

Submitted To : Dr. Osmar Zaiane
Submitted By: Leah Denney

Theresa Baich
Todd James
Vinoth Sabanadesan
Tim Yuan

PHP & Database Connectivity
CMPUT 410: Group Presentation Report

 2

Table of Contents

Section Page
1 Introduction – What is PHP? 3
 PHP History 3
2 Variables and Expressions 4
3 Functions and Classes 4
4 Control Structures 5
5 Cookies in PHP 8
6 Client/Server Variables 9
7 File I/O 9
8 Database Connectivity 10
9 Comparisons (ASP.NET & CGI) 12
10 References 12

 3

Section 1 - What is PHP???
 PHP is a FREE server side scripting language for creating dynamic web pages.
Most operating systems will support PHP, and most web servers will support it. Once
feature of PHP is that it can be embedded into HTML. To embed a php script in a html
file you can simply place it in <?php code goes here ?>. See example below

PHP is a scripting language that borrows its syntax from C, PERL and JAVA. It

can be programmed in various styles from procedure to object oriented programming. It
runs on nearly every web server and operates with very minimal changes required to the
PHP code. It also uses ODBC and has native drivers for MySql, Oracle, Postgres which
take advantage of each database’s unique features.

PHP History

PHP originated in 1995 by Rasmus Lerdorf, and was initially a simple set of
perl scripts. Later, a C implementation with added functionality such as database
connectivity and simple dynamic web applications gave PHP1 and PHP2 it's own cult
following. However it was not until 1997 that PHP truly found its legs. Zeev Suraski and
Andi Gutmans, worked together with Rasmus Lerdorf to create PHP 3. PHP 3 was very
successful for the following reasons:

-A solid infrastructure for connecting to a variety of different databases,
protocols, and APIs.
-An extensibility feature that attracted developers to add their own extension
modules.
-Object oriented Syntax support and more consistent language syntax.

<html>
<head>
 <title>PHP Test</title>
 </head>
 <body>
 <?php echo '<p>Hello World</p>'; ?>
 </body>
</html>

 4

In May of 2000 PHP 4 was born and offered a complete rewrite of PHP's core, now
known as the Zend engine. It improved the performance of complex applications and
improved the modularity of PHP's code base. In addition to improved performance, it had
support for many more web servers, HTTP sessions, output buffering, a more secure
ways of handling user input and several new language constructs. PHP 5, released
recently, offers another significant performance improvement over php 4 with the new
ZEND 2 engine. Although PHP 4 was powerful, it still had scalability problems when
dealing with serious high end use. As well PHP 5 adds additional features such as
exception handling, and a stronger object oriented model, all the while being highly
backward compatible.

Lets get started…
Section 2 - Variables and Expressions

As with other programming languages, PHP allows you to define variables. In
PHP there are several variable types, but the most common is called a String. It can hold
text and numbers. All strings begin with a $ sign. To assign some text to a string you
would use the following code:
Thi
s is
quite a simple line to understand, everything inside the quotation marks will be assigned
to the string. You must remember a few rules about strings though:
Strings are case sensitive so $Welcome_Text is not the same as $welcome_text
String names can contain letters, numbers and underscores but cannot begin with a
number or underscore When assigning numbers to strings you do not need to include the
quotes so: $user_id = 987 would be allowed.

Section 3: Functions and Classes

You can create functions in php:
Syntax:

Function functionName(arguments){
}

Example

Classes can also be defined

$welcome text = "Hello and welcome to my website.";

<?php
function foo($arg_1, $arg_2, /* ..., */ $arg_n){

echo "Example function.\n";
return $retval;

}?>

<?php
class Cart {

var $items; // Global variable

function add_item($artnr, $num) {

$this->items[$artnr] += $num;
}

}
?>

 5

Section 4 - Control Structures
In PHP Control Structures in PHP are very similar to other languages.

