Chapter 9: Web Mining

Dr. Osmar R. Zaïane
University of Alberta

Chapter 9 Objectives

Understand the different knowledge discovery issues in data mining from the World Wide Web.

Distinguish between resource discovery and Knowledge discovery from the Internet.

Web Mining Outline

- What are the incentives of web mining?
- What is the taxonomy of web mining?
- What is web content mining?
- What is web structure mining?
- What is web usage mining?
- What is a Virtual Web View?
- Is there a query and discovery language for VWV?

WWW: Facts

- No standards, unstructured and heterogeneous
- Growing and changing very rapidly
 - One new WWW server every 2 hours
 - 5 million documents in 1995
 - 320 million documents in 1998
- Indices get stale very quickly

WWW: Incentives

- Enormous wealth of information on web
- The web is a huge collection of:
 - Documents of all sorts
 - Hyper-link information
 - Access and usage information
- Mine interesting nuggets of information leads to wealth of information and knowledge
- Challenge: Unstructured, huge, dynamic.

The Asilomar Report urges the database research community to contribute in deploying new technologies for resource and information retrieval from the World-Wide Web.

Need for better resource discovery and knowledge extraction.
WWW and Web Mining

- Web: A huge, widely-distributed, highly heterogeneous, semi-structured, interconnected, evolving, hypertext/hypermedia information repository.
- Problems:
 - the "abundance" problem:
 - 99% of info of no interest to 99% of people
 - limited coverage of the Web:
 - hidden Web sources, majority of data in DBMS.
 - limited query interface based on keyword-oriented search
 - limited customization to individual users

Web Mining Outline

- What are the incentives of web mining?
- What is the taxonomy of web mining?
- What is web content mining?
- What is web structure mining?
- What is web usage mining?
- What is a Virtual Web View?
- Is there a query and discovery language for VWV?

Web Mining Taxonomy

- Web Structure Mining
 - Using Links
 - PageRank (Brin et al., 1998)
 - CLEVER (Chakrabarti et al., 1998)
 - Using Generalization
 - Uses multi-level database representation of the Web. Counters (popularity) and link lists are used for capturing structure.

- Web Content Mining
 - Web Page Content Mining
 - Search Result Mining
 - Search Engine Result Summarization (Kumria and Croft, 1998; Zens and Eysen, 1997): Categorizes documents using phrases in titles and snippets
 - Content-based Usage Tracking

- Web Usage Mining
 - General Access Pattern Tracking
 - Customized Usage Tracking
Web Mining Taxonomy

Web Mining
 - Web Content Mining
 - Web Structure Mining
 - Web Usage Mining

General Access Pattern Tracking
- Web Log Mining (Ziaian, Xin and Han, 1998)
 - Uses KDD techniques to understand general access patterns and trends.
 - Can shed light on better structure and grouping of resource providers.

Customized Usage Tracking
- Adaptive Sites (Prokowitz and Etzioni, 1997)
 - Analyzes access patterns of each user at a time.
 - Web site restructures itself automatically by learning from user access patterns.

Web Mining Outline

- What are the incentives of web mining?
- What is the taxonomy of web mining?
- What is web content mining?
- What is web structure mining?
- What is web usage mining?
- What is a Virtual Web View?
- Is there a query and discovery language for VWV?

Mine What Web Search Engine Finds

- Current Web search engines: convenient source for mining
 - keyword-based, return too many answers, low quality answers, still missing a lot, not customized, etc.
- Data mining will help:
 - coverage: “Enlarge and then shrink,” using synonyms and conceptual hierarchies
 - better search primitives: user preferences/hints
 - linkage analysis: authoritative pages and clusters
 - Web-based languages: XML + WebSQL + WebML
 - customization: home page + Weblog + user profiles

Warehousing a Meta-Web:
An MLDB Approach

- Meta-Web: A structure which summarizes the contents, structure, linkage, and access of the Web and which evolves with the Web
- Layer_1: the Web itself
 - an entry: a Web page summary, including class, time, URL, contents, keywords, popularity, weight, links, etc.
- Layer_2 and up: summary/classification/clustering in various ways and distributed for various applications
- Meta-Web can be warehoused and incrementally updated
- Querying and mining can be performed on or assisted by meta-Web (a multi-layer digital library catalogue, yellow page).

