Query Evaluation

- **Problem:** An SQL query is declarative – does not specify a query execution plan.
- A relational algebra expression is procedural – there is an associated query execution plan.
- **Solution:** Convert SQL query to an equivalent relational algebra and evaluate it using the associated query execution plan.
 - *But which equivalent expression is best?*

Naïve Conversion

\[
\text{SELECT DISTINCT TargetList FROM } R1, R2, \ldots, RN \\
\text{WHERE } Condition
\]

is equivalent to
\[
\pi_{TargetList} (\sigma_{Condition} (R1 \times R2 \times \ldots \times RN))
\]

but this may imply a very inefficient query execution plan.

*Example: \[
\pi_{Name} (\sigma_{Id=ProfId \ CrsCode='CS532'} (\text{Professor} \times \text{Teaching}))
\]*

- Result can be \(< 100 \text{ bytes}
- But if each relation is 50K then we end up computing an intermediate result Professor \times Teaching of size 1G before shrinking it down to just a few bytes.

Problem: Find an *equivalent* relational algebra expression that can be evaluated “efficiently”.

Query Processing Architecture

- SQL Query
- SQL Parser
- Relational Algebra Expression
- Query Optimizer
- Query Plan Generator
- Cost Estimator
- System Catalog
- Query Execution Plan
- Query Plan Interpreter
- Query Result
Query Optimizer

- Uses heuristic algorithms to evaluate relational algebra expressions. This involves:
 - estimating the cost of a relational algebra expression
 - transforming one relational algebra expression to an equivalent one
 - choosing access paths for evaluating the sub-expressions
- Query optimizers do not “optimize” – just try to find “reasonably good” evaluation strategies

Equivalence Preserving Transformations

- To transform a relational expression into another equivalent expression we need transformation rules that preserve equivalence
- Each transformation rule
 - Is provably correct (i.e., does preserve equivalence)
 - Has a heuristic associated with it

Selection and Projection Rules

- Break complex selection into simpler ones:
 - \(\sigma_{\text{Cond1} \land \text{Cond2}}(R) \equiv \sigma_{\text{Cond1}}(\sigma_{\text{Cond2}}(R)) \)
- Break projection into stages:
 - \(\pi_{\text{attr}}(R) \equiv \pi_{\text{attr}'}(\pi_{\text{attr}}(R)) \), if \(\text{attr} \subseteq \text{attr}' \)
- Commute projection and selection:
 - \(\pi_{\text{attr}}(\sigma_{\text{Cond}}(R)) \equiv \sigma_{\text{Cond}}(\pi_{\text{attr}}(R)) \)
 if \(\text{attr} \supseteq \) all attributes in \(\text{Cond} \)

Commutativity and Associativity of Join
(and Cartesian Product as Special Case)

- Join commutativity: \(R \bowtie S \equiv S \bowtie R \)
 - used to reduce cost of nested loop evaluation strategies (smaller relation should be in outer loop)
- Join associativity: \(R \bowtie (S \bowtie T) \equiv (R \bowtie S) \bowtie T \)
 - used to reduce the size of intermediate relations in computation of multi-relational join – first compute the join that yields smaller intermediate result
- N-way join has \(T(N) \times N! \) different evaluation plans
 - \(T(N) \) is the number of parenthesized expressions
 - \(N! \) is the number of permutations
- Query optimizer cannot look at all plans (might take longer to find an optimal plan than to compute query brute-force). Hence it does not necessarily produce optimal plan
Pushing Selections and Projections

- \(\sigma_{\text{Cond}} (R \times S) \equiv R \bowtie_{\text{Cond}} S \)
 - \(\text{Cond} \) relates attributes of both \(R \) and \(S \)
 - Reduces size of intermediate relation since rows can be discarded sooner

- \(\sigma_{\text{Cond}} (R \times S) \equiv \sigma_{\text{Cond}} (R) \times S \)
 - \(\text{Cond} \) involves only the attributes of \(R \)
 - Reduces size of intermediate relation since rows of \(R \) are discarded sooner

