
PHP & XML – PHP &
Web services

Presenters:
Sonu

Nathan
Chris

Mansoor

Topic 1 -
PHP & Web Services

Why PHP
Easily usable packages
Simplified interface and details
Looks and feels like Perl

Major SOAP Packages available
NuSOAP
PHP:PEAR::SOAP

This tutorial is based on NuSOAP

Server using NuSOAP

Download @:
http://dietrich.ganx4.com/nusoap/index.php
Has built-in WSDL support

No document descriptor XML file required
WSDL file can be loaded and registered on the fly
with very few lines of code

Real Live Example

The following code is an example of a server
built in PHP that returns the GST for a given
amount
It uses the nusoap.php package and
assumes that the web server is configured to
handle PHP scripts

The Server Code
1. <?
2. require_once("nusoap.php");
3. $ns=“www.yourserver.com/";
4. $server = new soap_server();
5. $server->configureWSDL('CanadaTaxCalculator',$ns);
6. $server->wsdl->schemaTargetNamespace=$ns;
7. $server->register('CalculateTax',
8. array('amount' => 'xsd:string'),
9. array('return'=>'xsd:string'),
10. $ns);
11. function CalculateTax($amount){
12. $taxcalc=$amount*.07;
13. return new soapval('return',‘xsd:string',$taxcalc);
14. }
15. $server->service($HTTP_RAW_POST_DATA);
16. ?>

The Server Code - Explained

1. <?
……
……
16. ?>

Line 1 and 16 denote the start and end of a
PHP script.

The Server Code - Explained

2. require_once("nusoap.php");

Line 2 includes the NuSOAP package

3. $ns=“www.yourserver.com/";

Line 3 designates the URI for the web service

The Server Code - Explained
4. $server = new soap_server();

Line 4 create a new instance of a soap_server
object

5. $server->configureWSDL('CanadaTaxCalculator',$ns);
6. $server->wsdl->schemaTargetNamespace=$ns;

Lines 5 and 6 configure the service name and
namespace for the WSDL

The Server Code - Explained
7. $server->register('CalculateTax',
8. array('amount' => 'xsd:string'),
9. array('return'=>'xsd:string'),
10. $ns);

Lines 7-10 make the server aware of the
function/method ‘CalculateTax’ which takes in a
string and returns a string

The Server Code - Explained
11. function CalculateTax ($amount) {
12. $taxcalc = $amount * .07;
13. return new soapval ('return', ‘xsd:string', $taxcalc);
14. }

Lines 11-14 define the ‘CalculateTax’ method.

Notice the return value

The Server Code - Explained
15. $server->service($HTTP_RAW_POST_DATA);

Line 15 simply invokes the service

And Voila!

The above code needs to be placed on the web
server, and the service is now live

Auto Generated WSDL

One of NuSOAP’s strengths is the built in
WSDL generation capability

With any servers built using NuSOAP and PHP,
adding “?wsdl” to the end of the server’s URL
will dynamically generate and display the WSDL

http://www.yourserver.com/server.php?wsdl

Client using NuSOAP
NuSOAP’s built-in WSDL support
simplifies the client creation
1. <?
2. require_once('nusoap.php');
3. $wsdl =
“http://www.yourserver.com/server.php?wsdl”;
4. $client=new soapclient($wsdl, 'wsdl');
5. $param=array('amount'=>'15.00',);
6. echo $client->call('CalculateTax', $param);
7. ?>

Client code - Explained

NuSOAP’s built-in WSDL support simplifies
the client creation

3. $wsdl = “http://www.yourserver.com/server.php?wsdl”;

Line 3 assigns a variable to a WSDL.
Note: the WSDL is dynamically generated by
appending “?wsdl” to the server’s URL

Client using NuSOAP

NuSOAP’s built-in WSDL support simplifies
the client creation

4. $client=new soapclient($wsdl, 'wsdl');

Line 4 creates a new instance of a soap client
with the WSDL defined earlier

Client using NuSOAP

NuSOAP’s built-in WSDL support simplifies
the client creation

5. $param=array('amount'=>'15.00',);

Line 5 creates the parameter to be passed to
the web service

In this example, the client is requesting the web service to return
the GST value for a $15.00 purchase
This value can be dynamic

Client using NuSOAP

NuSOAP’s built-in WSDL support simplifies
the client creation

6. echo $client->call('CalculateTax', $param);

Line 6 makes a call to the web service and
displays the return result via the ‘echo’ call

And you’re done!

