Database Management Systems
Winter 2004

CMPUT 391: Database Design Theory
or Relational Normalization Theory
Dr. Osmar R. Zaïane

University of Alberta

Chapter 8 of Textbook
Based on slides by Lewis, Bernstein and Kifer.

Limitations of Relational Database Designs
• Provides a set of guidelines, does not result in a unique database schema
• Does not provide a way of evaluating alternative schemas
• Pitfalls:
 – Repetition of information
 – Inability to represent certain information
 – Loss of information

Normalisation theory provides a mechanism for analyzing and refining the schema produced by an E-R design

Redundancy
• Dependencies between attributes cause redundancy
 – Ex. All addresses in the same town have the same zip code

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Town</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Joe</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
<tr>
<td>4321</td>
<td>Mary</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
<tr>
<td>5454</td>
<td>Tom</td>
<td>Stony Brook</td>
<td>11790</td>
</tr>
</tbody>
</table>

Redundancy and Other Problems
• Set valued attributes in the E-R diagram result in multiple rows in corresponding table
• Example: Person (SSN, Name, Address, Hobbies)
 – A person entity with multiple hobbies yields multiple rows in table Person
 • Hence, the association between Name and Address for the same person is stored redundantly
 – SSN is key of entity set, but (SSN, Hobby) is key of corresponding relation
 • The relation Person can’t describe people without hobbies
Example

ER Model

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking, hiking</td>
</tr>
</tbody>
</table>

Relational Model

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>biking</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>hiking</td>
</tr>
</tbody>
</table>

Anomalies

- Redundancy leads to anomalies:
 - Update anomaly: A change in Address must be made in several places
 - Deletion anomaly: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? No, since Hobby is part of key
 - Delete the entire row? No, since we lose other information in the row
 - Insertion anomaly: Hobby value must be supplied for any inserted row since Hobby is part of key

Decomposition

- Solution: use two relations to store Person information
 - Person1 (SSN, Name, Address)
 - Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted

Normalization Theory

- Result of E-R analysis need further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)
Example

ER Model

\[\text{Hourly Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)}\]

Relational Model

- Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- Some functional dependencies on Hourly_Emps:
 - ssn is the key: S \rightarrow SNLRWH
 - rating determines hrly_wages: R \rightarrow W

Functional Dependencies

- **Definition**: A functional dependency (FD) on a relation schema R is a constraint \(X \rightarrow Y\), where X and Y are subsets of attributes of R.
- **Definition**: An FD \(X \rightarrow Y\) is satisfied in an instance \(r\) of R if for every pair of tuples, \(t\) and \(s\): if \(t\) and \(s\) agree on all attributes in \(X\) then they must agree on all attributes in \(Y\)
- **Definition**: A constraint on a relation schema R is a condition that has to be satisfied in every allowable instance of R.
 - FDs must be identified based on semantics of application.
 - Given a particular allowable instance \(r_1\) of R, we can check if it violates some FD \(f\), but we cannot tell if \(f\) holds over the schema R!
 - A key constraint is a special kind of functional dependency: all attributes of relation occur on the right-hand side of the FD:
 - \(SSN \rightarrow SSN, Name, Address\)

Functional Dependencies - Example

- **Address \rightarrow ZipCode**
 - Stony Brook’s ZIP is 11733
- **ArtistName \rightarrow BirthYear**
 - Picasso was born in 1881
- **Autobrand \rightarrow Manufacturer, Engine type**
 - Pontiac is built by General Motors with gasoline engine
- **Author, Title \rightarrow PublDate**
 - Shakespeare’s Hamlet published in 1600

Functional Dependency - Example

- Brokerage firm allows multiple clients to share an account, but each account is managed from a single office and a client can have no more than one account in an office
 - **HasAccount** (AcctNum, ClientId, OfficeId)
 - keys are (ClientId, OfficeId), (AcctNum, ClientId)
 - **ClientId, OfficeId \rightarrow AcctNum**
 - **AcctNum \rightarrow OfficeId**
 - Thus, attribute values need not depend only on key values
Entailment, Closure, Equivalence

- **Definition**: If F is a set of FDs on schema R and f is another FD on R, then F entails f if every instance r of R that satisfies every FD in F also satisfies f
 - Ex: $F = \{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$
 - If $Streetaddr \rightarrow Town$ and $Town \rightarrow Zip$ then $Streetaddr \rightarrow Zip$

- **Definition**: The closure of F, denoted F^+, is the set of all FDs entailed by F

- **Definition**: F and G are equivalent if F entails G and G entails F

Entailment (cont’d)

