(bd)bcb(ade)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

SID: 30, 50

SID: 20, 30

Length-2 Sequential Patterns

- After scanning the database to collect support count for each length-2 candidate
- There are 19 length-2 candidates which pass the minimum support threshold
 - They are length-2 sequential patterns
 - 16 of them in the pattern of <xy>
 - 3 of them in the pattern of <(xy)>

Generating Length-3 Candidates and Finding Length-3 Patterns

- Generate Length-3 Candidates
 - Self-join length-2 sequential patterns
 - Based on the Apriori property
 - <ab>, <aa> and <ba> are all length-2 sequential patterns → <aba> is a length-3 candidate
 - 54 candidates are generated
 - <bd>, <bb> and <db> are all length-2 sequential patterns → <(bd)b> is a length-3 candidate
 - 27 candidates are generated

- Find Length-3 Sequential Patterns
 - Scan database once more, collect support counts for candidates
 - 19 out of 81 candidates pass support threshold
Generating Length-3 Candidates

Example of generating \(<xyz>\) pattern for \(<ag>:\n• Need to concatenate another Length-2 frequent itemset
• Concatenating another frequent itemsets that start with \(a\) to form \(<aaa>\) and \(<aab>\):

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(bd)c(bac)></td>
</tr>
<tr>
<td>20</td>
<td><(bf)(ce)(bg)></td>
</tr>
<tr>
<td>30</td>
<td><(ab)(bf)(ab)></td>
</tr>
<tr>
<td>40</td>
<td><(be)(ce)></td>
</tr>
<tr>
<td>50</td>
<td><(ab)(df)(bade)></td>
</tr>
</tbody>
</table>

\(\text{min}_\text{sup} = 2\)

Example of generating \(<xy)z\) pattern for \(<bd>:\n• Need to concatenate another Length-2 frequent itemset
• Concatenating those patterns that start with \(b\) or \(d\) to form something like \(<a(bd)>, <b(bd), <c(bd), <d(bd), <f(bd)>
• Concatenating those patterns that starts with \(b\) or \(d\) to form something like \((bd)a>, (bd)b>, (bd)c>, (bd)d>, (bd)e>, (bd)f>

The GSP Mining Process

<table>
<thead>
<tr>
<th>Seq. ID</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(<(bd)c(bac)>)</td>
</tr>
<tr>
<td>20</td>
<td>(<(bf)(ce)(bg)>)</td>
</tr>
<tr>
<td>30</td>
<td>(<(ab)(bf)(ab)>)</td>
</tr>
<tr>
<td>40</td>
<td>(<(be)(ce)>)</td>
</tr>
<tr>
<td>50</td>
<td>(<(ab)(df)(bade)>)</td>
</tr>
</tbody>
</table>

\(\text{min}_\text{sup} = 2\)

Bottlenecks of GSP

• A huge set of candidates could be generated
 – 1,000 frequent length-1 sequences generate \(1,000 \times 1,000 = 1,000,000\) length-2 candidates!

 \[1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500\]

• Multiple scans of database
• Real challenge: mining long sequential patterns
 – An exponential number of short candidates
 – A length-100 sequential pattern needs \(10^{30}\) candidate sequences!

\[
\sum_{i=1}^{100} \binom{100}{i} = 2^{100} - 1 \approx 10^{30}
\]
Lecture Outline

Part I: Concepts (30 minutes)
 • Basic concepts

Part II: Apriori-based Approaches (45 minutes)
 • Apriori-All
 • GSP

Part III: Pattern-Growth-based Approaches (45 minutes)
 • Free-Span (Frequent Pattern-Projected Sequential Pattern Mining)
 • Prefix-Span (Prefix-Projected Sequential Pattern)

FreeSpan (Generalities)

• J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M.-C. Hsu. FreeSpan: Frequent pattern-projected sequential pattern mining. KDD'00, pages 355-359.

