
CLOSET+:Searching for the Best Strategies for
Mining Frequent Closed Itemsets

Jianyong Wang, Jiawei Han, Jian Pei

Presentation by:

Nasimeh Asgarian

Department of Computing Science
University of Alberta



1

Outline

• Introduction

• Strategies for frequent closed itemset mining

• Overview of CLOSET+

? The hybrid tree projection
? Item skipping technique
? Efficient subset checking

• The algorithm

• Performance evaluation



2

Introduction
• There are several algorithms for finding frequent itemset, like Apriori.

? They have good performance when the supported threshold is large.



2

Introduction
• There are several algorithms for finding frequent itemset, like Apriori.

? They have good performance when the supported threshold is large.

• Frequent closed itemset: frequent items that have no proper superset with
the same support ⇒ no redundancy.



2

Introduction
• There are several algorithms for finding frequent itemset, like Apriori.

? They have good performance when the supported threshold is large.

• Frequent closed itemset: frequent items that have no proper superset with
the same support ⇒ no redundancy.

• There are several algorithms for finding frequent closed itemsets, like
CLOSET, CHARM, OP.



2

Introduction
• There are several algorithms for finding frequent itemset, like Apriori.

? They have good performance when the supported threshold is large.

• Frequent closed itemset: frequent items that have no proper superset with
the same support ⇒ no redundancy.

• There are several algorithms for finding frequent closed itemsets, like
CLOSET, CHARM, OP.

• They find positive and negative aspects of the existing techniques.



2

Introduction
• There are several algorithms for finding frequent itemset, like Apriori.

? They have good performance when the supported threshold is large.

• Frequent closed itemset: frequent items that have no proper superset with
the same support ⇒ no redundancy.

• There are several algorithms for finding frequent closed itemsets, like
CLOSET, CHARM, OP.

• They find positive and negative aspects of the existing techniques.

• Introduce new techniques and an algorithm, CLOSET+.



2

Introduction
• There are several algorithms for finding frequent itemset, like Apriori.

? They have good performance when the supported threshold is large.

• Frequent closed itemset: frequent items that have no proper superset with
the same support ⇒ no redundancy.

• There are several algorithms for finding frequent closed itemsets, like
CLOSET, CHARM, OP.

• They find positive and negative aspects of the existing techniques.

• Introduce new techniques and an algorithm, CLOSET+.

• Compare their algorithm with other algorithms in terms of runtime, memory
usage, and scalability.



3

Running example
Tid set of Items ordered frequent item list
100 a,c,f,m,p f,c,a,m,p
200 a,c,d,f,m,p f,c,a,m,p
300 a,b,c,f,g,m f,c,a,b,m
400 b,f,t f,b
500 b,c,n,p c,b,p



4

Strategies for Frequent Itemset Mining
Breath-first search vs. Depth-first search



4

Strategies for Frequent Itemset Mining
Breath-first search vs. Depth-first search

• BFS methods use the frequent itemsets at level k − 1 to generate
candidates at level k. They have to scan the database to find the support
for candidates at level k.



4

Strategies for Frequent Itemset Mining
Breath-first search vs. Depth-first search

• BFS methods use the frequent itemsets at level k − 1 to generate
candidates at level k. They have to scan the database to find the support
for candidates at level k.

• DFS methods search the subtree of an itemset only if the itemset is
frequent. When the itemsets becomes longer, DFS shrinks the search
space quickly.



4

Strategies for Frequent Itemset Mining
Breath-first search vs. Depth-first search

• BFS methods use the frequent itemsets at level k − 1 to generate
candidates at level k. They have to scan the database to find the support
for candidates at level k.

• DFS methods search the subtree of an itemset only if the itemset is
frequent. When the itemsets becomes longer, DFS shrinks the search
space quickly.

DFS is the winner for databases with long patterns.