- Satisfaction, entailment, and equivalence are *semantic* concepts – defined in terms of the actual relations in the “real world.”
 - They define *what these notions are*, not how to compute them
- How to check if F entails f or if F and G are equivalent?
 - Apply the respective definitions for all possible relations?
 - *Bad idea*: might be infinite in number for infinite domains
 - Even for finite domains, we have to look at relations of all arities
 - **Solution**: find algorithmic, *syntactic* ways to compute these notions
 - *Important*: The syntactic solution must be “correct” with respect to the semantic definitions
 - Correctness has two aspects: *soundness* and *completeness*

Armstrong’s Axioms for FDs

- This is the *syntactic* way of computing/testing the various properties of FDs

- **Reflexivity**: If $Y \subseteq X$ then $X \rightarrow Y$ (trivial FD)
 - *Name, Address* \rightarrow *Name*

- **Augmentation**: If $X \rightarrow Y$ then $XZ \rightarrow YZ$
 - If $Town \rightarrow Zip$ then $Town, Name \rightarrow Zip, Name$

- **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

Armstrong’s Axioms for FDs (cont.)

- Two more rules (which can be derived from the axioms) can be useful:
 - **Union**: If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$
 - **Decomposition**: If $X \rightarrow YZ$ then $X \rightarrow Y$ and $X \rightarrow Z$
Soundness and Completeness

• Axioms are sound: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
• Axioms are complete: If F entails f, then f can be derived from F using the axioms.
• A consequence of completeness is the following (naïve) algorithm to determining if F entails f:
 – Algorithm: Use the axioms in all possible ways to generate F^+ (the set of possible FD’s is finite so this can be done) and see if f is in F^+

Reflexivity

• If $Y \subseteq X$, then $X \rightarrow Y$

 \[
 \begin{array}{c}
 \text{t}_1 = (a_1, b_1, c_1, d_1, e_1) \\
 \text{t}_2 = (a_2, b_2, c_2, d_2, e_2) \\
 \pi_X(t_1) = \pi_X(t_2) \Rightarrow \\
 a_1 = a_2, b_1 = b_2, c_1 = c_2, d_1 = d_2 \\
 \pi_Y(t_1) = \pi_Y(t_2) \Leftrightarrow
 \end{array}
 \]

Augmentation

• If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z

 \[
 \begin{array}{c}
 \text{t}_1 = (a_1, b_1, c_1, d_1, e_1) \\
 \text{t}_2 = (a_2, b_2, c_2, d_2, e_2) \\
 \pi_{XZ}(t_1) = \pi_{XZ}(t_2) \Rightarrow \\
 a_1 = a_2, b_1 = b_2, e_1 = e_2 \\
 \pi_{YZ}(t_1) = \pi_{YZ}(t_2)
 \end{array}
 \]

Transitivity

• If $X \rightarrow Y$, and $Y \rightarrow Z$ then $X \rightarrow Z$

 \[
 \begin{array}{c}
 \text{t}_1 = (a_1, b_1, c_1, d_1, e_1) \\
 \text{t}_2 = (a_2, b_2, c_2, d_2, e_2) \\
 \pi_X(t_1) = \pi_X(t_2) \Rightarrow \\
 a_1 = a_2, b_1 = b_2 \\
 \pi_Y(t_1) = \pi_Y(t_2) \\
 a_1 = a_2, b_1 = b_2, c_1 = c_2, d_1 = d_2 \\
 \pi_Y(t_1) = \pi_Y(t_2) \\
 \pi_Z(t_1) = \pi_Z(t_2)
 \end{array}
 \]
Generating F^+

<table>
<thead>
<tr>
<th>F</th>
<th>union</th>
<th>trans</th>
<th>decomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AB \rightarrow C$</td>
<td>$AB \rightarrow BCD$</td>
<td>$AB \rightarrow BCDE$</td>
<td>$AB \rightarrow CDE$</td>
</tr>
<tr>
<td>$A \rightarrow D$</td>
<td>aug</td>
<td>aug</td>
<td>aug</td>
</tr>
<tr>
<td>$D \rightarrow E$</td>
<td>$BCD \rightarrow BCDE$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow CDE$ are all elements of F^+

Attribute Closure

- Calculating attribute closure leads to a more efficient way of checking entailment
- The attribute closure of a set of attributes, X, with respect to a set of functional dependencies, F, (denoted X^+_F) is the set of all attributes, A, such that $X \rightarrow A$
 - X^+_F is not necessarily the same as X^+_{F1} if $F1 \neq F2$
- Attribute closure and entailment:
 - Algorithm: Given a set of FDs, F, then $X \rightarrow Y$ if and only if $X^+_F \supseteq Y$