• A divide-and-conquer approach
 - Recursively project a sequence database into a set of smaller databases
 - Mine each projected database to find the subset of patterns

FreeSpan (example)

• Given a sequence database S and min_support = 2
 • Step 1: find length-1 sequential patterns and list them in support descending order
 - \textit{f} _list = a:4, b:4, c:4, d:3, e:3, f:3; g:1
 • Step 2: divide search space. The complete set of seq. patterns can be partitioned into 6 disjoint subsets (move down the \textit{f} _list):
 - ones only contain item a
 - ones contain item b but no items after b in \textit{f} _list
 - ones contain item c but no items after c in \textit{f} _list
 - ones contain item d but no items after d in \textit{f} _list
 - ones contain item e but no items after e in \textit{f} _list
 - ones contain item f

find subsets of sequential patterns. They can be mined by constructing projected databases and mining each recursively

\begin{tabular}{|c|c|}
\hline
\textbf{SID} & \textbf{Sequence} \\
\hline
10 & \langle a \langle ab \rangle c \langle ac \rangle d \langle cf \rangle \rangle \rangle \\
20 & \langle a \langle ad \rangle c \langle bc \rangle \langle ae \rangle \rangle \rangle \\
30 & \langle a \langle ef \rangle \langle ab \rangle \langle df \rangle d \rangle \rangle \rangle \\
40 & \langle a \langle eg \rangle \langle af \rangle \rangle \rangle \rangle \\
\hline
\end{tabular}
From FreeSpan to PrefixSpan

- **FreeSpan**:
 - Projection-based: No candidate sequence needs to be generated.
 - But, projection can be performed at any point in the sequence, and the projected sequences may not shrink much. For example, the size of f-projected database is the same as the original sequence database.

- **PrefixSpan**:
 - Projection-based.
 - But only prefix-based projection: less projections and quickly shrinking sequences.

Prefix of a Sequence

- Given two sequences \(\alpha = a_1 a_2 \ldots a_n \) and \(\beta = b_1 b_2 \ldots b_m \), \(m \leq n \).
- Sequence \(\beta \) is called a prefix of \(\alpha \) if and only if:
 - \(b_i = a_i \) for \(i \leq m-1 \);
 - \(b_m \subseteq a_m \);
 - All the items in \((a_m - b_m) \) are alphabetically after those in \(b_m \).

Given an alphabetical order of items in each itemset (element)

- \(\alpha = <a(b)c)(ac)d(cf)> \)
- \(\beta = <a, c) > \)
- \(\gamma = <(c)d(cf)> \)

Projection

- Given sequences \(\alpha \) and \(\beta \), such that \(\beta \) is a subsequence of \(\alpha \).
- A subsequence \(\alpha' \) of sequence \(\alpha \) is called a projection of \(\alpha \) w.r.t. \(\beta \) prefix if and only if:
 - \(\alpha' \) has prefix \(\beta \);
 - There exist no proper super-sequence \(\alpha'' \) of \(\alpha' \) such that \(\alpha'' \) is a subsequence of \(\alpha \) and also has prefix \(\beta \).

- \(\alpha = <a(b)c)(ac)d(cf)> \)
- \(\beta = <(bc)a> \)
- \(\alpha' = <(bc)(ac)d(cf)> \)

Postfix

- Let \(\alpha' = <a_1 a_2 \ldots a_n a_m> \) be the projection of \(\alpha \) w.r.t. prefix \(\beta = <a_1 a_2 \ldots a_{m-1} a'_m> \) (\(m \leq n \)).
- Sequence \(\gamma = <a''_m a_{m+1} \ldots a_n> \) is called the postfix of \(\alpha \) w.r.t. prefix \(\beta \), denoted as \(\gamma = \alpha/\beta \), where \(a''_m = (a_m - a'_m) \).
- We also denote \(\alpha = \beta \cdot \gamma \).

- \(\alpha' = <a(b)c)(ac)d(cf)> \)
- \(\beta = <a(b)c) > \)
- \(\gamma = <(c)d(cf)> \)
PrefixSpan – Algorithm

- **Input**: A sequence database S, and the minimum support threshold min_sup
- **Output**: The complete set of sequential patterns
- **Method**: Call PrefixSpan(\(<\),0,S)
- **Subroutine** PrefixSpan(α, l, $S|_\alpha$)

Parameters:
- α: sequential pattern,
- l: the length of α;
- $S|_\alpha$: the α-projected database, if $\alpha \neq \langle \rangle$; otherwise, the sequence database S.