Construction of Multi-Layer Meta-Web

- XML: facilitates structured and meta-information extraction
- Hidden Web: DB schema "extraction" + other meta info
- Automatic classification of Web documents:
 - based on Yahoo!, etc. as training set + keyword-based correlation/classification analysis (IR/IAI assistance)
- Automatic ranking of important Web pages
 - authoritative site recognition and clustering Web pages
- Generalization-based multi-layer meta-Web construction
 - With the assistance of clustering and classification analysis
Use of Multi-Layer Meta Web

- Benefits of Multi-Layer Meta-Web:
 - Multi-dimensional Web info summary analysis
 - Approximate and intelligent query answering
 - Web high-level query answering (WebSQL, WebML)
 - Web content and structure mining
 - Observing the dynamics/evolution of the Web
- Is it realistic to construct such a meta-Web?
 - Benefits even if it is partially constructed
 - Benefits may justify the cost of tool development, standardization and partial restructuring

Web Mining Outline

- What are the incentives of web mining?
- What is the taxonomy of web mining?
- What is web content mining?
- What is web structure mining?
- What is web usage mining?
- What is a Virtual Web View?
- Is there a query and discovery language for VWV?

Web Structure Mining

- Discovery of influential and authoritative pages in WWW
- Meta-web view can also be viewed as Web structure mining

Citation Analysis in Information Retrieval

- Citation analysis was studied in information retrieval long before WWW came into scene.
- Garfield’s impact factor (1972):
 - It provides a numerical assessment of journals in the journal citation.
- Pinski and Narin (1976) proposed a significant variation on this notion, based on the observation that not all citations are equally important.
 - A journal is influential if, recursively, it is heavily cited by other influential journals.
 - influence weight: The influence of a journal j is equal to the sum of the influence of all journals citing j, with the sum weighted by the amount that each cites j.

Discovery of Authoritative Pages in WWW

- Page-rank method (Brin and Page, 1998):
 - Rank the “importance” of Web pages, based on a model of a “random browser.”
- Hub/authority method (Kleinberg, 1998):
 - Prominent authorities often do not endorse one another directly on the Web.
 - Hub pages have a large number of links to many relevant authorities.
 - Thus hubs and authorities exhibit a mutually reinforcing relationship.
- Both the page-rank and hub/authority methodologies have been shown to provide qualitatively good search results for broad query topics on the WWW.

Further Enhancement for Finding Authoritative Pages in WWW

- The CLEVER system (Chakrabarti, et al. 1998):
 - builds on the algorithmic framework of extensions based on both content and link information.
- Extension 1: mini-hub pagelets
 - prevent “topic drifting” on large hub pages with many links, based on the fact: Contiguous set of links on a hub page are more focused on a single topic than the entire page.
- Extension 2. Anchor text
 - make use of the text that surrounds hyperlink definitions (href’s) inWeb pages, often referred to as anchor text
 - boost the weights of links which occur near instances of query terms.
Web Mining Outline

- What are the incentives of web mining?
- What is the taxonomy of web mining?
- What is web content mining?
- What is web structure mining?
- What is web usage mining?
- What is a Virtual Web View?
- Is there a query and discovery language for VWV?

What Is Weblog Mining?

