Principles of Knowledge
Discovery in Data
Fall 2007
Chapter 2: Mining Association Rules

Dr. Osmar R. Zaiane

v“\'uﬂ,

¥

‘. A
W
i

Course Content

* Introduction to Data Mining

.
— * Sequential Pattern Analysis

Classification and prediction
Contrast Sets
Data Clustering
* QOutlier Detection
* Web Mining

* Other topics if time permits (spatial data, biomedical data, etc.)

iif.

Chapter 6 Objectives

Understand association analysis in large
datasets and get a brief introduction to the
different types of association rule mining

What Is Association Rule Mining?

- Association rule mining searches for relationships
between items in a dataset:

— aims at discovering associations between items in a

transactional database. -

{a,b,c,d...} find

combinations
of items that
{x,y,z} occur typically

together
AW,

. Rule form “Body - Head [support, confidence]”

buys(x, “bread”) = buys(x, “milk”) [0.6%, 65%)]
major(x, “CS”)"takes(“DB”) - grade(x, “A”) [1%, 5%]

Transactional Databases

Transaction Frequent itemset Rule

{bread, milk, Pop,...} ‘ (Bread, milk) ‘ Bread - milk

Automatic diagnostic

{term,, term,,...,term } ‘ (term,, termzsﬂ term2 > term25

{f1, f2,...,Ca} W (13,15 fa) W35 fa

Association Rule Mining

mining association rules Partitioning
(Agrawal et. al SIGMOD93) (Navathe et. al VLDB95)

Hash-based Multilevel AR. Generalized A.R.
(Park et. al SIGMOD95) | | (Han et. al. VLDB95) || (Srikant et. Al. VLDB95)

Quantitative A.R. Incremental mining Parallel mining
(Srikant et. al SIGMOD96) || (Cheung et. al ICDE96) | | (Agrawal et. al TKDE96)

Distributed mining

(Cheung et. al PDIS96)

A.R. with recurrent items
(Zaiane et. al ICDE’00)

FP without Candidate gen.
(Han et. al SIGMOD’00)

COFI algorithm
(El-Hajj, et. al Dawak’03)

ANJ TTany HldIly OneTs?

Spatial AR; Sequence Assouatmns AR for multlmedla AR in t|me
eri h prog efi e

Lecture Outline
Part I: Concepts (30 minutes)

- Basic concepts
Support and Confidence

- Nalive approach

Part I1: The Apriori Algorithm (30 minutes)
- Principles

- Algorithm
+ Running Example

Part 111: The FP-Growth Algorithm (30 minutes)
+ FP-tree structure

« Running Example

Part IV: More Advanced Concepts (30 minutes)
- Database layout and space search approach

- Other types of patterns and constraints

Finding Rules in Transaction Data Set
+ 6 transactions

« 5items: {Pop, Bread, Jelly, Milk, PeanutButter}

Transactions Items

T1 Bread, Jelly, PeanutButter
T2 Bread, PeanutButter

T3 Bread, Milk, PeanutButter
T4 Pop, Bread

T5 Pop, Milk

T6 Bread, Milk

« Searching for rules of the form XY, where X and Y are sets
of items
— e.g. Bread -2 Jelly; Bread, Jelly - PeanutButter

 Design an efficient algorithm for mining association rules in
large data sets

» Develop an effective approach for distinguishing interesting
rules from irrelevant ones

© Dr. Osmar R. Zaiane, 1999, 2007

University of Alberta £)

Principles of Knowledge Discovery in Data

Basic Concepts

A transaction is a set of items: T={i,, i,,...1,}
T c |, where | is the set of all possible items {i}, 1,,...14}

D, the task relevant data, is a set of transactions D={T,, T,,...T,}.

An association rule is of the form:
P=2Q,wherePcl,Qc |, and PnQ =0

© Dr. Osmar R. Zafane, 1999, 2007 University of Alberta : |

Principles of Knowledge Discovery in Data

Basic Concepts (con’t)

A set of items is referred to as itemset.

An itemset containing k items is called k-itemset.
{Jelly, Milk, Bread} iS a 3-itemset example

An items set can also be seen as a conjunction of items (or a

predicate)

P=>Q holds in D with support s ;k J
and ¥ R,
P=>»Q has a confidence C in the transaction set D. \XW ‘/’

Support(P=>»Q) = Probability(PUQ)
Confidence(P=2»Q) = Probability(Q/P)

Support of an Itemset

Supportof P=P, AP, A ... AP, in D o(P/D) is the probability that P occurs
in D: it is the percentage of transactions T in D satisfying P.

I.e. the support of an item (or itemset) X is the percentage of transactions in
which that item (or items) occurs: (number of T by cardinality of D).

support(X) = #X
n

l Itemset Support l Itemset Support
R .
Support for all subsets of items [, %0 | Pop Bread Mk 0%

. . Bread 66% | Pop, Bread, PeanutButter 0%

— Note the exponential growth in | sy 16% | Pop, Jelly, Milk 0%

- - . Milk 50% | Pop, Jelly, PeanutButter 0%

the set Of Items - 5 Items' 31 PeanutButter 50% | Pop, Milk, PeanutButter 0%

SetS Pop, Bread 16% | Bread, Jelly, Milk 0%
Pop, Jelly 0% | Bread, Jelly, PeanutButter 16%
Pop, Milk 16% | Bread, Milk, PeanutButter 16%

T Items Pop, PeanutButter 0% | Jelly, Milk, PeanutButter 0%
T Bread, Jelly, PeanutButter Bread, Jelly 16% | Pop, Bread, Jelly, Milk 0%
T2 Bread, PeanutButter Bread, Milk 33% | Pop, Bread, Jelly, PeanutButter 0%
T3 Bread, Milk, PeanutButter Bread, PeanutButter 50% | Pop, Bread, Milk, PeanutButter 0%
T4 Pop Bread Jelly, Milk 0% Pop, Jelly, Milk, PeanutButter 0%
T5 Pol ’ Milk Jelly, PeanutButter 16% | Bread, Jelly, Milk, PeanutButter 0%
T & P, 41 D Milk, PeanutButter 16% | Pop, Bread, Jelly, Milk, PeanutButter 0%
read, Vi Pop, Bread, Jelly 0%

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta

Support and Confidence of an Association Rule

« The support of an association rule XY is the percentage of
transactions that contain X uY

support(X—>Y) = HXVY)

» The confidence of an association rule X =2Y is the ratio of the
number of transactions that contain X UY to the number of
transactions that contain X

confidence(X—>Y) = #XVY)
#X
+ Confidence of arule P — Q in database D @(P — Q/ D) is the
ratio o((P A Q)/ D) by o(P/ D)
support(X—>7Y)

confidence(X—>Y) =
support(X)

© Dr. Osmar R. Zaiane, 1999, 2007

Principles of Knowledge Discovery in Data

University of Alberta

Support and Confidence — cont.

+ What is the support and confidence of | st ome e
; T2 Bread, PeanutButt
3\ 2 the fOIIOWIng rUIesf) T3 Bi:d, M?i?geaunuetguﬁer
@‘ — Pop>Bread s Pop, Wik
6 Bread, Milk
— {Bread, PeanutButter}->Jelly =
+ Support and confidence for some association rules
Rule Support Confidence
Bread - PeanutButter 50% 60% :j Why the
PeanutButter > Bread 50% 100% ~\ difference?
Pop - Bread 16% 50% 7
PeanutButter > Jelly 16% 33% :j
Jelly > PeanutButter 16% 100%
Jelly - Milk 0% 0%
{Bread, PeanutButter} > Jelly 16% 33%

« Support measures how often the rule occurs in the database.
» Confidence measures the strength of the rule.

