Introduction

- Frequent itemset mining
 - A set of items is referred to as itemset
 - \(X \) is an item (or itemset), \(\text{Support}(X) = \frac{\#X}{n} \)
 - Support is bounded by a threshold \(r \)
 - A frequent itemset is an itemset with a support larger than the minimum support
 - Given a database, find all the frequent itemsets

Problems with frequent itemset mining algorithms

- The computation may be intractable for a user-given frequency threshold: the number of frequent itemsets may explode
- Lack of focus leads to huge output of frequent itemsets
Introduction

- Two issues to tackle these problems
 - Constraint-based extraction of frequent itemsets: only a subset of the collection of frequent itemsets is interesting.
 - Condensed representation of frequent itemsets: extract a subset of the frequent patterns and regenerate the whole collection when necessary.

- Constraint-based extraction of frequent itemsets
 - Syntactic constraints
 - an item must not appear in the itemsets
 - Constraints related to objective measures of interestingness
 - the itemsets must be frequent

- Push constraint checking into algorithms
 - Anti-monotone constraints
 - Monotone constraints

- Condensed representation of frequent itemsets
 - Extract a particular subset of the frequent itemset collection
 - The condensed subset is much smaller than the original collection
 - Can be extracted efficiently
 - The whole frequent itemsets can be regenerated

- Main idea of the paper
 - Combine the above two approaches into one algorithm
 - This algorithm is based on the structure of Apriori
Introduction

Constrained itemset mining
 - Apriori revisit
 - Anti-monotone constrains
 - Monotone constrains
 - Generic algorithm

Frequent closed itemset mining
 - CLOSE algorithm
 - Incorporating constraints into Apriori

Conclusion

Summary of paper

Definition of constraints
 - \(T \) : transactional database
 - \(2^{\text{items}} \) : set of all itemsets
 - \(C \) : constraint
 - \(S \) : itemset, \(S \in 2^{\text{items}} \)
 - \(I \) : subset of \(2^{\text{items}} \)
 - \(S \) satisfies \(C \) in \(T \) if and only if \((S, T) = \text{true} \)
 - \(SAT_C(I) = \{ S \in I, S \text{ satisfies } C \} \)
 - \(SAT_C \) denotes \(SAT_C(2^{\text{items}}) \)

Summary of paper

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
<th>Itemset</th>
<th>Support</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABCD</td>
<td>A</td>
<td>1,2,3,4,6</td>
<td>0.83</td>
</tr>
<tr>
<td>2</td>
<td>AC</td>
<td>B</td>
<td>1,4,5,6</td>
<td>0.67</td>
</tr>
<tr>
<td>3</td>
<td>AC</td>
<td>AB</td>
<td>1,4,5</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>ABCD</td>
<td>AC</td>
<td>1,2,3,4,6</td>
<td>0.83</td>
</tr>
<tr>
<td>5</td>
<td>BC</td>
<td>CD</td>
<td>1,4</td>
<td>0.33</td>
</tr>
<tr>
<td>6</td>
<td>ABC</td>
<td>ACD</td>
<td>1,4</td>
<td>0.33</td>
</tr>
</tbody>
</table>

\(C_{\text{freq}}(S) = F(S) \geq r \) : an itemset must be at least \(r \) frequent.

\(r = 0.6 \quad SAT_{c_{\text{freq}}} = \{ A, B, C, AC, BC \} \)

\(C_{\text{size}}(S) \leq 2 \) and \(C_{\text{miss}}(S) \equiv B \not\subseteq S \), then

\(SAT_{c_{\text{size}},c_{\text{miss}}} = \{ A, C, D, AC, AD, CD \} \quad SAT_{c_{\text{size}},c_{\text{miss}},c_{\text{freq}}} = \{ A, C, AC \} \)

Constrained itemset mining
 - \(T \) : transactional database
 - \(C \) : constraint
 - Computation of the collection of itemsets that satisfy \(C \) together with their frequencies
 - \(R_C = \{ (S, F(S)), S \in SAT_C \} \)
 - Use Apriori for constrained itemset mining
 where \(C \) is \(C_{\text{freq}} \)
Summary of paper - Apriori

Apriori Algorithm

1. \(C_1^g := \{\} \)
2. \(k := 1 \)
3. **while** \(C_k^g \neq \emptyset \) **do**
4. **safe-pruning-on**
5. **generate** \(L_k := SAT_{C_{prior}}(C_k^g) \)
6. \(C_{k+1}^g := generate_{apriori}(L_k) \)
7. \(k := k + 1 \)
8. \(U_{j=0}^{k-1} L_j \)

Phase 1 – Candidate safe pruning
Eliminate candidates for which a subset of length \(k \) is not frequent.