- Web Servers register a log entry for every single access they get.
- A huge number of accesses (hits) are registered and collected in an ever-growing web log.
- Weblog mining:
 - Enhance server performance
 - Improve web site navigation
 - Improve system design of web applications
 - Target customers for electronic commerce
 - Identify potential prime advertisement locations

Diversity of Weblog Mining

- Weblog provides rich information about Web dynamics
- Multidimensional Weblog analysis:
 - disclose potential customers, users, markets, etc.
- Plan mining (mining general Web accessing regularities):
 - Web linkage adjustment, performance improvements
- Web accessing association/sequential pattern analysis:
 - Web cashing, prefetching, swapping
- Trend analysis:
 - Dynamics of the Web: what has been changing?
- Customized to individual users

Existing Web Log Analysis Tools

- There are more than 30 commercially available applications.
 - Many of them are slow and make assumptions to reduce the size of the log file to analyze.
- Frequently used, pre-defined reports:
 - Summary report of hits and bytes transferred
 - List of top requested URLs
 - List of top referrers
 - List of most common browsers
 - Hits per hour/day/week/month reports
 - Hits per Internet domain
 - Error report
 - Directory tree report, etc.
- Tools are limited in their performance, comprehensiveness, and depth of analysis.

Virtual-U and Weblog Mining

Virtual-U is a server-based software system that enables customized design, delivery, and enhancement of education and training courses delivered over the World Wide Web (WWW).

Virtual-U Log File Entries

- Information contained in the log file entries:
 - dd23-125.compuserve.com - domain name/IP address of the request
 - rhuia - user ID
 - [01/Apr/1997:00:03:25 -0800] - timestamp
 - GET - method of the request
 - /SFU/cgi-bin/VG/VG_dspmsg.cgi?ci=40154&mi=49 - script requested with parameters
 - 200 - server status code
 - 417 - size of the data sent back
- Another log file contains the browser type and the referring page.
More on Log Files

- Information NOT contained in the log files:
 - use of browser functions, e.g. backtracking within-page navigation, e.g. scrolling up and down
 - requests of pages stored in the cache
 - requests of pages stored in the proxy server

- Special problems with Virtual-U log files:
 - different user actions call same cgi script
 - same user action at different times may call different cgi scripts
 - one user using more than one browser at a time

In-Depth Analysis of Log Files

- In-depth analyses:
 - pattern analysis, e.g. between users, over different courses, instructional designs and materials, as Virtual-U features are added or modified
 - trend analysis, e.g. user behaviour change over time, network traffic change over time

- Questions can be answered by in-depth analyses:
 - In what context are the components or features used?
 - What are the typical event sequences?
 - What are the differences in usage and access patterns among users?
 - What are the differences in usage and access patterns over courses?
 - What are the overall patterns of use of a given environment?
 - What user behaviour change over time?
 - How usage patterns change with quality of service (slow/fast)?
 - What is the distribution of network traffic over time?

Use of Log Files

- Basic summarization:
 - Get frequency of individual actions by user, domain and session.
 - Group actions into activities, e.g. reading messages in a conference
 - Get frequency of different errors.

- Questions answerable by such summary:
 - Which components or features are the most/least used?
 - Which events are most frequent?
 - What is the user distribution over different domain areas?
 - Are there, and what are the differences in access from different domains areas or geographic areas?

Data Cleaning and Transformation

- IP address, User, Timestamp, Method, File+Parameters, Status, Size
- Machine, Internet domain, User, Field Site, Day, Month, Year, Hour, Minute, Seconds, Method, File, Parameters, Status, Size

Cleaning and Transformation:
- Necessitating knowledge about the resources at the site.
- Necessitating knowledge about the resources at the site.

Design of a Web Log Miner

- Web log is filtered to generate a relational database
- A data cube is generated form database
- OLAP is used to drill-down and roll-up in the cube
- OLAM is used for mining interesting knowledge

Data Cube Building

- Cleansed and Transformed Web Log
- Multi-dimensional Data Cube
Typical Summaries

- Request summary: request statistics for all modules/pages/files
- Domain summary: request statistics from different domains
- Event summary: statistics of the occurring of all events/actions
- Session summary: statistics of sessions
- Bandwidth summary: statistics of generated network traffic
- Error summary: statistics of all error messages
- Referring Organization summary: statistics of where the users were from
- Agent summary: statistics of the use of different browsers, etc.