Frequent Itemsets and Strong Rules

Support and Confidence are bound by Thresholds:
»minimum support ¢’
»minimum confidence ¢’

A Frequent (or large) itemset | in D is an itemset with a
support larger than the minimum support;

A strong rule XY is a rule that is frequent (i.e. support
higher than minimum support) and its confidence is higher
than the minimum confidence threshold.

Association Rule Problem Definition

* Given I={i, 1y,...,1,,}, D={t,, t,,t,} and the support and
confidence thresholds, the association rule mining problem is to
identify all strong association rules X-2>Y.

Naive Approach to Generate Association Rules

» Enumerate all possible rules and select those of them that
satisfy the minimum support and confidence thresholds

» Not practical for large databases

— For a given dataset with m items, the total number of possible
rules is 3M-2m*1+1

— For our example: 3°-26+1= 180

— More than 80% of these rules are discarded if 6°=0.2 and ¢’
=0.5

* We need a strategy for rule generation - generate only the
promising rules

Better Approach

@Find the frequent itemsets: the sets of items that
have minimum support

®Use the frequent itemsets to generate association
rules. Keep only strong rules.

’ Frequent Itemset Mining ‘ ’ Association Rules Generation ‘
FIM abc ab->c
® ® 3¢

Bound by a support threshold Bound by a confidence threshold

Generating Association Rules from
Frequent Itemsets

*Only strong association rules are generated.
*Frequent itemsets satisfy minimum support threshold.
*Strong AR satisfy minimum confidence threshold.

Support(AUB)

Confidence(AB) = Prob(B/A) = g s

For each frequent itemset, f, generate all non-empty subsets of f.
For every non-empty subset s of f do

output rule s=»(f-s) if support(f)/support(s) > min_confidence
end

Naive Frequent Itemset Generation

» Brute-force approach (Basic approach):
— Each itemset in the lattice is a candidate frequent itemset
— Count the support of each candidate by scanning the database

Transactions List of
Candidates

ID] [1tems
Bread, Milk

-—= —>

T
1
2 |Bread, Diaper, Water, Eggs
3
4 |Bread, Milk, Diaper, Water
* 5 |[Bread, Milk, Diaper, Coke
¢ w >
— Match each transaction against every candidate

N Milk, Diaper, Water, Coke
— Complexity ~ O(NMw) => Expensive since M = 24 !!!

Lecture Outline

Part I: Concepts (30 minutes)
- Basic concepts
+ Support and Confidence
- Naive approach
Part I1: The Apriori Algorithm (30 minutes)
- Principles
- Algorithm
+ Running Example

Part I11: The FP-Growth Algorithm (30 minutes)
+ FP-tree structure

+ Running Example

Part IV: More Advanced Concepts (30 minutes)
- Database layout and space search approach

- Other types of patterns and constraints

An Influential Mining Methodology
— The Apriori Algorithm

» The Apriori method:

— Proposed by Agrawal & Srikant 1994

— A similar level-wise algorithm by Mannila et al. 1994
» Major idea (Apriori Principle):

— A subset of a frequent itemset must be frequent

« E.g., if {Pop, diaper, nuts} is frequent, {Pop, diaper} must be.
Any itemset that is infrequent, its superset cannot be frequent!

— A powerful, scalable candidate set pruning technique:
« It reduces candidate k-itemsets dramatically (for k > 2)

Apriori Algorithm

» Apriori principle:
— Asubset of any frequent (large) itemset is also frequent

— This also implies that if an itemset is not frequent (small), a superset of
it is also not frequent

« If we know that an itemset is infrequent, we need not generate
any subsets of it as they will be infrequent

* Lines represent “subset” relationship

« If ACD is frequent, than AC,AD,CD,A,C,D are also
frequent, i.e. if an itemset is frequent than any set in a
path above it is also frequent

« If AB is infrequent, than ABC, ABD, ABCD will also
be infrequent, i.e. if an itemset is infrequent than any set
in the path below is also infrequent

« Ifany of A, C, D, AC, AD, CD, is infrequent than ACD
is infrequent (no need to check).

Mining Association rules: the Key Steps

@Find the frequent itemsets: the sets of items that have
minimum support
@ A subset of a frequent itemset must also be a frequent itemset,

i.e., if {AB} is a frequent itemset, both {A} and {B} should be
frequent itemsets

@ Iteratively find frequent itemsets with cardinality from 1 to k
(k-itemsets)
@ Use the frequent itemsets to generate strong association
rules.

Apriori Algorithm — Idea

» 1. Generate candidate itemsets of a particular size
» 2. Scan the database to see which of them are frequent
— An itemset is frequent if all its subsets are frequent

+ 3. Use only these frequent itemsets to generate the set of candidates with
size=size+1

Pass Candidates Frequent itemsets
£ —Eno
. For "I:’:sexamp'e if '=50% 1\ {Pop}, {Bread}, {Jelly}, {Bread}(66%), {Milk}(50%)
= Bread, Jally, PeanutButier {Milk}, {PeanutButter}/ {PeanutButter}(50%)
T2 Bread, PeanutButter itemset
T3 Bread, Milk, PeanutButter size | \ 2/ {Bread, Milk}, {Bread, PeanutButter}(50%6)
T4 Pop, Bread {Bread, PeanutButter}
T5 Pop, Milk {Milk, PeanutButter}
T6 Bread, Milk

0
=
i
0

The Aprior1 Algorithm

C,: Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};
for (k=1; L, !=3; k++) do begin
Cy+1 = candidates generated from L;
for each transaction t in database do
increment the count of all candidates
in C,, that are contained in t
L,.; = candidates in C,,,; with min_support
end
return v, L;

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data

University of Alberta £ E3% 24
i

The Apriori Algorithm -- Example Apriori-Gen Algorithm — Clothing Example

- upport > 1 « Given: 20 clothing transactions; s=20%, c=50%
Database D itemset|sup. e ee s o) T]
TID [items C,| {1} 2 L, 0 2p. » Generate association rules using the Apriori algorithm
Transaction Items ‘Transaction Items
;88 ; g g Scan D {g} g {2} 3 n Blouse 1T ‘TShirt
E— {3} {3} 3 B Shoes, Skirt, TShirt 2 Blouse, Jeans, Shoes, Skirt, TShirt
300|1235 @ | 1 5y | 3 D TR e | B S S
400|255 5y | 3 p Jeans, Shors s Jeans, Tshi
C; [itemset[sup C, |itemset o ooy S . pod Blove, Jeans, Skin .
L2 itemset Sup {1 2} 1 Scan D {1 2} ig iﬁ, Shoes, Shorts, TShin ::: ;ﬁ Shoes, Shorts, TShirt
{13} 2 {13} 2 {1 3} o Jeans, Shoes, TShirt f20 Jeans, Shoes, Shorts, TShirt
— | {15 | 1 {15} _ : ,
{g 2} g EZ 3§ 2 {2 3} » Scanl: Find all 1-itemsets. Identify the frequent ones.
35 5 {25} | 3 {2 5} Candidates:BIQyse, Jeans, Shoes, Shorts, Skirt, Tshirt
2 did h h ki hi
{3 5} {3 5} 2 {3 5} Support: / 14/20 10/20 5/20 6/20 14/20
C, [itemset Scan D L, [itemset] sup _ Frequent (Large): Jeans, Shoes, Shorts, Skirt, Tshirt
{2 3 5 —_— 235} 2 N(zlte{. 1{?1”?}3} {‘[1,.2,2:} Join the frequent items — combine items with each other to generate
and 11,9,05 notin 5 candidate pairs