- \(\pi_{\text{attr}} (R \times S) \equiv \pi_{\text{attr}} (\pi_{\text{attr}}' (R) \times S) \),
 if \(\text{attributes}(R) \supseteq \text{attr}' \supseteq \text{attr} \)
 - reduces the size of an operand of product

Equivalence Example

- \(\sigma_{C1 \land C2 \land C3} (R \times S) \equiv \sigma_{C1} (\sigma_{C2} (\sigma_{C3} (R \times S))) \)
 \(\equiv \sigma_{C1} (\sigma_{C2} (R) \times \sigma_{C3} (S)) \)
 \(\equiv \sigma_{C2} (R) \bowtie_{C1} \sigma_{C3} (S) \)

assuming \(C2 \) involves only attributes of \(R \), \(C3 \) involves only attributes of \(S \),
and \(C1 \) relates attributes of \(R \) and \(S \)

Cost - Example 1

\[
\begin{align*}
\text{SELECT} & \quad \text{P.Name} \\
\text{FROM} & \quad \text{Professor P, Teaching T} \\
\text{WHERE} & \quad \text{P.Id} = \text{T.ProfId} \quad \text{-- join condition} \\
& \quad \text{AND} \quad \text{P.DeptId} = \text{‘CS’} \quad \text{AND} \quad \text{T.Semester} = \text{‘F1994’} \\
\pi_{\text{Name}} & \quad (\sigma_{\text{DeptId} = \text{‘CS’} \land \text{Semester} = \text{‘F1994’}} (\text{Professor} \bowtie_{\text{Id} = \text{ProfId}} \text{Teaching})) \\
\end{align*}
\]

Master query execution plan (nothing pushed)

Metadata on Tables (in system catalogue)

- Professor (\(\text{Id}, \text{Name}, \text{DeptId} \))
 - size: 200 pages, 1000 rows, 50 departments
 - indexes: clustered, 2-level B+tree on \(\text{DeptId} \), hash on \(\text{Id} \)

- Teaching (\(\text{ProfId}, \text{CrsCode}, \text{Semester} \))
 - size: 1000 pages, 10,000 rows, 4 semesters
 - indexes: clustered, 2-level B+tree on \(\text{Semester} \); hash on \(\text{ProfId} \)

- Definition: Weight of an attribute – average number of rows that have a particular value
 - weight of \(\text{Id} = 1 \) (it is a key)
 - weight of \(\text{ProfId} = 10 \) (10,000 classes/1000 professors)
Estimating Cost - Example 1

- **Join** - block-nested loops with 52 page buffer (50 pages – input for Professor, 1 page – input for Teaching, 1 – output page
 - Scanning Professor (outer loop): 200 page transfers, (4 iterations, 50 pages each)
 - Finding matching rows in Teaching (inner loop): 1000 page transfers for each iteration of outer loop
 - 250 professors in each 50 page chunk * 10 matching Teaching tuples per professor = 2500 tuple fetches = 2500 page transfers for Teaching (Why?)
 - By sorting the record Ids of these tuples we can get away with only 1000 page transfers (Why?)
 - total cost = 200+4*1000 = 4200 page transfers

Estimating Cost - Example 1 (cont’d)

- **Selection and projection** – scan rows of intermediate file, discard those that don’t satisfy selection, project on those that do, write result when output buffer is full.
- Complete algorithm:
 - do join, write result to intermediate file on disk
 - read intermediate file, do select/project, write final result
 - **Problem**: unnecessary I/O

Pipelining

- **Solution**: use pipelining:
 - join and select/project act as coroutines, operate as producer/consumer sharing a buffer in main memory.
 - When join fills buffer; select/project filters it and outputs result
 - Process is repeated until select/project has processed last output from join
 - Performing select/project adds no additional cost

Estimating Cost - Example 1 (cont’d)