Example - Computing Attribute Closure

<table>
<thead>
<tr>
<th>X</th>
<th>X^+_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: $AB \rightarrow C$</td>
<td>$A \rightarrow {A, D, E}$</td>
</tr>
<tr>
<td>$A \rightarrow D$</td>
<td>$AB \rightarrow {A, B, C, D, E}$</td>
</tr>
<tr>
<td>$D \rightarrow E$</td>
<td>$\text{(Hence } AB \text{ is a key)}$</td>
</tr>
<tr>
<td>$AC \rightarrow B$</td>
<td>$B \rightarrow {B}$</td>
</tr>
<tr>
<td>$D \rightarrow E$</td>
<td>$D \rightarrow {D, E}$</td>
</tr>
</tbody>
</table>

Is $AB \rightarrow E$ entailed by F? Yes
Is $D \rightarrow C$ entailed by F? No

Result: X^+_F allows us to determine FDs of the form $X \rightarrow Y$ entailed by F

Computation of Attribute Closure X^+_F

closure := X; // since $X \subseteq X^+_F$
repeat
 old := closure;
 if there is an FD $Z \rightarrow V$ in F such that $Z \subseteq \text{closure and } V \not\subseteq \text{closure}$
 then closure := closure \cup V
until old = closure

- If $T \subseteq \text{closure}$ then $X \rightarrow T$ is entailed by F
Example: Computation of Attribute Closure

Problem: Compute the attribute closure of AB with respect to the set of FDs:

- $AB \rightarrow C$ (a)
- $A \rightarrow D$ (b)
- $D \rightarrow E$ (c)
- $AC \rightarrow B$ (d)

Solution:

Initially $\text{closure} = \{AB\}$
- Using (a) $\text{closure} = \{ABC\}$
- Using (b) $\text{closure} = \{ABCD\}$
- Using (c) $\text{closure} = \{ABCDE\}$

Normal Forms

- Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)
- First normal form (1NF) is the same as the definition of relational model (relations = sets of tuples; each tuple = sequence of atomic values)
- Second normal form (2NF): no non-key attribute is dependent on part of a key; has no practical or theoretical value – won’t discuss
- The two commonly used normal forms are **third normal form** (3NF) and **Boyce-Codd normal form** (BCNF)

BCNF

- **Definition:** A relation schema R is in BCNF if for every FD $X \rightarrow Y$ associated with R either
 - $Y \subseteq X$ (i.e., the FD is trivial) or
 - X is a superkey of R

- **Example:** $\text{Person1} (SSN, Name, Address)$
 - The only FD is $SSN \rightarrow Name, Address$
 - Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

- **Person** $(SSN, Name, Address, Hobby)$
 - The FD $SSN \rightarrow Name, Address$ does not satisfy requirements of BCNF
 - since the key is $(SSN, Hobby)$
- **HasAccount** $(AccountNumber, ClientId, OfficeId)$
 - The FD $AcctNum \rightarrow OfficeId$ does not satisfy BCNF requirements
 - since keys are $(ClientId, OfficeId)$ and $(AcctNum, ClientId)$
Redundancy

- Suppose \(R \) has a FD \(A \rightarrow B \). If an instance has 2 rows with same value in \(A \), they **must** also have same value in \(B \) (\(\Rightarrow \) redundancy, if the A-value repeats twice)

\[
SSN \rightarrow \text{Name, Address}
\]

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Address</th>
<th>Hobby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>stamps</td>
</tr>
<tr>
<td>1111</td>
<td>Joe</td>
<td>123 Main</td>
<td>coins</td>
</tr>
</tbody>
</table>

- If \(A \) is a superkey, there cannot be two rows with same value of \(A \)
 - Hence, BCNF eliminates redundancy

Third Normal Form

- A relational schema \(R \) is in 3NF if for every FD \(X \rightarrow Y \) associated with \(R \) either:
 - \(Y \subseteq X \) (i.e., the FD is trivial); or
 - \(X \) is a superkey of \(R \); or
 - Every \(A \in Y \) is part of some key of \(R \)
- 3NF is weaker than BCNF (every schema that is in BCNF is also in 3NF)