Clothing Example — cont.1 [s shors e 7am | Clothing Example — cont.2
¢ Scan2: 10 candidate 2-itemsets were generated. Find the frequent « The next step is to use the large itemsets and generate association
g q p g g
ones. rules

{Jeans, Shoes}: 7/20 {Shoes, Short}:4/20 {Short,MO {Skirt, TShirt}: 4/20 e ¢=50%

{Jeans, Short} :5/20 {ShoM/ZO {Short, TShirt}: 4/20 The set of large itemsets is

{JM :3/20 {Shoes, Tshirty: 10/20 _

{deans, Tshirt}:9/20 4/20 7 frequent itemsets are found out of 10. L:{{Jearﬁ},{Shoeg}‘, _{Sh0|\§}, {Sk'}\}' {Tsmt}’ {Jeans, Shoes}, {Jeans,

_ Shorts}, {Jeans, TShirt}, {Shoes, Shorts}, {Shoes, TShirt}, {Shorts, TShirt},

Scan Candidates Large Itemsets Everyone is combined {Skirt, TShirt}, {Jeans, Shoes, Shorts}, {Jeans, Shoes, TShirt}, {Jeans,
! ot Sevriglbrrt with each other Shorts, TShirt},{Shoes, Shorts, TShirt}, {Jeans, Shoes, Shorts, TShirt} }
2 {Jeans, Shoes), {Jeans, Shorts), (Jeans, Skirt}, ongl, /2 sets are joined if they

{Jeans, TShirt}, {Shoes, Shorts}, {Shoes, Skirt},

o8}, | have 1 item in common
{Shoes, TShirt}, {Shorts, Skirt}, {Shorts, TShirt},

5% | (i, . 1 item different) » We ignore the first 5 as they do not consists of 2 nonempty subsets of large

{Skirt, TShirt}
3 {Jeans, Shoes, Shorts), (Jeans, Shoes, TShirt) - . o itemsets. We test all the others, e.g.:

{Jeans, Shorts, TShirt}, (Jeans, Skirt, TShirt), — /{Jeans, Shoes, 2 sets are joined if they g

gm ssh]:nm TShirt}, {Shoes, Skirt, TShirt}, in},) have|2 item in common

s, Skirt, TShirt) " bisf™ (i,.e. L item different)
) 1€ . support({Jeans, Shoes 7/20

4 {Jeans, Shoes, Shorts, TShirt} {Jeans, Shoes, Shorts, TShirt} confidence(Jeans— > Shoes) = pport(2 }) = =50%=>c
5 #) otc support({Jeans}) 14/20

See Slide 17

Lecture Outline

Part I: Concepts (30 minutes)
- Basic concepts
+ Support and Confidence
- Naive approach
Part I1: The Apriori Algorithm (30 minutes)
- Principles
- Algorithm
+ Running Example
Part I11: The FP-Growth Algorithm (30 minutes)
+ FP-tree structure
+ Running Example

Part IV: More Advanced Concepts (30 minutes)
- Database layout and space search approach

- Other types of patterns and constraints

Problems with Apriori

 Generation of candidate itemsets are expensive

(Huge candidate sets)

* 10* frequent 1-itemset will generate 107 candidate 2-itemsets

» To discover a frequent pattern of size 100, e.g., {a,, a,, ..., a,,,}, one

needs to generate 2!~ 1030 candidates.

* High number of data scans

Frequent Pattern Growth

* First algorithm that allows frequent pattern
mining without generating candidate sets

* Requires Frequent Pattern Tree

FP-Growth
» Grow long patterns from short ones using local
frequent items
— “abc” 1s a frequent pattern
— Get all transactions having “abc”: DBJabc

— “d” is a local frequent item in DBJabc = abcd is a
frequent pattern

J. Han, J. Pei, Y. Yin, SIGMOD’00

Frequent Pattern Tree

» Prefix tree.

» Each node contains the item name, frequency
and pointer to another node of the same kind.

» Frequent item header that contains item names
and pointer to the first node in FP tree.

Prefix tree

Database Compression Using FP-
tree (on T10I14D100k)

—o— Alphabetical FP-tree —+— Ordered FP-tree
- -& - Freqg. Tran. DB

— A ‘Tran.DB
100000

10000

0.01 T

0% 2%

4% 6% 8%

Support threshold

Frequent Pattern Tree

F,A,C,D,G,I,M, P

A,B,C F,L,M,O

B,F,H,J,0

A F.C.E.L.P.M.N

B,C,K,S,P

F,M,C,B, A

Required Support: 3

F:5,C:5,A:4,B:4, M:4,P:3D:1 E:1G:1 H:1 I:1J:1 K:1L:10:1

Frequent Pattern Tree

Original Transaction Ordered frequent items
F,A,C,D,G,ILM, P F,C,A,M,P
A,B,C,F,L,M, O F,C,A,B,M
B,F,H,J,0 F,B
A,F,C,E,L,P,M, N C,B,P

B,C,K,S,P F,C,A,M,P
F,M,C,B, A F,C,A,M

F,B,D F,B

F:5,C:5, A4, B:4, M:4, P:3

Required Support: 3

jF,C,A,M,P
F,C,A,B,M

F,B

C,B,P

F,C,A,M,P

C,A,M

F,B
F(5) | _
C(5) -
A4) -
B (4) -
M (4) -]
P(3) - -

jF,C,A,M,P
F,C,A,B,M

F,B

C,B,P

F,C,A,M,P

C,AM

F,B

Frequent Pattern Tree

F(5
c() -
A@4) -
B(4)-
M@4)-
P(3) - -

F,C,A,M,P
F,C,A,B,M
F,B

C,B,P

F,C,A,M, P

C,AM

F,B

Frequent Pattern Tree

F(5
C(5) -
A@) -
B4)-
M@)-
P(3) - -

F,C,A,M,P
F,C,A,B,M
F,B

C,B,P

F,C,A,M,P

C,AM

F,B

F(5)
C(5) -
A@)-
B(4)-[
M@4)-[
P(3) - -

C,AM

F,B

F(5 |
C(5) -
A@) -
B(4)-|
M@)-
P(3)-

Frequent Pattern Tree

Frequent Pattern Tree

F,C, A, M, P
F,C,A,B,M
F,B
C,B,P
F,C, A, M, P
C,A,M
F,B

Frequent Pattern Tree

F(5
c() -
A@4) -
B(4)-
M@4)-

P (3) B

Mining Frequent Patterns with FP-Tree

Starting the processing from the end of list L:

Step 1:

3 Major Steps

Construct conditional pattern base for each item in the

header table
Step 2

Construct conditional FP-tree from each conditional pattern

base

Step 3

Recursively mine conditional FP-trees and grow frequent
patterns obtained so far. If the conditional FP-tree contains a
single path, simply enumerate all the patterns

TF:5.
C:5.1.
A4,
BAJ
M:4.{
P:3.