- **Total cost**: 4200 + (cost of outputting final result)
 - We will **disregard the cost of outputting final result** in comparing with other query evaluation strategies, since this will be same for all
Cost Example 2

SELECT P.Name
FROM Professor P, Teaching T
WHERE P.Id = T.ProfId AND
 P.DeptId = 'CS' AND T.Semester = 'F1994'

\[\pi_{\text{Name}} (\sigma_{\text{Semester='F1994'}} (\sigma_{\text{DeptId='CS'}} (\text{Professor} \ \bowtie_{\text{Id=ProfId}} \text{Teaching}))) \]

Cost Example 2 -- selection

- Compute \(\sigma_{\text{DeptId='CS'}} \) (Professor) (to reduce size of one join table) using clustered, 2-level B+ tree on DeptId.
 - 50 departments and 1000 professors; hence weight of DeptId is 20 (roughly 20 CS professors). These rows are in ~4 consecutive pages in Professor.
 - Cost = 4 (to get rows) + 2 (to search index) = 6
 - keep resulting 4 pages in memory and pipe to next step

Cost Example 2 -- join

- Index-nested loops join using hash index on ProfId of Teaching and looping on the selected professors (computed on previous slide)
 - Since selection on Semester was not pushed, hash index on ProfId of Teaching can be used
 - Note: if selection on Semester were pushed, the index on ProfId would have been lost – an advantage of not using a fully pushed query execution plan

Cost Example 2 -- join (cont’d)

- Each professor matches ~10 Teaching rows. Since 20 CS professors, hence 200 teaching records.
 - All index entries for a particular ProfId are in same bucket. Assume ~1.2 I/Os to get a bucket.
 - Cost = 1.2 \times 20 (to fetch index entries for 20 CS professors) + 200 (to fetch Teaching rows, since hash index is unclustered) = 224
Cost Example 2 – select/project

- Pipe result of join to select (on Semester) and project (on Name) at no I/O cost
- Cost of output same as for Example 1
- Total cost:
 6 (select on Professor) + 224 (join) = 230
- Comparison:
 4200 (example 1) vs. 230 (example 2) !!!

Estimating Output Size

- It is important to estimate the size of the output of a relational expression – size serves as input to the next stage and affects the choice of how the next stage will be evaluated.
- Size estimation uses the following measures on a particular instance of R:
 - Tuples(R): number of tuples
 - Blocks(R): number of blocks
 - Values(R.A): number of distinct values of A
 - MaxVal(R.A): maximum value of A
 - MinVal(R.A): minimum value of A

Estimating Output Size

- For the query:
 SELECT TargetList
 FROM R_1, R_2, ..., R_n
 WHERE Condition

 - Reduction factor is
 \[\frac{\text{Blocks (result set)}}{\text{Blocks}(R_1) \times \cdots \times \text{Blocks}(R_n)} \]

 - Estimates by how much query result is smaller than input

Estimation of Reduction Factor

- Assume that reduction factors due to target list and query condition are independent
- Thus:
 \[\text{reduction(Query)} = \text{reduction(TargetList)} \times \text{reduction(Condition)} \]
Reduction Due to Simple Condition

- \(\text{reduction}(R_i.A = \text{val}) = \frac{1}{\text{Values}(R.A)} \)
- \(\text{reduction}(R_i.A = R_j.B) = \frac{1}{\max(\text{Values}(R_i.A), \text{Values}(R_j.B))} \)

Assume that values are uniformly distributed, \(Tuples(R_i) < Tuples(R_j) \), and every row of \(R_i \) matches a row of \(R_j \). Then the number of tuples that satisfy Condition is:

\[
\text{Values}(R_i.A) \times \frac{Tuples(R_i.A)}{\text{Values}(R_i.A)} \times \frac{Tuples(R_j.A)}{\text{Values}(R_j.A)}
\]

- \(\text{reduction}(R_i.A > \text{val}) = \frac{\text{MaxVal}(R_i.A) - \text{val}}{\text{Values}(R.A)} \)