Topic 2 -
XML Parsing in PHP 5 – Dom Model

PHP 5 has a DOM extension that fully
conforms to the W3C standards

Compatibility: In following excellent Microsoft
standards, PHP 5 is completely incompatible
with PHP 4 and below

Note: The Microsoft reference is completely wrong ☺

Dom Model – Step by Step Guide
Creation

1. Create a new DomDocument object

$dom = new DomDocument();

2. Load an XML file:

$dom->load("articles.xml");

Dom Model – Step by Step Guide
Validation

3. Validation can be done for DTDs, XML Schemas,
and RelaxNG documents using the appropriate
validate method:

$dom->validate("mydtd.dtd");
$dom->schemaValidate("myschema.xsd");
$dom->relaxNGValidate("myRNG.rng");

Note: The return value is a boolean, with any
errors returned as PHP warnings

Dom Model – Step by Step Guide
Element Access

4. DomDocument objects can be traversed in
two ways:

4.a Getting a list of all nodes
$mytags = $dom->getElementsByTagName("myTag");

4.b Getting a unique node
$myID = $dom->getElementByID("myID");

Dom Model – Step by Step Guide
Children Access

5. Children nodes for a given node can be
accessed as follows:

$children = $myNode->childNodes;

Dom Model – Step by Step Guide
Dynamic XML Creation

DomDocuments can also write out XML files

This functionality can be used to easily
create/modify XML Documents

Dom Model – Step by Step Guide
Dynamic XML Creation - Example

Adding new elements to an XML document

$myElement = $dom->createElement("myElement");
$myText = $dom->createTextNode("A Text Node");
$myElement->appendChild($myText);
$dom->documentElement->appendChild($myElement);

Note: The nodes are created and chained together, then the new element is
inserted into the root element

Dom Model – Step by Step Guide
Dynamic XML Creation - Example

XML Documents can be generated in two
ways

1. Output the document to a web browser, or
standard output

print $dom->saveXML();

2. Output the document to file
print $dom->save("myXMLfile.xml");

Dom Model in PHP – Benefits

Ease of use
Provided a simple interface for a multitude
of tasks including validation, querying and
modifying XML
In memory parsing implies fast, non-
sequential access
Handy for visualizing data and transforming
data on the fly

Dom Model in PHP – Drawbacks

Parallel parsing of large documents will hog
system memory
Building the in-memory tree takes a long
time
Does not support partial parsing of XML
documents

Topic 3 -
XML Parsing in PHP 5 – Event Based

This example is based on RSS (Really Simple
Syndication)

RSS: document format intended to describe,
summarize, and distribute the contents of a Web site
as a ‘channel’ (used for sending news headlines and
other contents by BBC, CNN, Disney, Slashdot…)

Channel: The aggregation of various documents
(pages) on a site

XML Parsing – Event Based
Example

http://ugweb.cs.ualberta.ca/~muhammad/RSS/rss.xml

Most browsers display XML as is – or worse

Need a better mechanism that can selectively parse and
display the file

DOM models are not the best option since they parse
the entire document resulting in excessive, unneeded
overhead

http://ugweb.cs.ualberta.ca/~muhammad/RSS/rss.xml

XML Parsing – Event Based
Example

We use an intermediate agent based on PHP
and event based parsing that formats all XML
documents in a channel

This example is Object Oriented

XML Parsing – Event Based
Example

Create a class RSSParser

class RSSParser {
var $insideitem = false;
var $tag = "";
var $title = "";
var $description = "";
var $link = "";

The above variables hold all the information we will
need since we do not need to remember extraneous
tags

XML Parsing – Event Based
Example

There are 3 functions within this class

function startElement($parser, $tagName, $attrs) {
if ($this->insideitem) {

$this->tag = $tagName;
}
elseif ($tagName == "ITEM") {

$this->insideitem = true;
}

}

startElement is called each time we see a tag while reading the input
XML.
Notice how it ignores all tags except the “ITEM” tag

XML Parsing – Event Based
Example

function characterData($parser, $data) {
if ($this->insideitem) {

switch ($this->tag) {
case "TITLE":
$this->title .= $data;
break;

case "DESCRIPTION":
$this->description .= $data;
break;

case "LINK":
$this->link .= $data;
break;

}
}

}
Gets called one or more times in response to the event of reaching text
within a set of tags

$this – This parser

insideitem – set to true when inside a
“ITEM” tag

The “ITEM” tag contains these
three tags

$data – the data pertaining to the
current tag

XML Parsing – Event Based
Example

function endElement($parser, $tagName) {
if ($tagName == "ITEM") {

printf("<p>%s</p>",
trim($this->link),htmlspecialchars(trim($this->title)));
printf("<p>%s</p>",
htmlspecialchars(trim($this->description)));
$this->title = "";
$this->description = "";
$this->link = "";
$this->insideitem = false;