OLAP Analysis of Web Log Database

View data from different perspectives and at different conceptual levels

Multidimensional perspectives
- Time
- Location
- Pages
- Users

Drill down on the Action Hierarchy

Slice and dice on different perspectives and levels

Workload: View data from different perspectives and at different conceptual levels

SFU

Field Sites

Workspace

Module

January

Slice on January

Donate to SFU
From OLAP to Mining

• OLAP can answer questions such as:
 – Which components or features are the most/least used?
 – What is the distribution of network traffic over time (hour of the day, day of the week, month of the year, etc.)?
 – What is the user distribution over different domain areas?
 – Are there and what are the differences in access for users from different geographic areas?

• Some questions need further analysis: mining.
 – In what context are the components or features used?
 – What are the typical event sequences?
 – Are there any general behavior patterns across all users, and what are they?
 – What are the differences in usage and behavior for different user populations?
 – Whether user behaviors change over time, and how?

Web Log Data Mining

• Data Characterization
• Class Comparison
• Association
• Prediction
• Classification
• Time-Series Analysis
 – Typical Event Sequence and User Behavior Pattern Analysis
 – Transition Analysis
 – Trend Analysis

Number of actions registered in Virtual-U server on a day

Classification of Modules/Actions by Field Site on a given day
Discussion

- Analyzing the web access logs can help understand user behavior and web structure, thereby improving the design of web collections and web applications, targeting e-commerce potential customers, etc.
- Web log entries do not collect enough information.
- Data cleaning and transformation is crucial and often requires site structure knowledge (Metadata).
- OLAP provides data views from different perspectives and at different conceptual levels.
- Web Log Data Mining provides in depth reports like time series analysis, associations, classification, etc.

Web Mining Outline

- What are the incentives of web mining?
- What is the taxonomy of web mining?
- What is web content mining?
- What is web structure mining?
- What is web usage mining?
- What is a Virtual Web View?
- Is there a query and discovery language for VWV?

Virtual Web View

- A view on top of the World-Wide Web
- Abstracts a selected set of artifacts
- Makes the WWW appear as structured

Multiple Layered Database Architecture

Layer n

More Generalized Descriptions

... Using an ontology

Layer i

Generalized Descriptions

Layer 0

Observation

- User may be satisfied with the abstract data associated with statistics
- Higher layers are smaller. Retrieval is faster
- Higher layers may assist the user to browse the database content progressively

Transformed and generalized database
Multiple Layered Database Strength

- Distinguishes and separates meta-data from data
- Semantically indexes objects served on the Internet
- Discovers resources without overloading servers and flooding the network
- Facilitates progressive information browsing
- Discovers implicit knowledge (data mining)

Examples

Documents

Images and Videos

Multiple Layered Database Higher Layers

Layer-0: Primitive data

Layer-1: dozen database relations representing types of objects (metadata)

Layer-2: generalization of layer-1

Layer-3: generalization of layer-2

Construction of the Stratum

- The multi-layer structure should be constructed based on the study of frequent accessing patterns

 - It is possible to construct high layered databases for special interested users

 - ex: computer science documents, ACM papers, etc.
Construction and Maintenance of Layer-1

- Updates are replicated in backbones or server sites.
- Generalizing:
 - Site 1
 - Site 2
 - Site n
- Layer 0
- Layer 1
- Layer 2
- Layer 3

Options for the Layer-1 Construction

- Site with Extraction Tools
- Site with Translation Tools
- XML Documents

The Need for Metadata

Can XML help to extract the right needed descriptors?

- `<NAME>`<x>nsi:Fig</x>

- `<RECOM>`World-Wide Web Consortium</x>

- `<VERSION>`1.0</x>

- `<DESC>`Meta language that facilitates more meaningful and precise declarations of document content</x>

- `<HOW>`Definition of new tags and DTDs</x>

XML can help solve heterogeneity for vertical applications, but the freedom to define tags can make horizontal applications on the Web more heterogeneous.