3NF Example

- **HasAccount** (\(\text{AcctNum}, \text{ClientId}, \text{OfficeId} \))
 - \(\text{ClientId}, \text{OfficeId} \rightarrow \text{AcctNum} \)
 - OK since LHS contains a key
 - \(\text{AcctNum} \rightarrow \text{OfficeId} \)
 - OK since RHS is part of a key
 - **HasAccount** is in 3NF but it might still contain redundant information due to \(\text{AcctNum} \rightarrow \text{OfficeId} \) (which is not allowed by BCNF)

3NF Exam

- **HasAccount** might store redundant data:

<table>
<thead>
<tr>
<th>ClientId</th>
<th>OfficeId</th>
<th>AcctNum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>Stony Brook</td>
<td>28315</td>
</tr>
<tr>
<td>2222</td>
<td>Stony Brook</td>
<td>28315</td>
</tr>
<tr>
<td>3333</td>
<td>Stony Brook</td>
<td>28315</td>
</tr>
</tbody>
</table>

- Decompose to eliminate redundancy:

<table>
<thead>
<tr>
<th>ClientId</th>
<th>AcctNum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111</td>
<td>28315</td>
</tr>
<tr>
<td>2222</td>
<td>28315</td>
</tr>
<tr>
<td>3333</td>
<td>28315</td>
</tr>
</tbody>
</table>

- **OfficeId** is key
 - FD: \(\text{AcctNum} \rightarrow \text{OfficeId} \)

BCNF: \(\text{AcctNum} \) is key
 - FD: \(\text{AcctNum} \rightarrow \text{OfficeId} \)

BCNF (only trivial FDs)
3NF (Non) Example

- Person \((SSN, Name, Address, Hobby)\)
 - \((SSN, Hobby)\) is the only key.
 - \(SSN \rightarrow Name\) violates 3NF conditions since \(Name\) is not part of a key and \(SSN\) is not a superkey.

Decompositions

- **Goal:** Eliminate redundancy by decomposing a relation into several relations in a higher normal form.
- Decomposition must be *lossless*: it must be possible to reconstruct the original relation from the relations in the decomposition.
 - We will see why.

Decomposition

- Schema \(R = (R, F)\)
 - \(R\) is a set of attributes.
 - \(F\) is a set of functional dependencies over \(R\).
 - Each key is described by a FD.
- The *decomposition of schema* \(R\) is a collection of schemas \(R_i = (R_i, F_i)\) where
 - \(R = \bigcup_i R_i\) for all \(i\) (*no new attributes*).
 - \(F_i\) is a set of functional dependencies involving only attributes of \(R_i\).
 - \(F\) entails \(F_i\) for all \(i\) (*no new FDs*).
- The *decomposition of an instance*, \(r\), of \(R\) is a set of relations \(r_i = \pi_{R_i}(r)\) for all \(i\).

Example Decomposition

Schema \((R, F)\) where
- \(R = \{SSN, Name, Address, Hobby\}\)
- \(F = \{SSN \rightarrow Name, Address\}\)
can be decomposed into
- \(R_1 = \{SSN, Name, Address\}\)
- \(F_1 = \{SSN \rightarrow Name, Address\}\)
and
- \(R_2 = \{SSN, Hobby\}\)
- \(F_2 = \{\}\)
Lossless Schema Decomposition

- A decomposition should not lose information.
- A decomposition \((R_1, \ldots, R_n)\) of a schema, \(R\), is *lossless* if every valid instance, \(r\), of \(R\) can be reconstructed from its components:
 \[r = r_1 \times r_2 \times \ldots \times r_n \]
- where each \(r_i = \pi_{R_i}(r)\)

Lossy Decomposition

The following is always the case (Think why?):
\[r \subseteq r_1 \times r_2 \times \ldots \times r_n \]

But the following is not always true:
\[r \supseteq r_1 \times r_2 \times \ldots \times r_n \]

Example:
\[
\begin{array}{ccc}
\text{SSN} & \text{Name} & \text{Address} \\
1111 & Joe & 1 \text{ Pine} \\
2222 & Alice & 2 \text{ Oak} \\
3333 & Alice & 3 \text{ Pine} \\
\end{array}
\]
\[
\begin{array}{ccc}
\text{SSN} & \text{Name} & \text{Address} \\
1111 & Joe & 1 \text{ Pine} \\
2222 & Alice & 2 \text{ Oak} \\
3333 & Alice & 3 \text{ Pine} \\
\end{array}
\]

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original.

Lossy Decompositions: What is Actually Lost?

