Objectives of Lecture 5
Data Warehousing and OLAP

- Realize the purpose of data warehousing.
- Comprehend the data structures behind data warehouses and understand the OLAP technology.
- Get an overview of the schemas used for multi-dimensional data.
- See some implementations of OLAP operators with SQL.

Data Warehouse and OLAP

- What is a data warehouse and what is it for?
- What is the multi-dimensional data model?
- What is the difference between OLAP and OLTP?
- What is the general architecture of a data warehouse?
- How can we implement a data warehouse?
- Are there issues related to data cube technology?

Incentive for a Data Warehouse

- Businesses have a lot of data, operational data and facts.
- This data is usually in different databases and in different physical places.
- Data is available (or archived), but in different formats and locations. (heterogeneous and distributed).
- Decision makers need to access information (data that has been summarized) virtually on one single site.
- This access needs to be fast regardless of the size of the data, and how old the data is.
Evolution of Decision Support Systems

<table>
<thead>
<tr>
<th>1960s</th>
<th>1970s</th>
<th>1980s</th>
<th>1990s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch and Manual Report Writing</td>
<td>Terminal-based Decision Support Systems</td>
<td>Desktop Data Analysis Tools</td>
<td>Database Warehousing and OLAP Processing</td>
</tr>
</tbody>
</table>

- **Statistician**
 - Computer scientist
 - Difficult and limited queries highly specific to some distinctive needs

- **Data Analyst**
 - Inflexible and non-integrated tools

- **Executive**
 - Integrated tools
 - Data Mining

1960s: Batch and Manual Report Writing

1970s: Terminal-based Decision Support Systems

1980s: Desktop Data Analysis Tools

1990s: Database Warehousing and OLAP Processing

What Is Data Warehouse?

- A data warehouse **consolidates** different data sources.
- A data warehouse is a database that is **different and maintained separately** from an operational database.
- A data warehouse combines and merges information in a consistent database (not necessarily up-to-date) to help decision support.

Definitions

Data Warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of data in support of management’s decision making process. *(W.H. Inmon)*

Subject oriented: oriented to the major subject areas of the corporation that have been defined in the data model.

Integrated: data collected in a data warehouse originates from different heterogeneous data sources.

Time-variant: The dimension “time” is all-pervading in a data warehouse. The data stored is not the current value, but an evolution of the value in time.

Non-volatile: update of data does not occur frequently in the data warehouse. The data is loaded and accessed.

Definitions (con’t)

Data Warehousing is the process of constructing and using data warehouses.

A corporate data warehouse collects data about **subjects** spanning the whole organization. **Data Marts** are specialized, single-line of business warehouses. They collect data for a department or a specific group of people.
Building a Data Warehouse

Option 1: Consolidate Data Marts
Option 2: Build from scratch

Corporate data

Data Warehouse and OLAP

- What is a data warehouse and what is it for?
- What is the multi-dimensional data model?
- What is the difference between OLAP and OLTP?
- What is the general architecture of a data warehouse?
- How can we implement a data warehouse?
- Are there issues related to data cube technology?

Describing the Organization

We sell products in various markets, and we measure our performance over time

Data Warehouse Designer

Construction of Data Warehouse Based on Multi-dimensional Model

- Think of it as a cube with labels on each edge of the cube.
- The cube doesn’t just have 3 dimensions, but may have many dimensions (N).
- Any point inside the cube is at the intersection of the coordinates defined by the edge of the cube.
- A point in the cube may store values (measurements) relative to the combination of the labeled dimensions.
Concept-Hierarchies

Most Dimensions are hierarchical by nature: total orders or partial orders
Example: Location (continent → country → province → city)
Time (year → quarter → (month, week) → day)

Dimensions: Product, Region, Time
Hierarchical summarization paths

- Industry
- Category
- Product
- Office

- Country
- Region
- City

- Year
- Quarter
- Month
- Week
- Day

Data Warehouse and OLAP

- What is a data warehouse and what is it for?
- What is the multi-dimensional data model?
- What is the difference between OLAP and OLTP?
- What is the general architecture of a data warehouse?
- How can we implement a data warehouse?
- Are there issues related to data cube technology?

On-Line Transaction Processing

- Database management systems are typically used for on-line transaction processing (OLTP)
- OLTP applications normally automate clerical data processing tasks of an organization, like data entry and enquiry, transaction handling, etc. (access, read, update)
- Database is current, and consistency and recoverability are critical. Records are accessed one at a time.

- OLTP operations are structured and repetitive
- OLTP operations require detailed and up-to-date data
- OLTP operations are short, atomic and isolated transactions

Databases tend to be hundreds of Mb to Gb.