Conditional Statements
In PHP we have two conditional statements:

if (...else) statement - use this statement if you want to execute a set of code when a
condition is true (and another if the condition is not true)
switch statement - use this statement if you want to select one of many sets of lines to
execute

The If Statement
If you want to execute some code if a condition is true and another code if a condition is
false, use the if....else statement.
Syntax:

if (condition)
code to be executed if condition is true;

else
code to be executed if condition is false;

Example
The following example will output "Have a nice weekend!" if the current day is Friday,
otherwise it will output "Have a nice day!":

The Switch Statement
If you want to select one of many blocks of code to be executed, use the Switch
statement.
Syntax
switch (expression){

case label1:
 code to be executed if expression = label1;
 break;

case label2:
 code to be executed if expression = label2;
 break;

default:
 code to be executed if expression is different from both label1 and label2;
}

<html>
<body>

<?php
$d=date("D");
if ($d=="Fri")

echo "Have a nice weekend!";
else{

echo "Have a nice day!";
echo "Good bye";

}
?>

If more than one line
should be executed the
lines should be enclosed
within curly braces {}

 6

Example
This is how it works: First we have a single expression (most often a variable), that is
evaluated once. The value of the expression is then compared with the values for each
case in the structure. If there is a match, the block of code associated with that case is
executed. Use break to prevent the code from running into the next case automatically.
The default statement is used if none of the cases are true.

Looping
Very often when you write code, you want the same block of code to run a

number of times. You can use looping statements in your code to perform this.
In PHP we have the following looping statements: while - loops through a block of code
as long as a specified condition is true. do...while loops loop through a block of code
once, and then repeats the loop as long as a special condition is true, for - loops through a
block of code a specified number of times and foreach - loops through a block of code
for each element in an array.

The while Statement
The while statement will execute a block of code if and as long a condition is true.
Syntax

while (condition)
code to be executed;

Example
The following example demonstrates a loop that will continue to run as long as the
variable i is less than, or equal to 5. i will increase by 1 each time the loop runs:

<html>
<body>
<?php
 $x = 2;

switch ($x){
case 1:

 echo "Number 1";
 break;

case 2:
 echo "Number 2";
 break;

case 3:
 echo "Number 3";
 break;

default:
 echo "No number between 1 and 3";

}
?>
</body>

</html>

<html>
<body>

<?php
$i=1;
while($i<=5){

echo "The number is " . $i . "
";
$i++;

}
?>

</body>
</html>

 7

The do...while Statement
The do...while statement will execute a block of code at least once - it then will repeat the
loop as long as a condition is true.
Syntax

do{
code to be executed;

}while (condition);

Example

This example will increment the value of i at least once, and it will continue incrementing
the variable i while it has a value of less than 5.

The for Statement
The for statement is used when you know how many times you want to execute a
statement or a list of statements.
Syntax

for (initialization; condition; increment)
{

 code to be executed;
}

Note: The for statement has three parameters. The first parameter is for initializing
variables, the second parameter holds the condition, and the third parameter contains any
increments required to implement the loop. If more than one variable is included in either
the initialization or the increment section, then they should be separated by commas. The
condition must evaluate to true or false.

Example The above example prints the text "Hello World!" five times.

<html>
<body>

<?php
$i=0;
do{

$i++;
echo "The number is " . $i . "
";

}while ($i<5);
?>

</body>
</html>

<html>
<body>

<?php
for ($i=1; $i<=5; $i++)
{
echo "Hello World!
";
}

?>
</body>
</html>

 8

The foreach Statement
Loops over the array given by the parameter. On each loop, the value of the current
element is assigned to $value and the array pointer is advanced by one - so on the next
loop, you'll be looking at the next element.
Syntax

foreach (array as value)
{
 code to be executed;
}

Example

The above example demonstrates a loop that will print the values of the given array.

Section 5 - Cookies in PHP
Setting Cookies You can set a cookie with the setcookie function which is described
below.
setcookie(string CookieName, string CookieValue, int CookieExpireTime, path, domain,
int secure);
Retrieving Cookies You can use the $_COOKIE superglobal to retrieve your cookie.