- In the previous example, the tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) were *gained*, not lost!
 - Why do we say that the decomposition was lossy?
- What was lost is information:
 - That 2222 lives at 2 Oak: *In the decomposition, 2222 can live at either 2 Oak or 3 Pine*
 - That 3333 lives at 3 Pine: *In the decomposition, 3333 can live at either 2 Oak or 3 Pine*

Testing for Losslessness

- A (binary) decomposition of \(R = (R, F)\) into \(R_1 = (R_1, F_1)\) and \(R_2 = (R_2, F_2)\) is lossless *if and only if*:
 - either the FD
 \[(R_1 \cap R_2) \rightarrow R_1 \] is in \(F^+\)
 - or the FD
 \[(R_1 \cap R_2) \rightarrow R_2 \] is in \(F^+\)

Intuitively: the attributes common to \(R_1\) and \(R_2\) must contain a key for either \(R_1\) or \(R_2\).
Example

Schema \((R, F)\) where
\[
R = \{\text{SSN, Name, Address, Hobby}\}
\]
\[
F = \{\text{SSN }\rightarrow\text{Name, Address}\}
\]
can be decomposed into
\[
R_1 = \{\text{SSN, Name, Address}\}
\]
\[
F_1 = \{\text{SSN }\rightarrow\text{Name, Address}\}
\]
and
\[
R_2 = \{\text{SSN, Hobby}\}
\]
\[
F_2 = \{\}
\]
Since \(R_1 \cap R_2 = \text{SSN}\) and \(\text{SSN }\rightarrow\text{R}_1\) the decomposition is lossless

Intuition Behind the Test for Losslessness

• Suppose \(R_1 \cap R_2 \rightarrow R_2\). Then a row of \(r_1\) can combine with exactly one row of \(r_2\) in the natural join (since in \(r_2\) a particular set of values for the attributes in \(R_1 \cap R_2\) defines a unique row)

\[
\begin{array}{c|c|c|c}
R_1 \cap R_2 & R_1 \cap R_2 \\
\hline
\cdots & a & \cdots & \cdots \\
\cdots & a & \cdots & \cdots \\
\cdots & b & \cdots & \cdots \\
\cdots & c & \cdots & \cdots \\
\end{array}
\]

\(r_1\)

\(r_2\)

Dependency Preservation

• Consider a decomposition of \(R = (R, F)\) into \(R_1 = (R_1, F_1)\) and \(R_2 = (R_2, F_2)\)

 – An FD \(X \rightarrow Y\) of \(F\) is in \(F_i\) iff \(X \cup Y \subseteq R_i\)

 – An FD, \(f \in F\) may be in neither \(F_1\), nor \(F_2\), nor even \((F_1 \cup F_2)^+\)

 • Checking that \(f\) is true in \(r_1\) or \(r_2\) is (relatively) easy

 • Checking \(f\) in \(r_1 \bowtie r_2\) is harder – requires a join

 • Ideally: want to check FDs locally, in \(r_1\) and \(r_2\), and have a guarantee that every \(f \in F\) holds in \(r_1 \bowtie r_2\)

• The decomposition is dependency preserving iff the sets \(F\) and \(F_1 \cup F_2\) are equivalent: \(F^+ = (F_1 \cup F_2)^+\)

 – Then checking all FDs in \(F\), as \(r_1\) and \(r_2\) are updated, can be done by checking \(F_1\) in \(r_1\) and \(F_2\) in \(r_2\)

• If \(f\) is an FD in \(F\), but \(f\) is not in \(F_1 \cup F_2\), there are two possibilities:

 – \(f \in (F_1 \cup F_2)^+\)

 • If the constraints in \(F_1\) and \(F_2\) are maintained, \(f\) will be maintained automatically.

 – \(f \notin (F_1 \cup F_2)^+\)

 • \(f\) can be checked only by first taking the join of \(r_1\) and \(r_2\). This is costly.
Example

Schema \((R, F)\) where
\[
R = \{SSN, Name, Address, Hobby\}
\]
\[
F = \{SSN \rightarrow Name, Address\}
\]
can be decomposed into
\[
R_1 = \{SSN, Name, Address\}
\]
\[
F_1 = \{SSN \rightarrow Name, Address\}
\]
and
\[
R_2 = \{SSN, Hobby\}
\]
\[
F_2 = \{\}
\]
Since \(F = F_1 \cup F_2\) the decomposition is dependency preserving

Example

- Schema: \((ABC; F)\), \(F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}\)
- Decomposition:
 - \((AC, F_1)\), \(F_1 = \{A \rightarrow C\}\)
 - Note: \(A \rightarrow C \not\in F\), but in \(F^+\)
 - \((BC, F_2)\), \(F_2 = \{B \rightarrow C, C \rightarrow B\}\)