On-Line Analytical Processing

- On-line analytical processing (OLAP) is essential for decision support.
- OLAP is supported by data warehouses.
- Data warehouse consolidation of operational databases.
- The key structure of the data warehouse always contains some element of time.
- Owing to the hierarchical nature of the dimensions, OLAP operations view the data flexibly from different perspectives (different levels of abstractions).

OLAP operations:

- roll-up (increase the level of abstraction)
- drill-down (decrease the level of abstraction)
- slice and dice (selection and projection)
- pivot (re-orient the multi-dimensional view)
- drill-through (links to the raw data)

DW tend to be in the order of Tb
OLTP vs OLAP

<table>
<thead>
<tr>
<th></th>
<th>OLTP</th>
<th>OLAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>users</td>
<td>Clerk, IT professional</td>
<td>Knowledge worker</td>
</tr>
<tr>
<td>function</td>
<td>day to day operations</td>
<td>decision support</td>
</tr>
<tr>
<td>DB design</td>
<td>application-oriented</td>
<td>subject-oriented</td>
</tr>
<tr>
<td>data</td>
<td>current, up-to-date</td>
<td>historical, multidimensional</td>
</tr>
<tr>
<td></td>
<td>detailed, flat relational</td>
<td>integrated, consolidated</td>
</tr>
<tr>
<td>usage</td>
<td>repetitive</td>
<td>ad-hoc</td>
</tr>
<tr>
<td>access</td>
<td>read/write</td>
<td>lots of scans</td>
</tr>
<tr>
<td></td>
<td>index/hash on prim. key</td>
<td></td>
</tr>
<tr>
<td>unit of work</td>
<td>short, simple transaction</td>
<td>complex query</td>
</tr>
<tr>
<td># records accessed</td>
<td>tens</td>
<td>millions</td>
</tr>
<tr>
<td>#users</td>
<td>thousands</td>
<td>hundreds</td>
</tr>
<tr>
<td>DB size</td>
<td>100MB-GB</td>
<td>100GB-TB</td>
</tr>
<tr>
<td>metric</td>
<td>transaction throughput</td>
<td>query throughput, response</td>
</tr>
</tbody>
</table>

(Source: JH)

Data Warehouse and OLAP

- What is a data warehouse and what is it for?
- What is the multi-dimensional data model?
- What is the difference between OLAP and OLTP?
- What is the general architecture of a data warehouse?
- How can we implement a data warehouse?
- Are there issues related to data cube technology?

Why Do We Separate DW From DB?

- Performance reasons:
 - OLAP necessitates special data organization that supports multidimensional views.
 - OLAP queries would degrade operational DB.
 - OLAP is read only.
 - No concurrency control and recovery.
- Decision support requires historical data.
- Decision support requires consolidated data.
Data Warehouse and OLAP

- What is a data warehouse and what is it for?
- What is the multi-dimensional data model?
- What is the difference between OLAP and OLTP?
- What is the general architecture of a data warehouse?
- How can we implement a data warehouse?
- Are there issues related to data cube technology?
- Can we mine data warehouses?

Data Warehouse Design

Most data warehouses use a **star schema** to represent the multi-dimensional model.

Each dimension is represented by a **dimension-table** that describes it.

A **fact-table** connects to all dimension-tables with a multiple join. Each tuple in the fact-table consists of a pointer to each of the dimension-tables that provide its multi-dimensional coordinates and stores measures for those coordinates.

The links between the fact-table in the centre and the dimension-tables in the extremities form a shape like a star. **(Star Schema)**

Example of Star Schema

Star schema: A single object (fact table) in the middle connected to a number of objects (dimension tables)

Each dimension is represented by one table

- Un-normalized (introduces redundancy).
- Normalize dimension tables **Snowflake schema**
Example of Snowflake Schema

Sales Fact Table

- Product
 - ProductNo
 - ProdName
 - ProdDesc
 - Category

- Date
- Store
- StoreID
- Customer
- CustId
- CustName
- CustCity
- CustCountry
- unit_sales
- dollar_sales

Snowflake schema: Easier to maintain dimension tables when dimension tables are very large (reduces overall space).

Star schema: More effective for data cube browsing (less joins): can affect performance.

Aggregation in Data Warehouses

Multidimensional view of data in the warehouse: Stress on aggregation of measures by one or more dimensions

Two Dimensions
- Group By Category
- Cross Tab By Category
- By Time & Category

Three Dimensions
- Sum
- By Time
- By Category
- By Time & Category

Construction of Multi-dimensional Data Cube

City
- Edmonton
- Calgary
- Lethbridge

Time
- 1999
- 2000
- 2001
- 2002

Category
- Drama
- Comedy
- Horror

Sum

Ex: Microstrategy Metacube (Informix)

Implementation of the OLAP Server

ROLAP: Relational OLAP - data is stored in tables in relational database or extended-relational databases. They use an RDBMS to manage the warehouse data and aggregations using often a star schema.
- They support extensions to SQL
- A cell in the multi-dimensional structure is represented by a tuple.