<html>
<body>
<?php

$arr=array("one","two","three");
foreach ($arr as $value)
{
echo "Value: " . $value . "
";
}
?>

</body>
</html>

<html>
 <head>
 <title>Cookie Example</title>
 </head>
<body>
<?php
 //set the cookie variables
 setCookie('Name','John Smith', time() + 60 * 60 * 24 * 5);
 setCookie('Location','Edmonton', time() + 60 * 60 * 24 * 5);
 //post the cookie variables
 extract($POST);
 echo('Cookie values');
 //ouput each cookie and value
 foreach ($_COOKIE as $key=>$value){
 echo('
key:'.$key);
 echo('
value: '.$value);
 }
?>
</body>
</html>

 9

Section 6 - Client/Server Variables
$_ENV - Contains system environment variables
$_GET - Contains variables in the query string, including from GET forms
$_POST - Contains variables submitted from POST forms
$_COOKIE - Contains all cookie variables
$_SERVER - Contains server variables, such as HTTP_USER_AGENT
$_REQUEST - Contains everything in $_GET, $_POST, and $_COOKIE
$_SESSION -- Contains all registered session variables
These variables hold useful information about server configuration, request information,
and session information. They are all super-global associative arrays. A useful example is
browser detection as follows:

Section 7 - File I/O
The fopen() function is used to open files in PHP–If the fopen() function is unable to
open the specified file, it returns 0 . The fclose() function is used to close a file and the
the feof() function is used to determine if the end of file is true. Keep in mind that y ou
cannot read from files opened in w, a, and x mode!

<html>
<head>
<title>Browser Detection Example</title>
</head>
<body>
<?php

echo("Your browser is:
");
 echo($_SERVER["HTTP_USER_AGENT"]);
?>
</body>
</html>

<html>
<head>
 <title>File I/O Example</title>
</head>
<body>
<?php

if (!($f=fopen("test.txt","r")))
exit("Unable to open file.");

while (!feof($f)){
$x=fgetc($f);
echo $x;

}
fclose($f);

?>
</body>
</html>

 10

Section 8 - Database Connectivity
The ability for a scripting language to connect to a database is essential for it to be
functional and to become popular amongst programmers. It needs to have a simple
interface to perform database functions but still be powerful enough to perform the most
complex queries. This is achieved in PHP through the use of includes statements, the
ability to embed queries in the middle of pages and through the use of different built in
packages for connecting to databases. Heavily used code such as those variables storing
information about the variables can be placed in a separate file and simply included at the
top of each PHP page requiring a database connection rather than having to retype them
each time.
For example:
dbConnect.php

index.php

PHP allows for connections to multiple types of databases. However, each database uses
slight different functions. The most commonly used functions are highlighted in the
following tables with examples for each database type.

 mySQL Oracle ODBC
Connect mysql_connect Ora_Logon

$ odbc_connect

Open DB mysql_select_db Ora_Open
Parse Query Ora_Parse

Execute Query mysql_query Ora_Exec odbc_exec
Retrieve Data mysql_result Ora_Fetch_Into odbc_fetch_into

Array for Results mysql_fetch_array odbc_fetch_array
Count Results mysql_numrows ora_numcols()

ora_numrows()
odbc_num_rows

Close Connection mysql_free_result
mysql_close

Ora_Close
Ora_Logoff

Odbc_free_result
odbc_close

MySQL – Using arrays to store data
Database is first connected using mysql_connect() command and the database is opened
using @mysql_select_db(). Queries can then be executed using the mysql_query()
function and results can be stored in an array using mysql_fetch_array().