- \(A \rightarrow B \not\in (F_1 \cup F_2)^\ast\), but \(A \rightarrow B \in (F_1 \cup F_2)^+\)
- So \(F^+ = (F_1 \cup F_2)^+\) and thus the decompositions is still dependency preserving

Example

- \(\text{HasAccount (AccountNumber, ClientId, OfficeId)}\)
 - \(f_1: \text{AccountNumber} \rightarrow \text{OfficeId}\)
 - \(f_2: \text{ClientId, OfficeId} \rightarrow \text{AccountNumber}\)
- Decomposition:
 - \(\text{AcctOffice} = (\text{AccountNumber, OfficeId}; \{\text{AccountNumber} \rightarrow \text{OfficeId}\})\)
 - \(\text{AcctClient} = (\text{AccountId, ClientId}; \{\})\)
- Decomposition is lossless: \(R_1 \cap R_2 = \{\text{AccountNumber}\}\) and \(\text{AccountNumber} \rightarrow \text{OfficeId}\)
- In BCNF
- Not dependency preserving: \(f_2 \not\in (F_1 \cup F_2)^\ast\)
- \(\text{HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)}\)
- Hence: BCNF+lossless+dependency preserving decompositions are not always possible!

Example

BCNF Decomposition Algorithm

\textbf{Input: } \(R = (R; F)\)

\textbf{Decomp} := \(R\)

\textbf{while} there is \(S = (S; F') \in \text{Decomp}\) and \(S\) not in BCNF \textbf{do}

Find \(X \rightarrow Y \in F'\) that violates BCNF // \(X\) isn’t a superkey in \(S\)

Replace \(S\) in \(\text{Decomp}\) with \(S_1 = (XY; F_1), S_2 = (S - (Y - X); F_2)\)

\(F_1 =\) all FDs of \(F'\) involving only attributes of \(XY\)

\(F_2 =\) all FDs of \(F'\) involving only attributes of \(S - (Y - X)\)

\textbf{end}

\textbf{return} \text{Decomp}
Example

Given: \(R = (R; T) \) where \(R = ABCDEFGH \) and
\(T = \{ ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow F, F \rightarrow ADH, BH \rightarrow GE \} \)

step 1: Find a FD that violates BCNF
- Not \(ABH \rightarrow C \) since \((ABH)^+ \) includes all attributes
 \((BH) \) is a key
- \(A \rightarrow DE \) violates BCNF since \(A^+ = ADE \)

step 2: Split \(R \) into:
- \(R_1 = (ADE, \{ A \rightarrow DE \}) \)
- \(R_2 = (ABCFGH; \{ ABH \rightarrow C, BGH \rightarrow F, F \rightarrow AH, BH \rightarrow G \}) \)

Note 1: \(R_1 \) is in BCNF
Note 2: Decomposition is lossless since \(A \) is a key of \(R_1 \)
Note 3: FDs \(F \rightarrow D \) and \(BH \rightarrow E \) are not in \(T_1 \) or \(T_2 \).
 Both can be derived from \(T_1 \cup T_2 \)
 (E.g., \(F \rightarrow A \) and \(A \rightarrow D \) implies \(F \rightarrow D \))
Hence, decomposition is dependency preserving.

Properties of BCNF Decomposition Algorithm

Let \(X \rightarrow Y \) violate BCNF in \(R = (R,F) \) and \(R_1 = (R_1,F_1) \), \(R_2 = (R_2,F_2) \) is the resulting decomposition. Then:
- There are fewer violations of BCNF in \(R_1 \) and \(R_2 \) than there were in \(R \)
 - \(X \rightarrow Y \) implies \(X \) is a key of \(R_1 \)
 - Hence \(X \rightarrow Y \in F_1 \) does not violate BCNF in \(R_1 \) and, since \(X \rightarrow Y \notin F_2 \), does not violate BCNF in \(R_2 \) either
 - Suppose \(f \) is \(X' \rightarrow Y' \) and \(f \in F \) doesn’t violate BCNF in \(R \).
 If \(f \in F_1 \) or \(F_2 \) it does not violate BCNF in \(R_1 \) or \(R_2 \) either since \(X' \) is a superkey of \(R \) and hence also of \(R_1 \) and \(R_2 \).
- The decomposition is lossless
 - Since \(F_1 \cap F_2 = X \)

Example (con’t)