Frequent Pattern Growth

TF:5.
C:5.1.
A4,
BAJ

> 0O |™
N

v))

M:4.| =
P:3.

F:2,C:2, A2

© Dr. Osmar R. Zaiane, 1999, 2007

F:1, C:1, A:1, B

Principles of Knowledge Discovery in Data

Recursively build
the A, Cand F
conditional trees.

F,C,A,B,M

Another Example: Construct FP-tree from a
Transaction Database

TID Items bought (ordered) frequent items

100 {f,a,c,d,g,i,m, p} {f,c,a,m p}

200 {a, b,c f I, m, 0} {f, c,ab, m} min support = 3
300 {b, f, h,j, 0, w} {f, b} -

400 {b, c, k, s, p} {c, b, p}

500 {a f,c,el p mn} {fc,amp}

1. Scan DB once, find Header Table
frequent 1-itemset tem £ ond
(single item pattern) em frequency head | -

2. Sort frequent items in
frequency descending
order, F-List

3. Scan DB again,
construct FP-tree

T I T O -
WWwWwwhp
!

F-list=f-c-a-b-m-p

© Dr. Osmar R. Zaiane, 1999, 2007

Principles of Knowledge Discovery in Data

=2 im: 2 FE
p2 m:1 =M ‘a§§ 49

Step 1: Construct Conditional Pattern Base

 Starting at the frequent-item header table in the FP-tree

* Traverse the FP-tree by following the link of each frequent item

* Accumulate all of transformed prefix paths of that item to form a
conditional pattern base

Header Table Conditional pattern bases
Item frequency head item cond. pattern base
f 4 == p fcam:2, cb:1
¢ 4 _ m fca:2, fcab:1
a 3 =~
b 3 == b fca:1, f:1, c:1
m 3
a
p 3
c

Properties of Step 1

* Node-link property
— For any frequent item a;, all the possible frequent patterns
that contain a; can be obtained by following a;'s node-links,
starting from a;'s head in the FP-tree header.
* Prefix path property

— To calculate the frequent patterns for a node g, in a path P,
only the prefix sub-path of a; in P need to be accumulated,

and its frequency count should carry the same count as node

Step 2: Construct Conditional FP-tree

» For each pattern base
— Accumulate the count for each item in the base

— Construct the conditional FP-tree for the frequent items
of the pattern base

Header Table
Item frequency head

P rf:4 {l}
ﬁEﬂ f:3

m-conditional
S N |
N2 a:ﬂ > pattern base: > c:3

T3IoT®O
WwWwwws AN

\@E fca:2, fcab:1 a!3
m:1

m-conditional FP-tree

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta £ (235

Conditional Pattern Bases and Step 3: Recursively mine the conditional

Conditional FP-Tree FP-tree
Cond. pattern base Cond. pattern base Cogd. pattern base
Item Conditional pattern base Conditional FP-tree of S (fca:3) of “orim (fe:3) y of F(13)
. . . |
p | ((fam2), (cbl)} (e3)1lp b / |
. |
m {(fca:2), (fcab:1)} {(f:3,c:3,a:3)}m f'|3 . -conditional FP-tree
.) . c:3 2 conditional FP-tree dd
b {(fca:1), (f:1), (c:1)} Empty I3 \\ Cond. pattern base "\ Cond. pattern base
. . . a of “crn”: (£:3) w
a {(fC3)} {(f3, 03)} |a m-conditional FP-tree | O; frequt-ar?t pattern
c {(£:3)} {(f:3)}e
f Empty Empty -conditional FP-tree
order of L Cond. pattern base of “//1”: 3 = frequent pattern

Principles of FP-Growth Single FP-tree Path Generation
* Pattern gl’OWth property Suppose an FP-tree T has a single path P. The complete set of
— Let a be a frequent itemset in DB, B be a's frequent pattern of T can be generated by enumeration of all the
conditional pattern base, and 3 be an itemset in B. combinations of the sub-paths of P
Then o U B is a frequent itemset in DB iff 3 is
frequent in B. {l} All frequent patterns
« Is “fcabm a frequent pattern? £3 concerning M
— “fcab” is a branch of m's conditional pattern base C_' 3 > ?:n om. am
—“b” 1s NOT frequent in transactions containing ! fem, fam, cam,
“fcab” aS fcam

— “bm” is NOT a frequent itemset. m-conditional FP-tree

Discussion (1/2)

« Association rules are typically sought for very large databases =2
efficient algorithms are needed

» The Apriori algorithm makes 1 pass through the dataset for each
different itemset size
— The maximum number of database scans is k+1, where k is the
cardinality of the largest large itemset (4 in the clothing ex.)
— potentially large number of scans — weakness of Apriori
» Sometimes the database is too big to be kept in memory and must be
kept on disk
» The amount of computation also depends on the min.support; the
confidence has less impact as it does not affect the number of passes

« Variations

— Using sampling of the database
— Using partitioning of the database
— Generation of incremental rules

Discussion (2/2)

+ Choice of minimum support threshold
— lowering support threshold results in more frequent itemsets

— this may increase number of candidates and max length of frequent
itemsets

* Dimensionality (number of items) of the data set
— more space is needed to store support count of each item

— if number of frequent items also increases, both computation and I/O costs
may also increase

» Size of database

— since Apriori makes multiple passes, run time of algorithm may increase
with number of transactions

* Average transaction width
— transaction width increases with denser data sets

— This may increase max length of frequent itemsets and traversals of hash
tree (number of subsets in a transaction increases with its width)

Lecture Outline

Part I: Concepts (30 minutes)
- Basic concepts
Support and Confidence

- Nalive approach
Part I1: The Apriori Algorithm (30 minutes)
- Principles
- Algorithm
+ Running Example

Part I11: The FP-Growth Algorithm (30 minutes)
+ FP-tree structure

« Running Example

Part IVV: More Advanced Concepts (30 minutes)
- Database layout and space search approach

- Other types of patterns and constraints

Other Frequent Patterns

« Frequent pattern {a,, ..., 8,00} = (100") T (1002 +
e T (10'%0) = 2100-1 = 1.27*10%° frequent sub-
patterns!