Reduction Due to Complex Condition

- \(\text{reduction}(\text{Cond}_1 \text{ AND } \text{Cond}_2) = \text{reduction}(\text{Cond}_1) \times \text{reduction}(\text{Cond}_2) \)
- \(\text{reduction}(\text{Cond}_1 \text{ OR } \text{Cond}_2) = \min(1, \text{reduction}(\text{Cond}_1) + \text{reduction}(\text{Cond}_2)) \)

Reduction Due to TargetList

- \(\text{reduction(TargetList)} = \frac{\text{number-of-attributes}(\text{TargetList})}{\sum_i \text{number-of-attributes}(R_i)} \)

Estimating Weight of Attribute

- \(\text{weight}(R.A) = Tuples(R) \times \text{reduction}(R.A = \text{value}) \)
Choosing Query Execution Plan

- Step 1: Choose a logical plan
- Step 2: Reduce search space
- Step 3: Use a heuristic search to further reduce complexity

Step 1: Choosing a Logical Plan

- Involves choosing a query tree, which indicates the order in which algebraic operations are applied
- Heuristic: Pushed trees are good, but sometimes “nearly fully pushed” trees are better due to indexing (as we saw in the example)
- So: Take the initial “master plan” tree and produce a fully pushed tree plus several nearly fully pushed trees.

Step 2: Reduce Search Space

- Deal with associativity of binary operators (join, union, …)

Step 2 (cont’d)

- Two issues:
 - Choose a particular shape of a tree (like in the previous slide)
 - Equals the number of ways to parenthesize N-way join – grows very rapidly
 - Choose a particular permutation of the leaves
 - E.g., 4! permutations of the leaves A, B, C, D
Step 2: Dealing With Associativity

- Too many trees to evaluate: settle on a particular shape: *left-deep tree*.
 - Used because it allows *pipelining*:
 - Property: once a row of X has been output by P₁, it need not be output again (but C may have to be processed several times in P₂ for successive portions of X)
 - Advantage: none of the intermediate relations (X, Y) have to be completely materialized and saved on disk.
 - Important if one such relation is very large, but the final result is small

![Diagram]

Step 2: Dealing with Associativity

- consider the alternative: if we use the association \(((A \bowtie B) \bowtie (C \bowtie D))\)

![Diagram]

Each row of X must be processed against all of Y. Hence all of Y (can be very large) must be stored in P₃, or P₂ has to recompute it several times.

Step 3: Heuristic Search

- The choice of left-deep trees still leaves open too many options (N! permutations):
 - \(((A \bowtie B) \bowtie C \bowtie D)\),
 - \(((C \bowtie A) \bowtie D) \bowtie B\), ...
- A heuristic (often dynamic programming based) algorithm is used to get a ‘good’ plan

Step 3: Dynamic Programming Algorithm

- Just an idea – see book for details
- To compute a join of E₁, E₂, ..., Eₙ in a left-deep manner:
 - Start with 1-relation expressions (can involve \(\sigma\), \(\pi\))
 - Choose the best and “nearly best” plans for each (a plan is considered nearly best if its output has some “interesting” form, e.g., is sorted)
 - Combine these 1-relation plans into 2-relation expressions. Retain only the best and nearly best 2-relation plans
 - Do same for 3-relation expressions, etc.
Index-Only Queries

- A B+ tree index with search key attributes A_1, A_2, \ldots, A_n has stored in it the values of these attributes for each row in the table.
 - Queries involving a prefix of the attribute list A_1, A_2, \ldots, A_n can be satisfied using *only the index* – no access to the actual table is required.

- **Example:** Transcript has a clustered B+ tree index on StudId. A frequently asked query is one that requests all grades for a given CrsCode.
 - **Problem:** Already have a clustered index on StudId – cannot create another one (on CrsCode)
 - **Solution:** Create an unclustered index on $(\text{CrsCode}, \text{Grade})$
 - Keep in mind, however, the overhead in maintaining extra indices