Advantage: Scalable (no empty cells for sparse cube).

Disadvantage: no direct access to cells.
Implementation of the OLAP Server

MOLAP: Multidimensional OLAP – implements the multidimensional view by storing data in special multidimensional data structures (MDDS)

- Advantage: Fast indexing to pre-computed aggregations. Only values are stored.
- Disadvantage: Not very scalable and sparse

HOLAP: Hybrid OLAP - combines ROLAP and MOLAP technology. (Scalability of ROLAP and faster computation of MOLAP)

Example of Fact and Dimension tables for ROLAP

- The dimensions of the fact table are further described with *dimension tables*
- Fact table:
 - Sales \((\text{Market}_\text{id}, \text{Product}_\text{id}, \text{Time}_\text{id}, \text{Sales}_\text{Amt})\)
- Dimension Tables:
 - Market \((\text{Market}_\text{id}, \text{City}, \text{Province}, \text{Region})\)
 - Product \((\text{Product}_\text{id}, \text{Name}, \text{Category}, \text{Price})\)
 - Time \((\text{Time}_\text{id}, \text{Week}, \text{Month}, \text{Quarter})\)

Aggregation

- Many OLAP queries involve *aggregation* of the data in the fact table
- For example, to find the total sales (over time) of each product in each market, we might use

  ```sql
  SELECT \text{S.Market}_\text{id}, \text{S.Product}_\text{id}, \text{SUM}(\text{S.Sales}_\text{Amt})
  FROM \text{SalesSales S}
  GROUP BY \text{S.Market}_\text{id}, \text{S.Product}_\text{id}
  ```

- The aggregation is over the entire time dimension and thus produces a two-dimensional view of the data

Aggregation over Time

- The output of the previous query

<table>
<thead>
<tr>
<th>Market_Id</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM(Sales_Amt)</td>
<td>3003</td>
<td>1503</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Product_Id</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>6003</td>
<td>2402</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>4503</td>
<td>3</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>7503</td>
<td>7000</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drilling Down and Rolling Up

- Some dimension tables form an **aggregation hierarchy**

 \[\text{Market}_\text{Id} \to \text{City} \to \text{Province} \to \text{Region} \]

- Executing a series of queries that moves down a hierarchy (e.g., from aggregation over regions to that over provinces) is called **drilling down**

 - Requires the use of the fact table or information more specific than the requested aggregation (e.g., cities)

- Executing a series of queries that moves up the hierarchy (e.g., from provinces to regions) is called **rolling up**

 - Note: In a rollup, coarser aggregations can be computed using prior queries for finer aggregations

Rolling Up

- Rolling up on market, from **Province** to **Region**

 - If we have already created a table, **Province_Sales**, using

 1. `SELECT S.Product_Id, M.Province, SUM(S.Sales_Amt) FROM Sales S, Market M WHERE M.Market_Id = S.Market_Id GROUP BY S.Product_Id, M.Province`

 then we can roll up from there to:

 2. `SELECT T.Product_Id, M.Region, SUM(T.Sales_Amt) FROM Province_Sales T, Market M WHERE M.Province = T.Province GROUP BY T.Product_Id, M.Region`

Pivoting

- When we view the data as a multi-dimensional cube and group on a subset of the axes, we are said to be performing a **pivot** on those axes

 - Pivoting on dimensions D_1, \ldots, D_k in a data cube $D_1, \ldots, D_k, D_{k+1}, \ldots, D_n$ means that we use `GROUP BY A_1, \ldots, A_k` and aggregate over A_{k+1}, \ldots, A_n, where A_i is an attribute of the dimension D_i

 - Example: Pivoting on Product and Time corresponds to grouping on **Product_id** and **Quarter** and aggregating **Sales_Amt** over **Market_id**:

    ````
    SELECT S.Product_Id, T.Quarter, SUM(S.Sales_Amt) FROM Sales S, Time T WHERE T.Time_Id = S.Time_Id GROUP BY S.Product_Id, T.Quarter
    ```

Drilling Down

- Drilling down on market: from **Region** to **Province**

 - **Sales** ($\text{Market}_\text{Id}, \text{Product}_\text{Id}, \text{Time}_\text{Id}, \text{Sales}_\text{Amt}$)

 - **Market** ($\text{Market}_\text{Id}, \text{City}, \text{Province}, \text{Region}$)

 1. `SELECT S.Product_Id, M.Region, SUM(S.Sales_Amt) FROM Sales S, Market M WHERE M.Market_Id = S.Market_Id GROUP BY S.Product_Id, M.Region`

 2. `SELECT S.Product_Id, M.Province, SUM(S.Sales_Amt) FROM Sales S, Market M WHERE M.Market_Id = S.Market_Id GROUP BY S.Product_Id, M.Province,`
Slicing-and-Dicing