* Frequent Closed Patterns

All
frequent
itemsets

* Frequent Maximal Patterns

Closed
frequent
itemsets

* All Frequent Patterns

Maximal frequent itemsets c Closed frequent itemsets < All frequent itemset

{abcd}

Frequent Closed Patterns {abe}

» For frequent itemset X, if there exists no TMS{E(}};
item y such that every transaction Support =2
containing X also contains y, then X is a a 2
frequent closed pattern 'g %

* In other words, frequent itemset X is d 2
closed if there is no item y, not already in ab %
X, that always accompanies X in all o h
transactions where X occurs. bl()i %

abc

» Concise representation of frequent
patterns. Can generate all frequent patterns | Freauentitemsets

with their support from frequent closed b I3
ones. bd 2

* Reduce number of patterns and rules
* N. Pasquier et al. In ICDT’99

{abcd}
Frequent Maximal Patterns ﬁi}

* Frequent itemset X is maximal if there is grmsastons
no other frequent itemset Y that is 7
superset of X. b

* In other words, there is no other frequent g %
pattern that would include a maximal ab
pattern. ac |2

» More concise representation of frequent Bﬁ %
patterns but the information about abc|2
Supports IS IOSt Frequent itemsets

» Can generate all frequent patterns from
frequent maximal ones but without their od 2
respective support. abch

* R Bayardo In SIGMOD,98 Frequent Ma;al itemsets

Maximal vs. Closed Itemsets

TID | ltems Set of
1 ABC @ _.-~"transaction Ids
v
2 | ABCD 1.2.3.4 45 4.5
3 | ABC o
4
5

University of Alberta (8% 63
&5

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data

Maximal vs. Closed Itemsets

TID | ltems Closed but
1 ABC not maximal
2 ABCD
3 ABC
4 Closed and
5 maximal

Frequent
Pattern
Border

Maximal .
Closed O
Frequent Q

e

University of Alberta [(8% 64
P

Minimum support = 2

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data

Mining the Pattern Lattice Breadth- First (Bottom-Up Example) T1'D ':;"g
Steps Bottom o ABCD
* Breadth-First 3 | ABC
— Tt uses current items at level k to generate items of level k+1 (many database scans)
4 ACDE
e Depth-First 5 DE

— TItuses a current item at level k to generate all its supersets (favored when mining long

frequent patterns)

Bottom Depth
Breadth

G
— Itmi ing both direction at th ti — | <
mines using bo 1rection at € same lime ‘vv Qw}g
Leap traversal approach T =
G o e a6

— Jumps to selected nodes

Superset is
candidate if
ALL its subsets
are frequent

Hybrid approach Hybrid

There is also the notion of :
Top-down (level k then level k+1)
Bottom-up (level k+1 then level k)

18 candidates

to check(CD

Leap Traversal Minimum support = 2

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta "%“ 66
AP

Depth First (Top-Down Example) el One HYbrld Example i

1 | ABC 1 | ABC

Steps @ Bottom 2 | ascD Steps @ Bottom > | aBcD
x = Tesmiiw E
7™ < 41\42\« 4 | ACDE \Q‘\“‘-'\\%%\\\\\‘lg\ j\ 4 | ACDE
‘\Qﬁ'\\ 5 | DE "“\Q’\\V — 5 | DE

%‘W““\:‘:’:{%‘A‘({ Subset is >‘~\’\~’)"Q v&%ﬁ%‘ Superset is
2 - S

P e ey Nl LTS s SIS TN e
X AB \@ti Q’@ ‘}@ @ one of its. @ (22Q) @\@tog?’@;;@ @ are frequent
N e = NAEY

to check(CD to check(CD

e i N =X > >
X @ @ AB @ 23 candidates @ @ AB @ 19 candidates

Minimum support =2 Minimum support =2

© Dr. Osmar R. Zafane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta ‘5& 67 © Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta | §§ 68
=¥ =

How to find the

X
Support of an itemset

1.
2.

Full scan of the database OR

© Dr. Osmar R. Zaiane, 1999, 2007

Leap Traversal Example [mD] tems
ABC

ABCD
ABC
ACDE
DE

Itemset is
candidate if it
is marked or if
it is a subset of
more than one
infrequent
marked
superset

Bottom

a | W N |-

10 candidates

to checkCD

5 frequent patterns
without checking(_

Principles of Knowledge Discovery in Data University of Alberta "é“ 69
AP

Constraint-based Data Mining
* Finding all the patterns in a database autonomously?
— unrealistic!
— The patterns could be too many but not focused!
* Data mining should be an interactive process

— User directs what to be mined using a data mining query
language (or a graphical user interface)

* Constraint-based mining
— User flexibility: provides constraints on what to be mined

— System optimization: explores such constraints for efficient
mining—constraint-based mining

Restricting Association Rules

* Useful for interactive and ad-hoc mining

* Reduces the set of association rules discovered and confines
them to more relevant rules.

* Before mining

v Knowledge type constraints: classification, etc.

v' Data constraints: SQL-like queries (DMQL)

v’ Dimension/level constraints: relevance to some dimensions
and some concept levels.

* While mining

v’ Rule constraints: form, size, and content.

v Interestingness constraints: support, confidence, correlation.
 After mining

v" Querying association rules

Constrained Frequent Pattern Mining:
A Mining Query Optimization Problem

* Given a frequent pattern mining query with a set of constraints C,
the algorithm should be
— sound: it only finds frequent sets that satisfy the given
constraints C
— complete: all frequent sets satisfying the given constraints C
are found
* A naive solution
— First find all frequent sets, and then test them for constraint
satisfaction

* More efficient approaches:
— Analyze the properties of constraints comprehensively

— Push them as deeply as possible inside the frequent pattern
computation.

Rule Constraints in Association Mining Anti-Monotonicity in Constraint-Based Mining

* Two kind of rule constraints: TDB (min_sup=2)
. TD| T ti
— Rule form constraints: meta-rule guided mining. * Anti-monotonicity . ra:sacd'ofn
a’ b 09 el
* P(x,y) " Q(x, w) —> takes(x, “database systems”). — When an intemset S violates the 20 bodfgh
— Rule content constraint: constraint-based query constraint, so does any of its supersets 30 a,cde,f
optimization (where and having clauses) (Ng, et al., SIGMOD’98). _ sum(S.Price) <V is anti-monotone 40 c,e f g
* sum(LHS) < 100 » min(LHS) > 20 * count(LHS) > 3 * sum(RHS) > 1000) .) . Item | Profit
]]] — sum(S.Price) > v is not anti-monotone . 20
« l-variable vs. 2-variable constraints f <15 . S
(Lakshmanan, et al. SIGMOD’99): * Exa}mple. & range(S.p 1o lt) <151 A 20
— l-var: A constraint confining only one side (L/R) of the rule, e.g., anti-monotone 4 0
as shown above. — Itemset ab violates C . 30
— 2-var: A constraint confining both sides (L and R). _ r 30
+ sum(LHS) < min(RHS) * max(RHS) < 5* sum(LHS) So does every superset of ab .

Monotonicity in Constraint-Based Mining Which Constraints Are Monotone or
TDB (min_sup=2) 1-)
- SQL-based Constraints Antl MonOtone :
M tonicit TID Transaction S - —
° onstraint onotone Anti-Monotone
onotonicity 10 abcdf — - -
— When an intemset S satisfies the 20 | bedfgh S5V ves p”
constraint, so does any of its supersets 30 a,cdef SeVv no yes
] 40 cefg min(S) <v ves no
— sum(S.Price) > v is monotone o | Profit min@) = v no ves
. . . max(s) <v no yes
— min(S.Price) <V is monotone a 40 S S Jes —
b 0 count(S) < v no yes
» Example. C: range(S.profit) > 15 . 0] e =
— Itemset ab satisfies C d 10 sum(S)<v(aesa<0) no yes
R 30 sum(S)>v(aeS,a<0) yes no
— So does every superset of ab range(S) <v no ves
f 30 range(S) > v yes no
g

State Of The Art

@ Constraint pushing techniques have been proven to be
effective in reducing the explored portion of the search
space in constrained frequent pattern mining tasks.

@ Anti-monotone constraints:
+ Easytopush ...
« Always profitable to do ...

FP-Growth with Constraints:

@ Monotone constraints:
« Hard to push ...