PrefixSpan – Algorithm (2)

- **Method**
 1. Scan $S|_\alpha$ once, find the set of frequent items b such that:
 a) b can be assembled to the last element of α to form a sequential pattern; or
 b) $\langle b \rangle$ can be appended to α to form a sequential pattern.
 2. For each frequent item b, append it to α to form a sequential pattern α', and output α';
 3. For each α', construct α'-projected database $S|_{\alpha'}$, and call PrefixSpan(α', l+1, $S|_{\alpha'}$).

PrefixSpan - Example

1. Find length-1 sequential patterns

<table>
<thead>
<tr>
<th>id</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td><(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>20</td>
<td><(cd)(bc)(ae)></td>
</tr>
<tr>
<td>30</td>
<td><(ef)(ab)(dch)></td>
</tr>
<tr>
<td>40</td>
<td><(c)(af)ehc></td>
</tr>
</tbody>
</table>

 min_support = 2

2. Divide search space

 - $<$a$>$
 - $<$b$>$
 - $<$c$>$
 - $<$d$>$
 - $<$e$>$
 - $<$f$>$

 Partition search space into 6 subsets: ones having prefix $<$a$>$; ones having prefix $<$b$>$; ... ones having prefix $<$f$>$;

Let’s see the case of $<$d$>$

PrefixSpan – Example (2)

3. Find subsets of sequential database for $<$d$>$

 <db> <dc>

Projected database for $<$d$>$
PrefixSpan - characteristics

- No candidate sequence needs to be generated by PrefixSpan
- Projected databases keep shrinking
- The major cost of PrefixSpan is the construction of projected databases

How to reduce this cost?

Different projection methods

- **Bi-level projection**
 - reduces the number and the size of projected databases
- **Pseudo-Projection**
 - reduces the cost of projection when projected database can be held in main memory

Bi-level Projection

- Scan to get 1-length sequences
- Construct a **triangular matrix** instead of projected databases for each length-1 patterns

Bi-level projection (2)

- For each length-2 sequential pattern \(\alpha \), construct the \(\alpha \)-projected database and find the frequent items
- Construct corresponding S-matrix

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<a(bac)(ac)(cf)><c>)</td>
<td>4</td>
</tr>
<tr>
<td>(<_c)a>)</td>
<td>2</td>
</tr>
<tr>
<td>(<c>)</td>
<td>1</td>
</tr>
</tbody>
</table>

Bi-level projection (3) - optimization

- “Do we need to include every item in a postfix in the projected databases?”
- NO! Item pruning in projected database by 3-way Apriori checking

- **Support** \(<a(bd)>\) = 2
- **Support** \(<a(bc)>\) = 1
- **Support** \(<a(c)>\) = 3
Pseudo-Projection

- **Observation**: postfixes of a sequence often appear repeatedly in recursive projected databases
- **Method**: instead of constructing *physical* projection by collecting all the postfixes, we can use pointers referring to the sequences in the database as a pseudo-projection
- Every projection consists of two pieces of information: pointer to the sequence in database and offset to the postfix in the sequence

<table>
<thead>
<tr>
<th>Pointer</th>
<th>Offset</th>
<th>Postfix</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>2</td>
<td><(abc)(ac)d(cf)></td>
</tr>
<tr>
<td>s1</td>
<td>5</td>
<td><(ac)d(cf)></td>
</tr>
<tr>
<td>s1</td>
<td>6</td>
<td><(_c)d(cf)></td>
</tr>
</tbody>
</table>

Summary

- Sequential Pattern Mining is useful in many application, e.g. weblog analysis, financial market prediction, BioInformatics, etc.

- It is similar to the frequent itemsets mining, *but* with consideration of ordering.

- We have looked at different approaches that are descendants from two popular algorithms in mining frequent itemsets
 - Candidates Generation: AprioriAll and GSP
 - Pattern Growth: FreeSpan and PrefixSpan