Phase 2 – frequency constraint
(database scan)

Phase 3 – candidate generation for level \(k+1 \)
Fuse two elements that share the same \(k-1 \) first items.

Anti-monotone constraints

- **Definition:** an anti-monotone constraint is a constraint \(C \) such that for all itemsets \(S, S' \):
 \((S' \subseteq SAS \text{ satisfy } C) \Rightarrow S' \text{ satisfy } C \)
- If \(S \) does not satisfy \(C_{an} \), every superset of \(S \) does not satisfy \(C_{an} \).
- Example: \(\sum(S, \text{ price}) \leq v \)
- A disjunction or conjunction of anti-monotone constraints is an anti-monotone constraint.

Monotone Constraints

- **Definition**
 \(S \in \text{Items}, C_n(S) \text{ is true } \Rightarrow \forall S', S, C_n(S') \text{ is true} \)
- Example
 \(\sum(S, \text{ price}) \geq v \)
- Given a monotone constraint \(C_n \), simply replacing Step 5 in Apriori with \(L_k := SAT_{C_n}(C_k) \) leads to the loss of the completeness of Apriori.

Anti-monotone constraints

- **Apriori can be changed:**
 - Let \(C_{an} \) be an anti-monotone constraint. Step 5 of Apriori is replaced by \(L_k := SAT_{C_{an}}(C_k) \).
 - it is still correct and complete.
 - Apriori can be used to mine constrained itemsets when the given constraint is anti-monotone.

- **What about monotone constraints?**
Monotone Constraints

- Example
 - Assume \(C(S) \equiv C \in S \). Itemset ABC generated by \(\text{generate}_{\text{apriori}} \) from AB and AC but since \(C(AB) = \text{false} \), ACB is not generated whereas \(C(ABC) = \text{true} \).
 - Assume \(C(S) \equiv A \in S \). Itemset ABC is correctly generated by \(\text{generate}_{\text{apriori}} \) from AB and AC but since \(C(AB) = \text{false} \), ACB is incorrectly pruned whereas \(C(ABC) = \text{true} \).

The generation step and pruning step need to be modified in order to include monotone constraints.

Monotone Constraints

- Some definition in modified generation procedure
 - Negative border: If \(C_{am} \) denotes an anti-monotone constraint, \(B_{dm} \) is the collection of the minimal itemsets that verify \(C_{am} \).
 - \(C_{m} \) denotes the negation of \(C_{am} \).

Monotone Constraints

- Generation procedure
 - \(\text{generate}_{k}(L_k) = \{A\}B \) where \(A \in L_k \) and \(B \) is a \(k \)-itemset.
 - \(\text{generate}_{k}(L_k) = \{A\}B \) where \(A, B \in L_k \).
 - Assume \(C = C_{m}A \). \(C_{am} \) and \(m_{am} = \text{Max}_{s \in S} |S| \).
 - \(\text{generate}_{k}(L_k) = B_{dm} \) for items.

 \[
 \text{For } k \geq 1, \\
 \begin{align*}
 &\quad \text{if } k < m_{am}, \text{generate}_{k}(L_k) = \text{generate}_{k-1}(L_k). \\
 &\quad \text{if } k = m_{am}, \text{generate}_{k}(L_k) = \text{generate}_{k}(L_k). \\
 &\quad \text{if } k > m_{am}, \text{generate}_{k}(L_k) = \text{generate}_{k}(L_k).
 \end{align*}
 \]

 This generation procedure is complete and ensures that every candidate itemset verifies \(C_{am} \).

 We do not need to verify the monotone constraint after this generation procedure.

Monotone Constraints

- Pruning procedure \(\text{prune}_{m} \)
 - For all \(s \in C_{k+1}^e \) and for all \(S' \subseteq S \) such that \(|S'| = k \), do if \(S' \notin L_k \) and \(C_{am}(S') = \text{true} \), then delete \(S \) from \(C_{k+1}^e \).

 \(\text{prune}_{m} \) is correct and complete.

 The algorithm is correct because it does not prune any itemset that verify \(C = C_{am}A \). Its completeness means that if an itemset is not pruned then every proper subset of that itemset verify \(C_{am} \).
Generic Algorithm

- For a constraint \(c = C_m \neq C_m \), the generic algorithm uses the structure of Apriori and the procedures \(\text{generate}_c \) and \(\text{pruning}_c \):
 1. \(C_i^l = \text{Items}_{L_i} \cup \text{Items}_{L_m} \) \(\{0\} \)
 2. \(k := 1 \)
 3. while \(C_i^l \neq \emptyset \) do
 4. Phase 1 – candidate safe pruning
 \(C_i^l = \text{pruning}_c(C_i^l, L_i) \)
 5. Phase 2 – anti-monotone constraint checking
 \(L_i = S{\text{safe}}(C_i^l) \)
 6. Phase 3 – candidate generation for level \(k+1 \)
 \(C_i^{l+1} = \text{generate}_c(L_i) \)
 7. \(k := k+1 \)
 8. Output \(\cup_{i=1}^{k} L_i \)