+ Should we push them, or not?
« Dual Miner: C. Bucil, J. Gherke, D. Kiefer and W. White, SIGKDD’02
« FP-Bonsai: F. Bonchi anf B. Goethals, PAKDD’04
« COFI with constraints: M. El-Hajj and O. Zaiane, AI’05
« BifoldLeap: M. El-Hajj and O. Zaiane, ICDM’05

J. Pei, J. Han, L. Lakshmanan, ICDE’01

Finding Maximal using leap traversal approach

TID ltems @ Minimum support = 2

13| ABC 12 e S is

2 | asco oo CIROIRC
5——ABE AR S A
T ST
S E T T e e e

© Dr. Osmar R. Zaiane, 1999, 2007 University of Alberta % 78
L

Principles of Knowledge Discovery in Data

TID | ltems

1.3 _ABC

2 | ABCD

4 ACDE

nE

UE

(&3]

Step1: Define actual @

paths (Mark paths)

Minimum support = 2

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data

4.

University of Alberta §§ 79

e

TID | ltems
1.3 _ABC
2 ABCD

4 | ACDE ‘®

nE

UE

(&3]

Intersect
ABCD
with
ACDE

Step2: Intersect non
frequent marked
paths with each
others

Finding Maximal using leap traversal approach

TID | ltems
1.3 _ABC
2 ABCD
4 ACDE 4
5 DE >

Step3: Remove non
frequent paths, or
frequent paths that
have superset of other
frequent paths

Minimum support = 2

© Dr. Osmar R. Zaiane, 1999, 2007

Principles of Knowledge Discovery in Data

University of Alberta

Finding Maximal using leap traversal approach

TID | ltems
1.3 ABC
2 ABCD

4 ACDE
5 BE

Minimum support = 2

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data

When to use a Given Strategy

* Breadth First

— Suitable for short frequent patterns

— Unsuitable for long frequent patterns
* Depth First

— Suitable for long frequent patterns

— In general not scalable when long candidate patterns are
not frequent

» Leap Traversal

— Suitable for cases having short and long frequent
patterns simultaneously

Empirical Tests

Connect R PTEam e Connect database (long Frequent Patterns)
Support [Size of Largest|F1-Size |Total Frequent |Breadth |Depth Leap
95 9 17 2205 15626 6654| 3044] V4
90, 12 21 271 27| 394648| 144426 29263
80, 15 28, 119418 120177
75 17 30 176365 177244
70 18 31 627952 628963 Ed
65] 19 33 1368337 1369585 O e s s e s s
60 20| 36| 2908632 2910175 Support %
5E| 21 37| 5996892 5998715
10D 100K T1014D100K (Short Frequent Patterns)
I'_I'otal Candi Created
Support |Size of Largest|F1-Size |Total Frequent [Breadth | Depth Leap
1000 3 375 385 20 10 29
750 4 463 561 262 124 291
500 5 569 1073 1492 731 1546
250 8 717 7703 36994 36309 26666 £t
100, 10] 797, 27532| 264645| 458275 200113 Supportth
50 10| 839 53385| 1129779] 4923723] 1067050|
T Chess (Mixed Length Frequent Patterns)
|'_I'otal C Created
Support _[Size of Largest|F1-Size |Total Frequent [Breadth [Depth Leap
95 5 9 78 165 90 136]
90 7 13, 628 2768 1842 1191
35| 8 16 2690 20871 0667|4318 fi .//»/,/_/'/
80| 10 20 8282 91577] 49196 12021 R
75| 1 23, 20846 292363| 160362 28986 o « o 0 ™ ™
70| 13| 24 48939 731740 560103 es03) .

© Dr. Osmar R. Zaiane, 1999, 2007

Principles of Knowledge Discovery in Data

Transactional Layouts

* Horizontal Layout

Each transaction is recorded as a list of items

Transaction ID Items

1 AlG|D|C|B

2 S Candidacy generation can be removed (FP-Growth)
4 C|E|F|A[N

5 A|B[N|O|P

6 A|C[Q|R|G

7 Alc[H]T]G Superfluous Processing
8 L[E|F[K|B

9 A|F[M|N|O

10 C[F|P[J|R

11 A|D[B|H| I

12 D[E|B[K|L

13 M|D|C|G[O

14 C[F|P[Q]J

15 B[D|E[F]| I

16 J|E|B|A|D

17 A|K[E|F|C

18 C|D|L|B[A

iscovery in Data University of Alberta

Transactional Layouts

» Vertical Layout

Tid-list is kept for each item

Transaction ID Items Items Transaction ID

1 A|G|D[C|B A 13456791116171?|

2 B|C|H[E[D B 112[3]5] 8 [11]12[15[16]18

3 B|D|E[A[M C |[1]2]4[6] 7 [10]13]14[17]18

4 C[E[F|A[N D | 1]2[3]11]12]13[15]16[18

[5 A[B[N[O[P E |[2[3[4[8[12]15]16[17

6 A[C|Q|R|G F |l4]8]9]10] 14 [15]17

7 A[C|H| |G G 1[6]7[13

8 L[E|F[K|B H 21711

9 A[F|M|N[O | 71115

10 C|F[P[J[R J |[10[14[16 nimi i
T NDITE Artet Minimize Superfluous Processing
12 D|E[B|K|L L 8112(18

13 M|D|C|G[O M | 3[9]13

14 C|F|P[QfJ N 415(9

15 B[D[E[F[1 H HEE Candidacy generation is required

16 J|E|B|A|D P 5|9]13

17 A|K|E|F|C Q 614

18 C|D[L|BJA R [6]10

iscovery in Data University of Alberta

Transactional Layouts

° Bitmap Layout Matrix : Rows represent transactions
Columns represent item
If item exists in transaction
then cell value = 1 else cell value =0

7 Toms Transaction ID items

= —— T A[B[C[D[E[F[G[H[1[J[K[L[M[N[O]P[Q]R o
o slctleln T 1[1[1[1]o[o[1][o[o[o[o[o[0[0[0[0[0]0 Similar to
= SIoTET AT i o[1[1[1[1]0[0[1[0]0[0[0]0[0[0[0]0]0 .
= PEED T3 T[1[0[1[1][0]ojo[o[o]o[o[T|0[0[0]0o[o] horizontal
s AT5Tnlolp T4 1[o[1[o[1][1][0[o[o[o[o[0]o[7[0[0[0[0
e AclalRlG 5 T[1[o[o[o]o[o[o[0]0[0[0[0[T[T[T[0]O layout,
= ATcTiiTe T6 1[o[1[o[o]o[7[0]0]0[0[0]0[0[0[0 T[T Suitable fi
= CIeTFTels T7 1[o[1[o[o[o[1[[7]0]0[0]0]0]0[0[0[0 uitable tor
s TS T8 o[T[o[o[1[1[0o[0o[o[o[1[1]0]0[0[0]0]0 dataset ith
o STETPTITR To 1[oJo[o[o[1[o[o[o]o[o[0[7[T[T[0[0]0 atasets wi
LF AToTalhTT Ti0 o[o[1[o[o[1[o[o[o[1[o[o[o[o[o[7[0][7 small
i DS I o £11 S G AT S D OIRGRROR

