
A PRESENTATION BY

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

What is PHP?

PHP is a FREE server side scripting language for
creating dynamic webpages
It can be embedded in HTML

<html>
<head>
<title>PHP Test</title>
</head>
<body>
<?php echo '<p>Hello World</p>'; ?>

</body>
</html>

PHP Advantage

A scripting language that borrows its syntax from C,
perl and java. As such it is fairly easy to pick up
Can be programmed in various styles from procedure
to OOP
Scripts can be easily embedded into HTML to make
dynamic web content
Runs on nearly every web server and operating with
very minimal if any changes being required to the PHP
code
Uses ODBC, and has native drivers for MySQL,
Oracle, Postgres taking advantage of each database's
unique features

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

PHP History: PHP 1 and 2

Originated in 1995 by Rasmus Lerdorf

Initially a simple set of perl scripts
Zeev Suraski and Andi Gutmans, working
together with Rasmus Lerdorf created PHP 3 in
1997

PHP History: PHP 3

PHP 3 was very successful for the following
reasons:
– A solid infrastructure for connecting to a variety of

different databases,protocols, and APIs
– An extensibility feature that attracted developers to

add their own extension modules
– Object oriented Syntax support and a more

consistent language syntax

PHP History: PHP 4

In 2002 a complete rewrite of the PHP core,
now known as zend engine
Improved the performance of complex
applications and improved the modularity of
PHP's code base
Support for many more web servers, HTTP
sessions, output buffering, more secure ways
of handling user input and several new
language constructs

PHP History: PHP 5

Released recently, offers another significant
performance improvement over php 4 with the
new ZEND 2 engine
Additional features such as exception handling,
and a stronger object oriented model, all the
while being highly backward-compatible

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

Variables

Case sensitive so $Welcome_Text is not the
same as $welcome_text
Names can contain letters, numbers and
underscores but cannot begin with a number or
underscore

Scalar Variables

A scalar variable can contain:
– String $myVariable = “hello”;
– Integer $myVariable = 42;
– Float $myVariable = 23.25;

Only strings in double quotes are evaluated
– $myString =“hello $test”;

Arrays

Indexed from 0 to n-1
Create array by array function

– $myArray= array("Hello", "World");

Create array by array indentifier:
– $myArray[] = “Hello”; MyArray[] = “World”;

An element of an array is prefixed with $
– $myArray[3] = ‘alpha’; $myVar = $myArray[0];

Key values do not have to numeric
– $names = array("a"=>"Andy", "b"=>"Chris", "c"=>"Dave",

"d"=>"Bill");

Regular Expressions

Six functions that all take a regular expression string as
an argument

– ereg: search a string for matches of reg expression
– eregi: case sensitive version
– ereg_replace: replaces occurrences of string with new string
– eregi_replace: case sensitive version
– split: returns the matches as an array of strings
– spliti: case sensitive version

eregi('^[a-zA-Z0-9._-]+@[a-zA-Z0-9-]
+\.[a-zA-Z.]{2,5}$', $email)

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

Control Structures - Conditionals

if(condition){statements}
– if($number) {echo “”the number is not zero!”;}

if(condition) {statements} else {statements}
if(condition) { statements }

elseif (condition) {statements}

else {statements}
switch(expression) {statements}
variable= (condition) ? expression1: expression2;

Control Structures - Loops

while (condition) {statements}

do {statements} while (condition);
for (init;condition;increment) {statements}

foreach (list) { statement}
– foreach $line (array) {echo “$line\n”;}

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

Cookies

Setting Cookies
– setcookie(string CookieName, string CookieValue, int

CookieExpireTime, path, domain, int secure);
– <?php setcookie("uname", $name, time()+36000); ?>

Retrieving Cookies
– $_COOKIE[“cookieName”]
– ?php if (isset($_COOKIE["uname"])) echo "Welcome " .

$_COOKIE["uname"]
. "!
"; else echo "You are not logged in!
"; ?>

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

Useful Variables

$_ENV - Contains system environment variables
$_GET - Contains variables in the query string,
including from GET forms
$_POST - Contains variables submitted from POST
forms
$_COOKIE - Contains all cookie variables
$_SERVER - Contains server variables, such as
HTTP_USER_AGENT
$_REQUEST - Contains everything in $_GET,
$_POST, and $_COOKIE
$_SESSION -- Contains all registered session
variables

Examples of Variable Use

Browser Example
– <? "Your Browser is:

".$_SERVER["HTTP_USER_AGENT"] ?>

Get and Post Example (after a post)
– <?php echo $_POST["variableName"]; ?>

SSI- Server Side Includes
– <?php require("header.htm"); ?>

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

File I/O

The fopen() function is used to open files in PHP
– If the fopen() function is unable to open the specified file, it

returns 0
– Example:

<?php $f=fopen("file.txt","r"); ?>

The fclose() function is used to close a file
– <? fclose($f); ?>

The feof() function is used to determine if the end of file
is true

– Note: You cannot read from files opened in w, a, and x mode!
– if (feof($f))

echo "End of file";

File I/O cont’d

The fgetc() function is used to read a single character
from a file

– Reading a file character by character :
<?php

if (!($f=fopen("welcome.txt","r")))
exit("Unable to open file.");
while (!feof($f))
{
$x=fgetc($f);
echo $x;
}
fclose($f);
?>

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

User-Defined Functions & Classes

Can create functions without predefining them unless
they are created conditionally

<?php
function foo($arg_1, $arg_2, /* ..., */ $arg_n){

echo "Example function.\n";
return $retval;

}?>

Classes can also be defined
<?php

class Cart {
var $items; // Global variable
function add_item($artnr, $num) {

$this->items[$artnr] += $num;
}}?>

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

Database Connectivity

Essential part of many web applications

PHP allows for simply integration
– Connect to database once; use of includes allows

for connect/close functions to be in separate files
– Make multiple queries throughout page by

embedding PHP code

Connecting with Databases

Similar to connecting using other languages
– Open connection, run query, parse results, close

connection

Able to connect to a variety of databases
– Access, Oracle, mySQL
– Each database uses slightly different functions

mySQL Connection

<?php
/* declare some relevant variables */
$DBhost = "Your-MySQL-servers-IP-or-domainname";
$DBuser = "Your user name";
$DBpass = "Your Password";
$DBname = "The Name of the Database";
$table = "Table Name";
$DBconnect = mysql_connect($DBhost,$DBuser,$DBpass) or

die("Unable to connect to database");

?>

Can place in dbconnect.php file that is included when needed

<?php
@mysql_select_db("$DBName") or die("Unable to select database $DBName");
$sqlquery = "SELECT * FROM $table WHERE course = 'cmput410'";
$result = mysql_query($sqlquery);
$number = mysql_numrows($result);
$i = 0;
if ($number < 1) {

print "<CENTER><P>There were no results for your search.</CENTER>";
}
else {

while ($number > $i) {
$name = mysql_result($result,$i,"first_name");
$grade = mysql_result($result,$i,"grade");
print "<p>Student Name: $first_name
Grade:$grade</p>";
$i++;

}}
mysql_close($Dbconnect);

?>

mySQL Connection cont’d

Execute Query

Count Results

Process 1
row at a time

Can also use arrays to store results from queries
<?php

@mysql_select_db("$DBName") or die("Unable to select database $DBName");

$sqlquery = "SELECT * FROM $table WHERE course = 'cmput410'";
$result = mysql_query($sqlquery);

while($row = mysql_fetch_array($result)) {

echo "<p>Student Name:". $row[first_name]
."
Grade:". $row[grade]. "</p>";

}

if(mysql_num_rows($result)<1){
echo "No Results!
";

}

mysql_free_result($result);
mysql_close($Dbconnect);

?>

Results from Queries

Free memory

Store results
In an array

Oracle Connection

<?php
PutEnv("ORACLE_SID=ORASID");
$connection = Ora_Logon ("username","password");
$cursor = Ora_Open ($connection);
$query = “SELECT * FROM table WHERE course = 'cmput410'";
$result = Ora_Parse ($cursor, $query);
$result = Ora_Exec ($cursor);

echo "<table border=1>";
echo "<tr><td>Student Name</td><td> Grade</td></tr>";
while (Ora_Fetch_Into ($cursor, &$values)){
$name = $values[0];
$grade = $values[1];
echo "<tr><td>$name</td><td>$grade</td></tr>";

}
echo "</table>";
Ora_Close ($cursor);
Ora_Logoff ($connection);
?>

Cursor for queries

Set environment variable

Validates SQL
Executes SQL

Free memory

If making changes use
Ora_Commit($connection)
to lock in before closing

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

PHP vs ASP.NET

What ASP.NET gained in robustness, it paid
for in efficiency
ASP.NET uses ODBC for integration with
databases

PHP takes advantage of a database's unique
features
While APS.NET is free, it’s platform IIS is not

PHP vs CGI

Perl is a general purpose scripting language
PHP was designed from the ground up to be
used for scripting web pages; facilities built in
that simplify the process
PHP code is embedded directly into XHTML
documents
Cgi-based languages require multiple print
statements

Outline of Presentation

Introduction
PHP History
Variables and Expressions
Control Structures
Cookies
Session Variables
File I/O
Functions and Classes
Database Connectivity
Comparisons (ASP.NET & CGI)
References

References

www.phpbuilder.com

php.resourceindex.com
www.php.net

www.w3schools.com/php/default.asp
www.phpfreaks.com

www.vend.com