Concept Hierarchy

- **All**
 - `⊂`
 - `⊃`
 - `≈`
 - `∼`

- **Science**
 - Computing Science, Physics Mathematics, ...

- **Database Systems**
 - Data Mining, Transaction Management, Query Processing, ...

- **Computational Geometry**
 - Geometry Searching, Convex Hull, Geometry of Rectangles, Visibility, ...

WebML

Since concepts in a MLDL are generalized at different layers, search conditions may not exactly match the concept level of the inquired layers. Can be too general or too specific.

WebML Outline

- What are the incentives of web mining?
- What is the taxonomy of web mining?
- What is web content mining?
- What is web structure mining?
- What is web usage mining?
- What is a Virtual Web View?
- Is there a query and discovery language for VWV?

Introduction of new operators

<table>
<thead>
<tr>
<th>WebML primitive</th>
<th>Operation</th>
<th>Name of the operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>covers</td>
<td></td>
<td>Coverage</td>
</tr>
<tr>
<td>covered-by</td>
<td>⊆</td>
<td>Subsumption</td>
</tr>
<tr>
<td>like</td>
<td>≈</td>
<td>Synonymy</td>
</tr>
<tr>
<td>close-to</td>
<td>∼</td>
<td>Approximation</td>
</tr>
</tbody>
</table>

User-defined primitives can also be added.
Top Level Syntax

```
<WebML> ::= <Mine Header> from relation_list [related-to name_list] [in location_list] where where_clause [order by attributes_name_list] [rank by {inward | outward | access}]

<Mine Header> ::= {{ select | list | Describe Header | Classify Header } | *}

<Describe Header> ::= mine description in-relevance-to {attribute_name_list | *}

<Classify Header> ::= mine classification according-to attribute_name_list in-relevance-to {attribute_name_list | *}
```

WebML Example: Resource Discovery

Locate the documents related to “computer science” written by “Ted Thomas” and about “data mining”.

```
select * from document related-to "computer science" where "Ted Thomas" in authors and one of keywords like "data mining"
```

Returns a list of URL addresses together with important attributes of the documents.

WebML Example: Resource Discovery

Locate the documents about “data mining” linked from Osmar’s web page and rank them by importance.

```
select * from document where exact "http://www.cs.sfu.ca/~zaiane" in links_in and one of keywords like "data mining"
rank by inward, access
```

Returns a list of URL addresses together with important attributes of the documents.

WebML Example: Resource Discovery

Locate the documents about “Intelligent Agents” published at SFU and that link to Osmar’s web pages.

```
select * from document in "http://www.sfu.ca" related-to "computer science" where "http://www.cs.sfu.ca/~zaiane" in links_out and one of keywords like "Agents"
```

No "exact" ⇒ prefix substring

Returns a list of URL addresses together with important attributes of the documents.

WebML Example: Knowledge Discovery

Inquire about European universities productive in publishing on-line popular documents related to database systems since 1990.

```
select affiliation from document in "Europe" related-to "database systems" where affiliation belong_to "university" and one of keywords covered-by "database systems" and publication_year > 1990 and count = "high" and //links_in/"high"
```

Weight (heuristic formula)

Does not return a list of document references, but rather a list of universities.
WebML Example: Knowledge Discovery

Describe the general characteristics in relevance to authors’ affiliations, publications, etc. for those documents which are popular on the Internet (in terms of access) and are about “data mining”.

Retrieves information according to the ‘where clause’, then generalizes and collects it in a data cube for interactive OLAP-like operations.

Different Worlds

Mediator

Possible hierarchy of Mediators

Private ontology

WebML

Standard Ontology Representation

Mapping between concept hierarchies (one-to-one or one-to-many)
Reduction of semantic ambiguities

Mediation: Scenario 1

- Broadcasts Query Q
- Merges answers (Merging Graphs)
- Transforms Common Graph into Ontology A
- Replies to Sender

Mediation: Scenario 2

- Re-expresses Query Q into Q’ (or set of queries)
- Submits queries
- Merges result with other answers using ontology of Q
- Replies to Sender