T12 . i nali
Ej gggg? T3 o[o[1[1[o[o[1[0o[0o[o[o[o[1[0[T1]0]0]0 dlmcnﬁlondhty
s LGN Ti4 o[o[1[oJo[1]0o[0o]o]1]o[o[0[0[0[1][7]0
s S1ElsTAl Ti5 o[1[o[1[1[1[0o[o[1]o[o[o[o[0[0]0]0]0
e NREEE T16 T[1[o[1[1]0[0[0[0][7[0[0[0[0[0[0[0[0
g SToTTsl~ Ti7 T[o[1[o[1][1][0o[o[o[0[[0]0]0]0[0[0[0

EB 1[1[1[1]o]o]o[o]o]o[o[7]0]0]0[0[0]0

University of Alberta

Transactional Layouts
* Inverted Matrix Layout

El-Hajj and Zaiane, ACM SIGKDD'03) yiryiyize Superfluous Processing

Candidacy generation can be reduced

Appropriate for Interactive Mining

) Loc! Index Transactional Array

TH ltems 1 [2] 3] 4] 5] 6] 7] 811 91 10]1
i Als[p[c[B 1[R2 [1] (32
T2 B[c|H|E[D [2 [Ql2 [(122)] 33)
T3 B[D[E[A[M [3[PB@n] @] @2
4 ClE|F|AIN 4 [0[3] (52)] (53)] (63)
75 A[BIN[O|P 5 [N[3 [[(13.)] (17.4)] (6.2)
6 A|CIQIR|G 6 | M[3 | (14,2)[(13,3) (12.4)
7 AlCIH|1|G 7 [L3] @1)]82](159)
T8 LIE[FIKIB 8 | K[3 [(13,2)[(14,5) (13.7)
LE] A|FIMIN|O [9 [Jl3 [[(13.4) (13,5) (14.7)
T10 C|FIP[JIR [10] 113](11,2)] (11,3)[(13,6)
Akl A|D|BIH] I 1] H[3 [[(14.1)[(12,3)] 15.4)
T12 DIEIBIK]L 12| 64 [[(A8.4)] (16,4) (16,5)] (15.6)
13 M|DIC|G|O 13] Fl7 | (14,3)[(14.4)] (18,7)] (16.6)] (16,8)[(14,6)] (14.8)
T14 ClFIP[Q]J 14| E[8 |[(15,.2)] (15,3)] (16,3)] (17.5)| (15,5)] (15.7)] (15.8)| (16.9)
T15 BIDIEIF|I 15| D9 [[(a6,0)] (16.2)] (17,2)[(17.6)] (17.7)] (16,7)[(17.8)] (17.9)[(16.10)]
T16 J|E[B|AD (16 c[10[l@Z.0)] (17,2)] (18,3)] (18,5)] (18,6)] (=, ®)| (=, =) [(2, 7) [(18,10)[(17,10)]
7 A[KIEIF]C 17| B[10[[(A8,4)] (=, =) | (18.2)] (18.4)] (=, =) | (18,8)| (=, ®) | (=, ®)[(18,9)[(18,11)
18 clpjLiBlA 18 [Al m) [(= =) [(=, m) [(=m) [(mm) [(=,)| (m,m) [(=) (=, 5) [(=, m) [(=)

University of Alberta

Why The Matrix Layout?

Interactive mining

Changing the support level means
expensive steps (whole process is redone)

EVAIUStH and: Knowledge

AATA

&Vbn

Presentation

Selection and
Transformat

Databases

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta

Why The Matrix Layout?

Repetitive tasks, (I/0) readings (Superfluous Processing)

T# Items
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18

O|P|<|m|O|Z|O(>|O|>[|>|>|>|O|w|m|>
O(x|m|O|m|o|m|O|n|[n|m[O[O[m|m|O|0|®
—|mfw|m|v[o|w|w[v|Z|n[z][o]|Z[n]|m|xz|O
o|n|>|n|o|e|x[T]|<|Z|X|—[Z[O]|>|>»|m|O

>|0|0|—||Oo|r[—|m|O|w|®|®[T|Z|Z|0|w

© Dr. Osmar R. Zaiane, 1999, 2007

Support > 4

Frequent 1-itemsets {A, B, C, D, E, F}
Non frequent items {G, H, |, J, K, L, M, N, O, P, Q, R}

Principles of Knowledge Discovery in Data

Why The Matrix Layout?

Repetitive tasks, (I/0) readings (Superfluous Processing)

T# Items
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18

Support > 9

Frequent 1-itemsets {A, B, C}
Non frequent items
{D,E,F,G,H,I,J,K,L,M,N, O, P,Q R}

O|x|m|O|nfo[m[o|n|n|m|o|O|w|m|O|0|®
—|mfw|m|v[o|w|w|[v|Z|n[z][o]|Z[n]|m]|z|O
o|T|>|n|o|e|x[T|<|Z|X|—|[T[O|>|>|m|O

O|»||w|O|Z|O(>|0]|>[|>|>]|>|0O|w|w|>
>|0|0|—||Oof[r[—|7|O|w|®|®|[T|Z|Z|0|w

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data

Transactional Layouts
* Inverted Matrix Layout

Support >

4

Loc| Index Transactional Array

— 1 1 2 [3] 4f 5[] 6 ([78T 9 J10T]T
[1T[R2 @)] B2

2 Q2 [(12.2)] B.3)

3[PEBJ@n]@ON](O2

4|03 (2| (63 [63)

5 [N[3 [(13.0)][(17.4)] 6.2)

6 [M[3 [(12,2)[(13,3)] (12,4)

73 @62 [159)

8 | K[3 [(13.2)[(14.5)] (13,7)

9 [J3 (134 (135][(47

10| 113 (11,2)] (11,3)] (13,6)

11| H[3_[(12.1)](12,3)] 15.4)

77777777777 12] G[4 [(15,1)] (16,4)] (16,5)] (15,6)

(13| F|7 | (14.3)] (14.4)] (18.7)] (16.6)| (16.8)] (14.6)] (14.8)

14 | E[8 [(15.2)[(15.3)] (16,3)] (17,5)] (15,5)[(15.7)[(15.8)] (16,9)

15| D[9 [(16.1)[(16,2)[(17,2)[(17,6)[(17,7)| (16,7)] (17,8) | (17,9) [(16,10)

16 | C[10] (7.0 [(17.2)[(18,3) | (18,5)[(18,6) | (%, 5)| (%) | 62,5 (18,10) [(17,10

17 [B[10] (18.1) | 5.5%)| (18.2)| (18.4) | (2.5%)] (18.8) | (5. 00)| G=.5%)| (18,9) | (18,11)

78 | AT e,)] (.0 [)| (0 [G)| 6, B G)| G E) o) | () [G)

© Dr. Osmar R. Zaiane, 1999, 2007

Principles of Knowledge Discovery in Data

University of Alberta
A

Transactional Layouts Transactional Layouts

* Inverted Matrix Layout * Inverted Matrix Layout -

T1

g
3
@

T3
T4
T5

n|imim|{O
>[>|0|lm

Transactional Array Loc | Index Transactional Array T7

1] 2 [3] 4] 5] 6] 7 [8] 910 L 1] 2 [3[4 5] 6] 7 [8] 910 [Te

[13] F[7_[(14,3)[(14.4)[(18.7)[(16.6)] (16.8)] (14.6)] (14,8, To

14 | E[8 [(15,2)] (15,3)] (16,3)[(17.5)] (15,5)] (15,7)| (15.8)] (16,9) o
15| D|9 [(16,1)] (16.2)[(17,2)[(17,6)| (17.7)] (16,7)| (17.8)[(17,9){ (16,10)