Given: \(R_2 = (ABCFGH; \{ ABH \rightarrow C, BGH \rightarrow F, F \rightarrow AH, BH \rightarrow G \}) \)

step 1: Find a FD that violates BCNF.
- Not \(ABH \rightarrow C \) or \(BGH \rightarrow F \), since \(BH \) is a key of \(R_2 \)
- \(F \rightarrow AH \) violates BCNF since \(F \) is not a superkey \((F^+ = AH) \)

step 2: Split \(R_2 \) into:
- \(R_{21} = (FAH, \{ F \rightarrow AH \}) \)
- \(R_{22} = (BCFG; \{ \}) \)

Note 1: Both \(R_{21} \) and \(R_{22} \) are in BCNF.
Note 2: The decomposition is lossless (since \(F \) is a key of \(R_{21} \))
Note 3: FDs \(ABH \rightarrow C, BGH \rightarrow F, BH \rightarrow G \) are not in \(T_{21} \)
 or \(T_{22} \), and they can’t be derived from \(T_1 \cup T_{21} \cup T_{22} \).
 Hence the decomposition is not dependency-preserving.

Properties of BCNF Decomposition Algorithm

- A BCNF decomposition is not necessarily dependency preserving
- But always lossless
- BCNF+lossless+dependency preserving is sometimes unachievable (recall HasAccount)
Third Normal Form

- Compromise – Not all redundancy removed, but dependency preserving decompositions are always possible (and, of course, lossless)
- 3NF decomposition is based on a minimal cover

Computing Minimal Cover

- Example: \(T = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow F, F \rightarrow AD, E \rightarrow F, BH \rightarrow E\} \)
- step 1: Make RHS of each FD into a single attribute
 - Algorithm: Use the decomposition inference rule for FDs
 - Example: \(F \rightarrow AD \) replaced by \(F \rightarrow A, F \rightarrow D \); \(ABH \rightarrow CK \) by \(ABH \rightarrow C, ABH \rightarrow K \)
- step 2: Eliminate redundant attributes from LHS.
 - Algorithm: If FD \(XB \rightarrow A \in T \) (where \(B \) is a single attribute) and \(X \rightarrow A \) is entailed by \(T \), then \(B \) was unnecessary
 - Example: Can an attribute be deleted from \(ABH \rightarrow C \)?
 - Compute \(AB^+T, AH^+T, BH^+T \).
 - Since \(C \in (BH)^+T \), \(BH \rightarrow C \) is entailed by \(T \) and \(A \) is redundant in \(ABH \rightarrow C \).

Minimal Cover

- A minimal cover of a set of dependencies, \(T \), is a set of dependencies, \(U \), such that:
 - \(U \) is equivalent to \(T \) (\(T^+ = U^+ \))
 - All FDs in \(U \) have the form \(X \rightarrow A \) where \(A \) is a single attribute
 - It is not possible to make \(U \) smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called redundant

Computing Minimal Cover (con’t)

- step 3: Delete redundant FDs from \(T \)
 - Algorithm: If \(T - \{f\} \) entails \(f \), then \(f \) is redundant
 - If \(f \) is \(X \rightarrow A \) then check if \(A \in X^+T_{-f} \)
 - Example: \(BGH \rightarrow F \) is entailed by \(E \rightarrow F, BH \rightarrow E \), so it is redundant
- Note: Steps 2 and 3 cannot be reversed!!
 See the textbook for a counterexample
Synthesizing a 3NF Schema

Starting with a schema $R = (R, T)$

step 1: Compute a minimal cover, U, of T. The decomposition is based on U, but since $U^+ = T^+$ the same functional dependencies will hold

- A minimal cover for

 $T = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow F, F \rightarrow AD, E \rightarrow F, BH \rightarrow E\}$

 is

 $U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, F \rightarrow A, E \rightarrow F\}$

Synthesizing a 3NF schema (con’t)

step 2: Partition U into sets U_1, U_2, \ldots, U_n such that the LHS of all elements of U_i are the same

- $U_1 = \{BH \rightarrow C, BH \rightarrow K\}, U_2 = \{A \rightarrow D\}$,

 $U_3 = \{C \rightarrow E\}, U_4 = \{F \rightarrow A\}, U_5 = \{E \rightarrow F\}$

Synthesizing a 3NF schema (con’t)

step 3: For each U_i form schema $R_i = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i

- Each FD of U will be in some R_i. Hence the decomposition is *dependency preserving*

 - $R_1 = \{BHC; BH \rightarrow C, BH \rightarrow K\}$,

 $R_2 = \{AD; A \rightarrow D\}$,

 $R_3 = \{CE; C \rightarrow E\}$,

 $R_4 = \{FA; F \rightarrow A\}$,

 $R_5 = \{EF; E \rightarrow F\}$

Synthesizing a 3NF schema (con’t)

step 4: If no R_i is a superkey of R, add schema $R_0 = (R_0, \{\})$ where R_0 is a key of R.

