Database Management Systems

Winter 2002

CMPUT 391: Database Design Theory

Dr. Osmar R. Zaïane

University of Alberta

Course Content

- Introduction
- Database Design Theory
- Query Processing and Optimisation
- Concurrency Control
- Data Base Recovery and Security
- Object-Oriented Databases
- Inverted Index for IR
- Spatial Data Management
- XML
- Data Warehousing
- Data Mining
- Parallel and Distributed Databases

Objectives of Lecture 2
 Database Design Theory

- Understand some limitations of Entity

Relationship Model

- Introduce Functional Dependencies in Relational Database Design
- Introduce Decomposition and

Normalization

Database Design Theory

Database Design Process

- Redundancy Anomalies
- Functional Dependencies
- Armstrong Axioms and Derived Rules
- Normal Forms
- Decomposition of Relations

Database Design Process

Logical Database Design

- System independent phase
- obtain a desirable database scheme in the database model of the chosen database management system
- System dependent phase
- adjust the database scheme obtained in the previous phase to conform to the chose database management system
- DDL statements

Physical Database Design

- Purpose
- to specify the appropriate file structures and indexes
- Criteria
- efficiency
- Approach
- analyzing the database queries and transactions, including expected frequency
- specifying the general user requirements
- Guideline
- speeding natural join operations
- separate read-only and update transactions
- index files for search and hashing for random access
- focus on attributes used most frequently

Implementation

- Coding
- DDL for database scheme
- SDL for physical scheme
- develop application programs
- Testing
- Operation and Maintenance

Repetition of Information

Consider an alternative design with the single scheme below
Lending = (branch-name, assets, branch-city, loan-number, customer-name, amount)

branch-name	assets	branch-city	loan-number	customer-name	amount
Downtown	9000	Edmonton	17	Jones	1000
Downtown	9000	Edmonton	93	Smith	2000
Downtown	9000	Edmonton	93	Hays	2900
Redwood	21000	Edmonton	23	Jackson	1200
Redwood	21000	Edmonton	23	Smith	2000
SUB	17000	Edmonton	19	Hays	2900
SUB	17000	Edmonton	19	Turner	500
SUB	17000	Edmonton	19	Brooks	2200

What if a customer wishes to open an account but not a loan?

Bad Database Design

- Pitfalls in Relational Database Design
- Repetition of information
- Inability to represent certain information
- Loss of information

Consider the following relation schemes:
Branch = (branch-name, assets, branch-city)
Borrow $=$ (branch-name, loan-number, customer-name, amount)
Deposit = (branch-name, account-number, customer-name, amount)

Repetition of Information

Consider an alternative design
Branch-Cust $=$ (branch-name, assets, branch-city, customer-name)
Cust-Loan = (customer-name, loan-number, amount)

branch-name	assets	branch-city	customer-name	customer	loan	amount
Downtown	9000	Edmonton	Jones	Jones	17	1000
Downtown	9000	Edmonton	Smith	Smith	93	2000
Downtown	9000	Edmonton	Hays	Hays	93	2900
Redwood	21000	Edmonton	Jackson	Jackson	23	1200
Redwood	21000	Edmonton	Smith	Smith	23	2000
SUB	17000	Edmonton	Hays	Hays	19	2900
SUB	17000	Edmonton	Turner	Turner	19	500
SUB	17000	Edmonton	Brooks	Brooks	19	2200

What will happen if we do a join?

Database Design Theory

- Database Design Process
- Redundancy Anomalies
- Functional Dependencies
- Armstrong Axioms and Derived Rules
- Normal Forms
- Decomposition of Relations

The Evils of Redundancy

- Redundancy is at the root of several problems associated with relational schemas:
- redundant storage, insert/delete/update anomalies
- Integrity constraints, in particular functional dependencies, can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: decomposition (replacing ABCD with, say, $\overline{\mathrm{AB}}$ and BCD , or ACD and ABD).
- Decomposition should be used judiciously:
- Is there reason to decompose a relation?
- What problems (if any) does the decomposition cause?
© Dr. Osmar R. Zaiane, 2001 CMPUT 391 - Database Management Systems University of Alberta 14

Database Design Theory

- Database Design Process
- Redundancy Anomalies
- Functional Dependencies
- Armstrong Axioms and Derived Rules
- Normal Forms
- Decomposition of Relations

Functional Dependencies (FDs)

- A functional dependency $X \rightarrow Y$ holds over relation R if, for every allowable instance r of R:
- $t 1 \in r, t 2 \in r, \pi_{X}(t 1)=\pi_{X}(t 2)$ implies $\pi_{Y}(t 1)=\pi_{Y}(t 2)$
- i.e., given two tuples in r, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes.)
- An FD is a statement about all allowable relations.
- Must be identified based on semantics of application.
- Given some allowable instance $r l$ of R , we can check if it violates some $\mathrm{FD} f$, but we cannot tell if f holds over R !
- K is a candidate key for R means that $\mathrm{K} \rightarrow \mathrm{R}$
- However, $\mathrm{K} \rightarrow \mathrm{R}$ does not require K to be minimal!