}
}
}

Called when a tag is closed, If the tag == “ITEM”, our initially declared
variables hold all the data we need to display the contents of this “ITEM” tag

This brace close the initial brace of the class
declaration: class RSSParser {

XML Parsing – Event Based
Example

Now we can use the above RSS Parser class to feed and output all
“ITEMS” within an XML file

1. $xml_parser = xml_parser_create(); //php built in event-driven xml parser
2. $rss_parser = new RSSParser();
3. xml_set_object($xml_parser,&$rss_parser);
//set the event handlers for the start and end tags of an element
4. xml_set_element_handler($xml_parser, "startElement", "endElement");
//event handler for the text data between inside tags
5. xml_set_character_data_handler($xml_parser, "characterData");
6. $fp = fopen("http://www.sitepoint.com/rss.php","r")

or die("Error reading RSS data.");
7. while ($data = fread($fp, 4096)) //read in 4K chunks

8. xml_parse($xml_parser, $data, feof($fp))
or die(sprintf("XML error: %s at line %d",

xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

9. fclose($fp);
10. xml_parser_free($xml_parser);

XML Parsing – Event Based
Example

1. $xml_parser = xml_parser_create();

Line 1 Creates an instance of the built in
event-driven xml parser

2. $rss_parser = new RSSParser();

Line 2 creates an instance of our class

XML Parsing – Event Based
Example

3. xml_set_object($xml_parser,&$rss_parser);

Line 3 ties our object as the event handler for the
XML parser

4. xml_set_element_handler($xml_parser, "startElement",
"endElement");

Line 4 registers the individual functions that get
fired when the parser sees a start/end tag

XML Parsing – Event Based
Example

5. xml_set_character_data_handler($xml_parser, "characterData");

Line 5 is the event handler for the text data between inside

6. $fp = fopen("http://www.sitepoint.com/rss.php","r")
or die("Error reading RSS data.");

Line 6 opens the RSS feed

7. while ($data = fread($fp, 4096))

Line 7 reads in data in 4KB (or less for the last one) chunks

XML Parsing – Event Based
Example

8. While loop:

xml_parse($xml_parser, $data, feof($fp))
or die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

The while loop parsing each chunk of the data

XML Parsing – Event Based
Example

8. While loop:

xml_parse($xml_parser, $data, feof($fp))
or die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

The while loop parsing each chunk of the data

This is where the events get fired (the functions are called)

XML Parsing – Event Based
Example

8. While loop:

xml_parse($xml_parser, $data, feof($fp))
or die(sprintf("XML error: %s at line %d",
xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

The while loop parsing each chunk of the data

9. fclose($fp);
10. xml_parser_free($xml_parser);

Close the file
Free the memory

XML Parsing – Event Based
Benefits

Easy readability of RSS XML feeds

Overall beneficial when parsing chunks of documents

Extremely tight on memory usage, especially compared to the DOM
model

As easy as 1-2-3: Create the parser, set the handlers and pass the
feed

XML Parsing – Event Based
Drawbacks

No advanced functionality of the DOM model, such as non-
sequential access

Complex searches can be difficult to implement

No DTD available

Lexical information is not available

	PHP & XML – PHP & Web services
	Topic 1 - PHP & Web Services
	Server using NuSOAP
	Real Live Example
	The Server Code
	The Server Code - Explained
	The Server Code - Explained
	The Server Code - Explained
	The Server Code - Explained
	The Server Code - Explained
	The Server Code - Explained
	Auto Generated WSDL
	Client using NuSOAP
	Client code - Explained
	Client using NuSOAP
	Client using NuSOAP
	Client using NuSOAP
	Topic 2 - XML Parsing in PHP 5 – Dom Model
	Dom Model – Step by Step GuideCreation
	Dom Model – Step by Step GuideValidation
	Dom Model – Step by Step GuideElement Access
	Dom Model – Step by Step GuideChildren Access
	Dom Model – Step by Step GuideDynamic XML Creation
	Dom Model – Step by Step GuideDynamic XML Creation - Example
	Dom Model – Step by Step GuideDynamic XML Creation - Example
	Dom Model in PHP – Benefits
	Dom Model in PHP – Drawbacks
	Topic 3 - XML Parsing in PHP 5 – Event Based
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedExample
	XML Parsing – Event BasedBenefits
	XML Parsing – Event BasedDrawbacks