5

Horizontal vs. Vertical formats



5

Horizontal vs. Vertical formats

• Vertical format: a tid-list is kept for each item, which can be large for dense
datasets. To find the frequent itemsets, they have to find the intersection of
tid-lists (which is costly), and with each intersection they find only one
frequent itemset.



5

Horizontal vs. Vertical formats

• Vertical format: a tid-list is kept for each item, which can be large for dense
datasets. To find the frequent itemsets, they have to find the intersection of
tid-lists (which is costly), and with each intersection they find only one
frequent itemset.

• Horizontal format: each transaction recorded as a list of items. They
require less space, and with each scan of the database, they find many
frequent itemsets which can be used to grow the prefix itemsets to
generate frequent itemsets.



6

Data Compression Techniques



6

Data Compression Techniques

• diffset is data compression technique for vertical format recorded
transactions.
It only keeps track of the differences in tids of a candidate from its parent.



6

Data Compression Techniques

• diffset is data compression technique for vertical format recorded
transactions.
It only keeps track of the differences in tids of a candidate from its parent.

• FP-tree of a transaction database is a prefix tree of the list of frequent
items in transaction. It is data compression technique for horizontal format
recorded transactions. It has several advantages in finding frequent
itemsets:

? infrequent items found in the first database scan won’t be used in tree
construction.

? a set of transactions sharing the same subset of items may share
common prefix path from the root in an FP-tree .

? Its compression ratio can reach several thousand even for sparse
datasets.



7

Pruning Techniques for closed itemset mining



7

Pruning Techniques for closed itemset mining

• Lemma 3.1. Item merging: Let X be a frequent itemset. If every transaction
containing itemset X also contains itemset Y but not any proper superset
of Y , they X ∪ Y forms a frequent closed itemset and there is no need to
search any itemset containing X but not Y .



7

Pruning Techniques for closed itemset mining

• Lemma 3.1. Item merging: Let X be a frequent itemset. If every transaction
containing itemset X also contains itemset Y but not any proper superset
of Y , they X ∪ Y forms a frequent closed itemset and there is no need to
search any itemset containing X but not Y .

• Lemma 3.2. Sub-itemset pruning: Let X be a frequent itemset currently
under consideration. If X is a proper subset of an already found frequent
closed itemset Y and support(X) = support(Y ), then X and all of X ’s
descendants can not be frequent closed itemsets and thus can be pruned.



8

Overview of CLOSET+
• Divide-and conquer paradigm

• Depth-first search strategy

• Horizontal format-based

• FP-tree as compression technique

• Hybrid tree-projection method to improve the space efficiency

• Both pruning techniques plus a new technique: item skipping

• Efficient subset checking method to save memory usage and speed up
closure checking. (Previous algorithms need to maintain all frequent closed
itemset found so far in order to check if newly found frequent closed itemset
is really closed).



9

The Hybrid Tree Projection Method



9

The Hybrid Tree Projection Method

• Bottom-up physical tree-projection

? For dense datasets.
? CLOSET+ builds projected FP-tree in support ascending order
? There is a header table for each FP-tree, which holds each item’s ID,

count, and a side-link pointer that links all the nodes with the same
itemID as the labels.



9

The Hybrid Tree Projection Method

• Bottom-up physical tree-projection

? For dense datasets.
? CLOSET+ builds projected FP-tree in support ascending order
? There is a header table for each FP-tree, which holds each item’s ID,

count, and a side-link pointer that links all the nodes with the same
itemID as the labels.

• Top-down pseudo tree-projection

? For sparse datasets.
? CLOSET+ builds projected FP-tree in support descending order
? There is a header table for each FP-tree, which holds local frequent

items, their counts, and a side-link pointer to FP-tree nodes in order to
locate the subtrees for a certain prefix itemset.



10



11



12

The item Skipping Technique

• Lemma 4.1. (Item skipping) If a local
frequent item has the same support in
several header tables at different levels,
one can safely prune it from the header
tables at the higher levels.