Example: Constraints on Entity Set

- Consider relation obtained from Hourly_Emps:
- Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)
- Notation: We will denote this relation schema by listing the attributes: SNLRWH
- This is really the set of attributes \{S,N,L,R,W,H\}.
- Sometimes, we will refer to all attributes of a relation by using the relation name. (e.g., Hourly_Emps for SNLRWH)
- Some FDs on Hourly_Emps:
- ssn is the key: $\mathrm{S} \rightarrow$ SNLRWH
- rating determines hrly_wages: $\mathrm{R} \rightarrow \mathrm{W}$

Example (Contd.)

- Problems due to $\mathrm{R} \rightarrow \mathrm{W}$:
- Update anomaly: Can we change W in just the 1st tuple of SNLRWH?
- Insertion anomaly: What if we want to insert an employee and don't know the hourly wage for his rating?
- Deletion anomaly: If we delete all employees with rating 5 , we lose the information about the wage for rating 5!

© Dr. Osmar R. Zäane, 2001
CMPUT 391 - Database Management Systems
University of Alberta 18

Refining an ER Diagram

- 1st diagram translated:

Workers(S,N,L,D,C)
Departments(D,M,B)

- Lots associated with workers.
- Suppose all workers in a dept are assigned the same lot: $\mathrm{D} \rightarrow \mathrm{L}$
- Redundancy; fixed by: Workers2(S,N,D,C) Dept_Lots(D,L) Departments(D,M,B)
- Can fine-tune this:

Workers2(S,N,D,C)
Departments(D,M,B,L)

Database Design Theory

- Database Design Process
- Redundancy Anomalies
- Functional Dependencies
- Armstrong Axioms and Derived Rules
- Normal Forms
- Decomposition of Relations

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
- ssn \rightarrow did, did \rightarrow lot implies ssn \rightarrow lot
- An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.
$-F^{+}=$closure of F is the set of all FDs that are implied by F.
- Armstrong's Axioms (X, Y, Z are sets of attributes):
- Reflexivity: If $\mathrm{Y} \subseteq \mathrm{X}$, then $\mathrm{X} \rightarrow \mathrm{Y}$
- Augmentation: If $\mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{XZ} \rightarrow \mathrm{YZ}$ for any Z
- Transitivity: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{Z}$
- These are sound and complete inference rules for FDs!

CMPUT 391 - Database Management Systems

Augmentation

- If $\mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{XZ} \rightarrow \mathrm{YZ}$ for any Z

Reflexivity

- If $Y \subseteq X$, then $X \rightarrow Y$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{t}_{1}=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right) \\
\mathrm{t}_{2}=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{~d}_{2}, \mathrm{e}_{2}\right) \\
\left.\pi_{\mathrm{X}}\left(\mathrm{t}_{1}\right)=\pi_{\mathrm{x}} \mathrm{t}_{2}\right) \Rightarrow \\
\mathrm{a}_{1}=\mathrm{a}_{2}, \mathrm{~b}_{1}=\mathrm{b}_{2}, \mathrm{c}_{1}=\underbrace{}_{2}, \mathrm{~d}_{1}=\mathrm{d}_{2} \\
\pi_{\mathrm{Y}}\left(\mathrm{t}_{1}\right)=\pi_{\mathrm{Y}}\left(\mathrm{t}_{2}\right) \quad \leftarrow
\end{array}
\end{aligned}
$$

Transitivity

- If $\mathrm{X} \rightarrow \mathrm{Y}$, and $\mathrm{Y} \rightarrow \mathrm{Z}$ then $\mathrm{X} \rightarrow \mathrm{Z}$