C|

B

Al

Loc| Index |
[8]

16 | c[10](17,1)[(17.2)[(18,3)[(18,5)| (18,6)] (Z.30)| .20 ¢2.39)[(18,10)[(17,10) LIk
17 | B|10][(18,1) | G.30)| (18,2)] (18,4) | ,5)| (18,8) | (.50 .50)[(18,9) [(18,11) T2
18 | AJT (et 20 | (20 [(6 10| (o, 20 | 62,300 | 6 30 [(26, 20| (30 | (630 | (,35) [(6,10 T3
T14
T15
T16
T17
T18

O|>|mMw|O|0[(O(>[0|>|m|>|>|>|0|w|w|>
o|lm|w|o|n|[o[m|o|n|n|n|o|o|w|m|o|o|o

@|T{>|m
> 0O0[n

(13| F]7 (14.3)] (14,4)] (18.7)] (16,6)] (16,8)] (14.6)] (14,8)
14| E[8 | (15,2)] (15,3)| (16,3)| (17,5)] (15,5)| (15,7) | (15,8) | (16.9)
D
C
B
A

15 | |9 [(16,1 (16,2)[(17,2)[(17,6)[(17,7)[(16,7)[(17,8)] (17,9) [(16,10)
16 | C[10] (17.1)[(17,2)] (18,3)] (18,5)[(18,6) [(55.50) | (%, 1)| (%, 54) [(18,10) [(17, 10)
17 | B[10] (18.1) [(.50 (18,2) | (18,4) [(5,5)[(18,8) [(.20 | (2%, 50)[(18,9) [(18,11)
18 | A[11 (30| 66,30 | 66,30 [66,10 [66,20 [G320 [(X 30 [G 30 | (6,39) | G340) [G 30)

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta k © Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta

The Algorithms All-Apriori
(State of the Art) Apriori

All
Repetitive /0 scans

Apriori, FP-Growth, COFI*, ECLAT, Leap
Closed

CHARM, CLOSET+,COFI-CLOSED, Leap

Huge Computation to generate candidate items

Ej. e 6 6 ¢ o o o o
@““““”“““““““““““““

Maximal] eoe cee ooe coe oee coe ece oo

MaxMiner, MAFIA, GENMAX, COFI-MAX, Leap [eese coe ccee

] eeece

R. Agrawal, R. Srikant, VLDB’94

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta {

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta

All-Apriori . ..

Problems with Apriori

» Generation of candidate itemsets are
expensive (Huge candidate sets)

* 10* frequent 1-itemset will generate 107 candidate 2-itemsets

* To discover a frequent pattern of size 100, e.g., {a;, a,, ..., 8,49},
one needs to generate 2!~ 103° candidates.

 High number of data scans

Frequent Pattern Growth

* First algorithm that allows frequent pattern
mining without generating candidate sets

* Requires Frequent Pattern Tree

All-FP-Growth

FP-Growth

21/0 scans

Reduced candidacy generation
High memory requirements

Claims to be 1 order of magnitude faster than
Apriori

@....OQ...

Patterns
Recursive
FP-Tree conditional trees and FP-Trees

J. Han, J. Pei, Y. Yin, SIGMOD’00

© Dr. Osmar R. Zaiane, 1999, 2007 Principles of Knowledge Discovery in Data University of Alberta "é“ 98
AP

All-COFI

COFI algorithm big picture

CO F I 21/0 scans

reduced candidacy generation

Small memory footprint

Ej.........

- ‘ }\I- - LIz

Patterns
COFI- trees

FP-Tree

El-Hajj and Zaiane, DaWak’03

ARCORITTY Co-Occurrences Frequent

Item tree Support

Start with item P:

Find Locally frequent

o PC:3 frequent-path-base
@ All subsets of PC:3 are

A frequent and have the
same support

All-COFI
Co-Occurrences Frequent Item tree

Then with item M: Find Locally
frequent items with respect to M:
A:4,C:4:F:3

quent-path-bases
A
FCA:3

All-COFI
Co-Occurrences Frequent Item tree

Then with item M: Find Locally
frequent items with respect to M:
A:4,C:4.F:3

quent-path-bases
A
FCA:3

All-COFI
Co-Occurrences Frequent Item tree

Then with item M: Find Locally
frequent items with respect to M:

quent-path-bases
A
FCA: 3

CA:1

All-COFI
Co-Occurrences Frequent Item tree

How to mine frequent-path-bases

Three approaches: Support of any pattern is the

summation of the supports of its
supersets of frequent-path-bases

FCA: D
CA: 1 @»

1: Bottom-Up

FCA: 3

All-COFI
Co-Occurrences Frequent Item tree

How to mine frequent-path-bases

Three approaches: Support of any pattern is the
2: Top-down summation of the supports of its
supersets of frequent-path-bases
FCA: 3

|
CA: 1 @!

All-COFI
Co-Occurrences Frequent Item tree

How to mine frequent-path-bases

Three approaches: Support of any pattern is the

summation of the supports of its
supersets of frequent-path-bases

1) Intersect non frequent path bases

FCA:3 N CA:1=CA
2) Find subsets of the only @@ i@

frequent paths (sure to be frequen ' .

3: Leap-Traversal

3) Find the support of each pattern

All-ECLAT

ECLAT

» For each item, store a list of transaction ids

(tids) Horizontal
Data Layout

ltems

AB.E
B,C,D
CE
ACD
AB,C,D
AE

AB
AB,C

Q’C’D TIL-Iist

Vertical Data Layout
B E

1
3
6

O~NOAN =
© oo~ wNO
© o1~ NO

©O©oo~NO O >
-—
o

N =
SOENOOAON g

M.J.Zaki IEEE transactions on Knowledge and data Engineering 00

All-ECLAT ECLAT

* Determine support of any k-itemset by intersecting tid-lists of two of its (k-

1) subsets.
A B AB
1 1 1
4 2 5
N
6 I 8
7 8
8 10
9

All-ECLAT

ECLAT

Find all frequent patters with respect to item A

AB, AC, ABC, ABD, ACD, ABCD

»
»

Then it finds all frequent patters with respect to item B
BC, BD, BCD, BDE, BCDE

v

+ 3 traversal approaches:
— top-down, bottom-up and hybrid

Advantage: very fast support counting, Few scans of database (best
case 2)

* Disadvantage: intermediate tid-lists may become too large for
memory

Other Algorithms for Other
Patterns

Algorithms for Closed Patterns and
Maximal Patterns will be discussed in class
with paper presentations.

Which algorithm is the winner?

Not clear yet

With relatively small datasets we can find
different winners

1. By using different datasets
2. By changing the support level

3. By changing the implementations

Which algorithm is the winner?

What about Extremely large datasets (hundreds of
millions of transactions)?

Most of the existing algorithms do not run on such sizes

Vertical approaches and Bitmaps approaches cannot
load the transactions in Main Memory

Repetitive approaches cannot keep scanning these huge
databases many times

Requirements: We need algorithms that

1) do not require multiple scans of the database

2) Leave small foot print in Main Memory at any given time