12

The item Skipping Technique

• Lemma 4.1. (Item skipping) If a local
frequent item has the same support in
several header tables at different levels,
one can safely prune it from the header
tables at the higher levels.

• Example:



13

Efficient Subset Checking

• Superset checking: Checks if the new frequent itemset is a superset of
some already found closed itemset candidate with the same support.

• Subset checking: Checks if the new frequent itemset is a superset of some
already found closed itemset candidate with the same support.

• CLOSET+: Only needs to do subset checking (Theorem 4.1.)



14

• Two-level hash indexed result tree

? For dense datasets.
? Keeps the set of closed itemsets in a compressed way.
? One level uses ID of the last item in current itemset, Sc as hash key.
? The other uses support of Sc as hash key.
? Insert each closed itemset into result tree according to f-list, at each

node record its length of the path from this node to the root.



14

• Two-level hash indexed result tree

? For dense datasets.
? Keeps the set of closed itemsets in a compressed way.
? One level uses ID of the last item in current itemset, Sc as hash key.
? The other uses support of Sc as hash key.
? Insert each closed itemset into result tree according to f-list, at each

node record its length of the path from this node to the root.



15

• Pseudo-projection based upward checking

? For sparse datasets.
? Global FP-tree has the complete information for the database ⇒ no

need to store closed itemsets in memory.
? How to do subset checking?
? Lemma 4.2. For a certain prefix itemset, X, as long as we can find any

item which (1) appears in each prefix path w.r.t. prefix itemset X, and (2)
does not belong to X, any itemset with prefix X will be non-closed.
Otherwise, the union of X and the complete set of its local frequent items
which have the same support as X will form a closed itemset.



16

The Algorithm

input: a transaction database TDB and the support threshold.
output: the complete set of frequent closed itemsets.

1. Scan TDB to find the frequent itemsets, sort them in support descending
order.

2. Scan TDB and build the FP-tree , find the average count of an FP-tree
node to judge if the data set is dense of sparse.

3. With divide-and-conquer and depth-first search mine the FP-tree for
frequent closed itemsets in a top-down manner for sparse datasets and
bottom-up manner for dense datasets. Use the efficient subset checking
techniques to do closure checking.

4. Stop when all items in global header table have been mined.



17

Performance Evaluation

They have tested their algorithm on both sparse and dense datasets and
compared it with OP, CHARM, and CLOSET.



17

Performance Evaluation

They have tested their algorithm on both sparse and dense datasets and
compared it with OP, CHARM, and CLOSET.

Sparse datasets: OPis faster than CLOSET+when threshold is high, but it
reverses for low thresholds. CHARMis sometimes faster, but CLOSET+uses
less memory when threshold is low. CLOSET+always performs better than
CLOSET.



17

Performance Evaluation

They have tested their algorithm on both sparse and dense datasets and
compared it with OP, CHARM, and CLOSET.

Sparse datasets: OPis faster than CLOSET+when threshold is high, but it
reverses for low thresholds. CHARMis sometimes faster, but CLOSET+uses
less memory when threshold is low. CLOSET+always performs better than
CLOSET.

Dense datasets: CLOSET+is faster than OPand CLOSET, specially when
supported threshold is low. CHARMperforms similarly in terms of runtime,
but CLOSET+uses less memory.



17

Performance Evaluation

They have tested their algorithm on both sparse and dense datasets and
compared it with OP, CHARM, and CLOSET.

Sparse datasets: OPis faster than CLOSET+when threshold is high, but it
reverses for low thresholds. CHARMis sometimes faster, but CLOSET+uses
less memory when threshold is low. CLOSET+always performs better than
CLOSET.

Dense datasets: CLOSET+is faster than OPand CLOSET, specially when
supported threshold is low. CHARMperforms similarly in terms of runtime,
but CLOSET+uses less memory.

Scalability: CLOSET+has better performance than CHARMand CLOSETin
terms of scalability in both database size and number of distinct items.



18

Thanks!