- $R_0 = \{BGH, \{\}\}$

 - R_0 might be needed when not all attributes are necessarily contained in $R_1 \cup R_2 \ldots \cup R_n$

 - A missing attribute, A, must be part of all keys

 (since it’s not in any FD of U, deriving a key constraint from U involves the augmentation axiom)

 - R_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \ldots \cup R_n$

 - Example: $(ABCD; \{A \rightarrow B, C \rightarrow D\})$. Step 3 decomposition:

 $R_1 = \{AB; A \rightarrow B\}$,

 $R_2 = \{CD; C \rightarrow D\}$. Lossy! Need to add $(AC; \{\})$, for losslessness

 - Step 4 guarantees lossless decomposition.
BCNF Design Strategy

- The resulting decomposition, R_0, R_1, \ldots, R_n, is
 - Dependency preserving (since every FD in U is a FD of some schema)
 - Lossless (although this is not obvious)
 - In 3NF (although this is not obvious)
- Strategy for decomposing a relation
 - Use 3NF decomposition first to get lossless, dependency preserving decomposition
 - If any resulting schema is not in BCNF, split it using the BCNF algorithm (but this may yield a non-dependency preserving result)

Normalization Drawbacks

- By limiting redundancy, normalization helps maintain consistency and saves space
- But performance of querying can suffer because related information that was stored in a single relation is now distributed among several
- **Example:** A join is required to get the names and grades of all students taking CS305 in S2002.

```
SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND T.CrsCode = 'CS305' AND T.Semester = 'S2002'
```

Denormalization

- **Tradeoff:** *Judiciously* introduce redundancy to improve performance of certain queries
- **Example:** Add attribute *Name* to Transcript

```
SELECT T.Name, T.Grade
FROM Transcript T
WHERE T.CrsCode = 'CS305' AND T.Semester = 'S2002'
```

- Join is avoided
- If queries are asked more frequently than Transcript is modified, added redundancy might improve average performance
- But, Transcript' is no longer in BCNF since key is $(StudId, CrsCode, Semester)$ and $StudId \rightarrow Name$

Fourth Normal Form

- Relation has redundant data
- Yet it is in BCNF (since there are no non-trivial FDs)
- Redundancy is due to set valued attributes (in the E-R sense), not because of the FDs
Multi-Valued Dependency

- **Problem**: multi-valued (or binary join) dependency
 - **Definition**: If every instance of schema R can be (losslessly) decomposed using attribute sets (X, Y) such that:
 $$ r = \pi_X (r) \Join \pi_Y (r) $$
 then a **multi-valued dependency**
 $$ R = \pi_X (R) \Join \pi_Y (R) $$
 holds in r

Ex: $\text{Person} = \pi_{\text{SSN,PhoneN}} (\text{Person}) \Join \pi_{\text{SSN,ChildSSN}} (\text{Person})$

Fourth Normal Form (4NF)

- A schema is in **fourth normal form** (4NF) if for every non-trivial multi-valued dependency:
 $$ R = X \Join Y $$
either:
 - $X \subseteq Y$ or $Y \subseteq X$ (trivial case); or
 - $X \cap Y$ is a superkey of R (*i.e.*, $X \cap Y \rightarrow R$)

Fourth Normal Form (Cont’d)

- **Intuition**: if $X \cap Y \rightarrow R$, there is a unique row in relation r for each value of $X \cap Y$ (hence no redundancy)
 - Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus Person is not in 4NF.
- **Solution**: Decompose R into X and Y
 - Decomposition is lossless – but not necessarily dependency preserving (since 4NF implies BCNF – next)

4NF Implies BCNF

- Suppose R is in 4NF and $X \rightarrow Y$ is an FD,
 - $R_1 = XY$, $R_2 = R-Y$ is a lossless decomposition of R
 - Thus R has the multi-valued dependency:
 $$ R = R_1 \Join R_2 $$
 - Since R is in 4NF, one of the following must hold:
 - $XY \subseteq R - Y$ (an impossibility)
 - $R - Y \subseteq XY$ (i.e., $R = XY$ and X is a superkey)
 - $XY \cap R - Y = X$ is a superkey
 - Hence $X \rightarrow Y$ satisfies BCNF condition