$$
\begin{aligned}
& \mathrm{t}_{1}=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}, \mathrm{~d}_{1}, \mathrm{e}_{1}\right) \\
& \mathrm{t}_{2}=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}, \mathrm{c}_{2}, \mathrm{e}_{2}\right) \\
& \text { assume } \mathrm{X} \rightarrow \mathrm{Y} \text { and } \mathrm{Y} \rightarrow \mathrm{Z} \\
& \pi_{\mathrm{X}}\left(\mathrm{t}_{1}\right)=\pi_{\mathrm{X}}\left(\mathrm{t}_{2}\right) \rightarrow \\
& \mathrm{a}_{1}=\mathrm{a}_{2}, \mathrm{~b}_{1}=\mathrm{b}_{2} \\
& \text { Since } \mathrm{X} \rightarrow \mathrm{Y} \text { then } \mathrm{c}_{1}=\mathrm{c}_{2}, \mathrm{~d}_{1}=\mathrm{d}_{2} \\
& \rightarrow \pi_{\mathrm{Y}}\left(\mathrm{t}_{1}\right)=\pi_{\mathrm{Y}}\left(\mathrm{t}_{2}\right) \\
& \text { Since } \longrightarrow \mathrm{Y} \text { then } \mathrm{e}_{1}=\mathrm{e}_{2} \\
& \rightarrow \pi_{\mathrm{Z}}\left(\mathrm{t}_{1}\right)=\pi_{\mathrm{Z}}\left(\mathrm{t}_{2}\right)
\end{aligned}
$$

Reasoning About FDs (Contd.)

- Couple of additional rules (that follow from Armstrong Axioms):
- Union: If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{YZ}$
- Decomposition: If $\mathrm{X} \rightarrow \mathrm{YZ}$, then $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{X} \rightarrow \mathrm{Z}$
- Example: Contracts(cid,sid,jid,did,pid,qty,value), and:
- C is the key: $\mathrm{C} \rightarrow$ CSJDPQV
- Project purchases each part using single contract: JP \rightarrow C
- Dept purchases at most one part from a supplier: SD $\rightarrow P$
- JP $\rightarrow \mathrm{C}, \mathrm{C} \rightarrow$ CSJDPQV imply JP \rightarrow CSJDPQV
- SD $\rightarrow \mathrm{P}$ implies SDJ $\rightarrow \mathrm{JP}$
- SDJ \rightarrow JP, JP \rightarrow CSJDPQV imply SDJ \rightarrow CSJDPQV

Closure of a Set of Functional Dependencies

- It is not sufficient to consider the given set of functional dependencies
- We need to consider ALL functional dependencies that hold.
- Given F, a set of functional dependencies, the set of all functional dependencies logically implied by F are called the closure of F denoted by F^{+}
© Dr. Osmar R. Zaiane, $2001 \quad$ CMPUT 391 - Database Management Systems 26

Computing the Attribute Closure

- The attribute closure X^{+}of a set of attributes with respect to a given set of functional dependencies F is the set of all attributes A such that $\mathrm{X} \rightarrow \mathrm{A}$ holds.
- To check whether an FD X \rightarrow Y holds wrt F , we just have to check whether $\mathrm{Y} \subseteq \mathrm{X}^{+}$(no need to compute F^{+})
- Algorithm for Attribute Closure:
closure : = X;
while (changes in closure) do
foreach functional dependency $\mathrm{U} \rightarrow \mathrm{V}$ do

$$
\text { if } \mathrm{U} \subseteq \text { closure then closure }:=\text { closure } \cup \mathrm{V} \text {; }
$$

Normal Forms

- Database Design Process
- Redundancy Anomalies
- Functional Dependencies
- Armstrong Axioms and Derived Rules
- Normal Forms
- Decomposition of Relations

Desired Normal Forms

- The normalization process was first introduced by Codd in 1972. It takes a relation schema through a series of tests and verifies whether it satisfies certain normal forms.
- Initially, Codd introduced 3 normal forms 1NF, 2NF and 3NF but later Boyce and Codd introduced a stronger definition for 3NF called Boyce-Codd Normal Form (BCNF).
- There are also 4NF and 5NF based on Multivalued Dependencies.

Normal Form Tests

- 1NF: Relation should have no non-atomic attributes or nested relations
- 2NF: Relation where the primary key contains multiple attributes and no nonkey attribute should be FD on a a part of the primary key.
- 3NF: Relation should not have a nonkey attribute functionally determined by another nonkey attribute (or by a set of nonkey attributes). That is, there should be no transitive dependency of a nonkey attribute on the primary key.
- A relation in 3 NF is also in 2 NF and a relation in 2 NF is also in 1 NF .