- When we use WHERE to specify a particular value for an axis (or several axes), we are performing a **slice**
 - Slicing the data cube in the Time dimension (choosing sales only in week 12) then pivoting to
 Product_id (aggregating over Market_id)

```sql
SELECT S.Product_Id, SUM(Sales_Amt)
FROM Sales S, Time T
WHERE T.Time_Id = S.Time_Id AND T.Week = 'Wk-12'
GROUP BY S.Product_Id
```

- Typically slicing and dicing involves several queries to find the “right slice.”
 - For instance, change the slice and the axes:
 - Slicing on Time and Market dimensions then pivoting to Product_id and Week (in the time dimension)

```sql
SELECT S.Product_Id, T.Week, SUM(Sales_Amt)
FROM Sales S, Time T
WHERE T.Time_Id = S.Time_Id AND T.Quarter = 4 AND S.Market_Id = 12345
GROUP BY S.Product_Id, T.Week
```

The **CUBE** Operator

- To construct the following table, would take 3 queries (next slide)

<table>
<thead>
<tr>
<th>Product_Id</th>
<th>SUM(Sales_Amt)</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>3003</td>
<td>1503</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>P2</td>
<td>6003</td>
<td>2402</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>P3</td>
<td>4503</td>
<td>3</td>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>P4</td>
<td>7503</td>
<td>7000</td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Total</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

The Three Queries

- For the table entries, without the totals (aggregation on time)

```sql
SELECT S.Market_Id, S.Product_Id, SUM(S.Sales_Amt)
FROM Sales S
GROUP BY S.Market_Id, S.Product_Id
```

- For the row totals (aggregation on time and supermarkets)

```sql
SELECT S.Product_Id, SUM(S.Sales_Amt)
FROM Sales S
GROUP BY S.Product_Id
```

- For the column totals (aggregation on time and products)

```sql
SELECT S.Market_Id, SUM(S.Sales)
FROM Sales S
GROUP BY S.Market_Id
```
Definition of the **CUBE** Operator

- Doing these three queries is wasteful
 - The first does much of the work of the other two: if we could save that result and aggregate over `Market_Id` and `Product_Id`, we could compute the other queries more efficiently
- The **CUBE** clause is part of SQL:1999
 - `GROUP BY CUBE (v1, v2, ..., vn)`
 - Equivalent to a collection of `GROUP BY`s, one for each of the 2^n subsets of v1, v2, ..., vn

Example of **CUBE** Operator

- The following query returns all the information needed to make the previous products/markets table:

```sql
SELECT S.Market_Id, S.Product_Id, SUM(S.Sales_Amt) FROM Sales S GROUP BY CUBE (S.Market_Id, S.Product_Id)
```

ROLLUP

- **ROLLUP** is similar to **CUBE** except that instead of aggregating over all subsets of the arguments, it creates subsets moving from right to left
- `GROUP BY ROLLUP (A_1, A_2, ..., A_n)` is a series of these aggregations:
 - `GROUP BY A_1, ..., A_{n-1}, A_n`
 - `GROUP BY A_1, ..., A_{n-1}`
 -
 - `GROUP BY A_1, A_2`
 - `GROUP BY A_1`
 - No `GROUP BY`
- **ROLLUP** is also in SQL:1999

Example of **ROLLUP** Operator

```sql
SELECT S.Market_Id, S.Product_Id, SUM(S.Sales_Amt) FROM Sales S GROUP BY ROLLUP (S.Market_Id, S.Product_Id)
```

- first aggregates with the finest granularity:
 - `GROUP BY S.Market_Id, S.Product_Id`
- then with the next level of granularity:
 - `GROUP BY S.Market_Id`
- then the grand total is computed with `no GROUP BY` clause
ROLLUP vs. CUBE

• The same query with CUBE:
 - first aggregates with the finest granularity:
 \[\text{GROUP BY } S.\text{Market}_\text{Id}, \text{S.Product}_\text{Id} \]
 - then with the next level of granularity:
 \[\text{GROUP BY } S.\text{Market}_\text{Id} \]
 and
 \[\text{GROUP BY } S.\text{Product}_\text{Id} \]
 - then the grand total with no \text{GROUP BY}

Materialized Views

The CUBE operator is often used to pre-compute aggregations on all dimensions of a fact table and then save them as a materialized views to speed up future queries

Data Warehouse and OLAP

• What is a data warehouse and what is it for?
• What is the multi-dimensional data model?
• What is the difference between OLAP and OLTP?
• What is the general architecture of a data warehouse?
• How can we implement a data warehouse?

• Are there issues related to data cube technology?

Issues

• Scalability
• Sparseness
• Curse of dimensionality
• Materialization of the multidimensional data cube (total, virtual, partial)
• Efficient computation of aggregations
• Indexing