<?php
/* declare some relevant variables */
$DBhost = "Your-MySQL-servers-IP-or-
domainname";
$DBuser = "Your user name";
$DBpass = "Your Password";
$DBName = "The Name of the Database";
$table = "Table Name";
?>

<?php

include(dbconnect.php');

?>

<?php
/* declare some relevant variables */
$DBhost = "Your-MySQL-servers-IP-or-domainname";
$DBuser = "Your user name";
$DBpass = "Your Password";
$DBName = "The Name of the Database";
mysql_connect($DBhost,$DBuser,$DBpass) or die("Unable to connect to database");
@mysql_select_db("$DBName") or die("Unable to select database $DBName");
$sqlquery = "SELECT * FROM $table WHERE course = 'cmput410'";
$result = mysql_query($sqlquery);

while($row = mysql_fetch_array($result)) {

echo "<p>Student Name: " . row[first_name] .
"
Grade:". $row[grade]. "</p>";

}
if(mysql_num_rows($result)<1){

echo "No Results!
";
}
mysql free result($result);

 11

Oracle
To use an Oracle database PutEnv("ORACLE_SID=ORASID") is first used to set up the
environment. The function Ora_Logon() connects to the database and Ora_Open
($connection) opens the connection and is sets a cursor that will be used for further
operations. Using Ora_Parse() will parse the query to ensure that it is a valid SQL
statemtent and then can be executed using Ora_Exec(). Results can be obtained with
Ora_Fetch_Into() if a select query is made. Otherwise the Ora_commit() function must be
called to lock in any changes from update or insert statements.

Connecting to a database using PHP is very similar to connecting to a database using any
other programming language. A connection needs to be established, a query is executed,
results are parsed and the connection is closed. PHP, through different functions for
different databases is able to exploit the benefits of each database type to make
connections efficient, quick and powerful if used correctly.

<?php
PutEnv("ORACLE_SID=ORASID");

$connection = Ora_Logon ("username","password");
if ($connection == false){

echo Ora_ErrorCode($connection).": ".Ora_Error($connection)."
";
exit;
}

$cursor = Ora_Open ($connection);
if ($cursor == false){

echo Ora_ErrorCode($connection).": ".Ora_Error($connection)."
";
exit;

}

$query = “SELECT * FROM table WHERE course = 'cmput410'";
$result = Ora_Parse ($cursor, $query);
if ($result == false){

echo Ora_ErrorCode($cursor).": ".Ora_Error($cursor)."
";
exit;

}

$result = Ora_Exec ($cursor);
if ($result == false){

echo Ora_ErrorCode($cursor).": ".Ora_Error($cursor)."
";
exit;

}

echo "<table border=1>";
echo "<tr><td>Student Name</td><td> Grade</td></tr>";

while (Ora_Fetch_Into ($cursor, &$values)){

$name = $values[0];
$grade = $values[1];

echo "<tr><td>$name</td><td>$grade</td></tr>";

}
echo "</table>";
Ora_Close ($cursor);
Ora_Logoff ($connection);

?>

 12

Section 9 - PHP vs ASP.NET
Although the ASP.NET framework provides for true object-oriented

programming (OOP), and true inheritance, polymorphism, and encapsulation, this is also
a weakness for web development. What is gained in robustness, is paid for in efficiency.
ASP.NET is expensive with respect to memory usage and execution time when compared
with PHP, due to its longer code path. For web-based applications, these limitations can
be a serious problem, since for high end use, web applications must scale to thousands of
users per second. Also, ASP.NET uses ODBC for integration with databases. Although
this provides a consistent set of calling functions to access the target database, it does not
allow you to take advantage of a database's unique features like PHP does. Furthermore,
ASP.NET officially requires that you use the IIS web server and although APS.NET is
free, its platform, IIS, is not.

PHP vs CGI

Unlike Perl, a general purpose scripting language, PHP was designed from the
ground up to be used for scripting web pages. As a result, it has a lot of built in facilities
that simplify the process. PHP code is, also, embedded directly into XHTML documents.
This allows for clear concise XHTML code without having to use multiple print
statements, as is necessary with other CGI-based languages.

Section 10 - Handy References:

www.phpbuilder.com

php.resourceindex.com

www.php.net

www.w3schools.com/php/default.asp

www.phpfreaks.com

www.vend.com