Apriori Algorithm

- Constraints:
 - \(C_{am} \equiv A \in S \), \(C_{am} \equiv B \in S \)
- \(\text{Bd}_{\text{am}} = \{B, AB\} \)
- \(ms = \max_{x \in \text{Bd}_{\text{am}}} |S| = 2 \)

CLOSE algorithm

- The closure of an itemset \(S(\text{closure}(S)) \) is the maximal superset of \(S \) which has the same support as \(S \).
- A closed itemset is an itemset that is equal to its closure.
- The set of closed itemsets is a lattice called the closed itemset lattice.

Content

- Introduction
- Constrained itemset mining
 - Apriori revisit
 - Anti-monotone constrains
 - Monotone constrains
 - Generic algorithm
- Frequent closed itemset mining
 - CLOSE algorithm
 - Incorporating constraints into Apriori
- Conclusion
CLOSE algorithm

- We can consider CLOSE as an exploration of the classical itemset lattice with a new constraint.
- A constraint for CLOSE:
 \[C'_{\text{Free}}(S) \equiv S' \subseteq S \Rightarrow S \notin \text{closure}(S') \]
- Free itemsets: itemsets that are not included in any closure of their proper sub-set. Equivalently, free itemsets are itemsets that verify \(C'_{\text{Free}} \).

Example

- \(\text{Closure}(AB) \): items \(A \) and \(B \) are simultaneously in transactions \(1, 4, 6 \). Item \(C \) is the only other item that is also present in these three transactions, thus \(\text{closure}(AB) = ABC \).
- \(\text{Closure}(A) = AC \), \(\text{Closure}(B) = BC \), and \(AB \notin \text{closure}(A) \) and \(AB \notin \text{closure}(B) \). Therefore \(C'_{\text{Free}}(AB) \) is true.
- If frequency threshold \(r = \frac{1}{2} \), \(\text{SAT}_{C_{\text{Free}}}(AC) = \{ {\emptyset, A, B, D^c, AB} \} \) where \(AB^c \) means that \(C'_{\text{Free}}(AB) = \text{true}, \text{closure}(AB) = ABC \).

CLOSE algorithm

- The \(C'_{\text{Free}} \) constraint is anti-monotone, it needs a database pass to be checked.
- Checking this constraint seems expensive if the closure of every subset of \(S \) has to be computed.

Incorporating constraints into Apriori

- Directly using \(C = C_{\text{Free}} \land C_{\text{am}} \land C_{\text{m}} \) causes two problems:
 - The closures of some candidates of level \(k \) are not computed \(\Rightarrow \) impossible to check \(C_{\text{Free}} \) at level \(k+1 \)
 - \(\text{SAT}_{C_{\text{Free}} \land C_{\text{am}} \land C_{\text{m}}} \) will no longer enables to compute \(\text{SAT}_{C_{\text{am}} \land C_{\text{m}}} \).
Incorporating constraints

- Assume we replace
 - C'_{Free} with $C'_{\text{Free}AC_w}(S) = (S' \subset S \land C_p(S')) \Rightarrow S \subseteq \text{closure}(S')$
 - C_{Free} with $C_{\text{Free}AC_w}(S) = (S' \subset S \land |S'| = |S| - |AC_w(S')|) \Rightarrow S \subseteq \text{closure}(S')$
- Then: the constraints $C'_{\text{Free}AC_w}$ and $C'_{\text{Free}AC_m}$ are equivalent and anti-monotone. The set $\text{SAT}_{\text{Free}AC_w}$ can be efficiently computed using the same method as in CLOSE using $\text{SAT}_{\text{Free}AC_m\text{Free}AC_w}$ i.e., the output of the generic algorithm with the constraint $C = C_{\text{Free}AC_w} \land AC_m \land AC_w$

Now we can find free-itemsets that verify conjunctions of anti-monotone and monotone constraints 😊

Conclusion

- Frequent itemset mining can be intractable for a given support threshold and a particular database
- Two issues to address this problem: constraint-based itemset mining and condensed representation of frequent itemsets
- The generic algorithm can be used to achieve constrained free-set mining when $C = C_{\text{Free}AC_m}$

Content

- Introduction
- Constrained itemset mining
 - Apriori revisit
 - Anti-monotone constrains
 - Monotone constrains
 - Generic algorithm
- Frequent closed itemset mining
 - CLOSE algorithm
 - Incorporating constraints into Apriori
- Conclusion