1NF Example

StuID	Activity	Fee
100	Skiing	200
100	Golf	100
150	Swimming	65
175	Squash	50
175	Swimming	65
200	Swimming	65
200	Golf	100

- Activity relation is in 1 NF (each attribute has one single value by tuple)
- Key= StuID+Activity
- Deletion and Insertion anomalies
- Relation contains 2 themes
- Fee is dependent on part of the key (Activity)
- Split the relation into 2 relations with one theme each.
- 2NF: a non-key attribute can't be dependent on part of the key but must be dependent on the whole key

2NF Example 2 and 3NF

StuID	Residence	Fee
100	Lister	$\$ 4907$
150	Pembina	$\$ 4587$
200	Lister	$\$ 4907$
250	HUB	$\$ 3600$
300	Lister	$\$ 4907$

- Key $=$ StuID $\rightarrow 2 \mathrm{NF}$
- StuID \rightarrow (Residence, Fee)
- StuID \rightarrow Residence but also Residence \rightarrow Fee (transitive dependency)
- Delete StuID 150, add (Fac. St-Jean, \$2923) modification anomalies.
- No non-key attribute is dependent on non-key attribute/s (transitive dependency).
- 3NF is in 2NF+ no transitive dependencies | StuID | Residence Residence | Fee |
| :--- | :--- | :--- |

Problems with 3NF (Example)

StuID	Major	Faculty
100	Math	Pavol
150	Physics	Tico
200	Math	Pavol
250	Math	Calvert
300	Physics	Popovic
300	Biology	Wong

- Key = StuID + Major
- Candidate key = StuID+Faculty
- Faculty \rightarrow Major
- Student can have many majors and student can have many advisors \rightarrow StuID \nrightarrow Major and StuID \nrightarrow Faculty
- 1NF and 2 NF (all attrib part of key), 3NF (no transitive dependencies)
- Delete StuID 300, add (Dahl advises statistics) $\boldsymbol{\rightarrow}$ modification anomalies.
- Determinant (Faculty) is not part of a key \rightarrow not BCNF

Boyce-Codd Normal Form (BCNF)

- Relation R with FDs F is in BCNF if, for all $\mathrm{X} \rightarrow \mathrm{A}$ in F^{+} - $\mathrm{A} \in \mathrm{X}$ (called a trivial FD), or - X contains a key for R.
- In other words, R is in BCNF if the only non-trivial FDs that hold over R are key constraints.
- No dependency in R that can be predicted using FDs alone.
- If we are shown two tuples that agree upon the X value, we cannot infer the A value in one tuple from the A value in the other.
- If example relation is in BCNF, the 2 tuples must be identical (since X is a key).

Third Normal Form (3NF)

- Relation R with FDs F is in 3NF if, for all $\mathrm{X} \rightarrow \mathrm{A}$ in $F+$
- $\mathrm{A} \in \mathrm{X}$ (called a trivial FD), or
- X contains a key for R, or
- A is part of some key for R .
- Minimality of a key is crucial in third condition above!
- If R is in BCNF, obviously in 3NF.
- If R is in 3 NF , some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no "good'" decomp, or performance considerations).
- Lossless-join, dependency-preserving decomposition of R into a collection of $3 N F$ relations always possible.

Normal Form Conditions Revised

No nested tables and fixed \# attributes

- 2 NF

All non-key are dependent on all of the key

- 3NF

2 NF and no transitive dependencies

- BCNF

3 NF and all determinants are candidate key

- Thus, 3NF is indeed a compromise relative to BCNF.

1NF and 2NF Revised

1NF: a relation in which the intersection of each row and column contains one and only one value.
i.e. Tables should have atomic values only.

2NF: a relation in 1NF and every non primary key attribute is fully functionally dependent on the primary key. i.e. There are no non-key attributes with partial key dependencies in any table.

3NF and BCNF Revised

3NF: a relation in 2NF and in which no non-primary key attribute is transitively dependent on the primary key.
i.e. There are no non-key attributes with dependencies on other non-key attributes (except candidate key).

3NF

BCNF: a relation in 3NF and in which there are no dependencies of part of the compound key on another attribute.
i.e. Every determinant is a candidate key.

CMPUT 391 - Database Management Systems
University of Alberta (2)

Database Design Theory

Decomposition of a Relation Scheme

- Suppose that relation R contains attributes A1 ... An. A decomposition of R consists of replacing R by two or more relations such that:
- Each new relation scheme contains a subset of the attributes of R (and no attributes that do not appear in R), and
- Every attribute of R appears as an attribute of one of the new relations.
- Intuitively, decomposing R means we will store instances of the relation schemes produced by the decomposition, instead of instances of R.
- E.g., Can decompose SNLRWH into SNLRH and RW.

Example Decomposition

- Decompositions should be used only when needed.
- SNLRWH has FDs $\mathrm{S} \rightarrow$ SNLRWH and $\mathrm{R} \rightarrow \mathrm{W}$
- Second FD causes violation of 3NF; W values repeatedly associated with R values. Easiest way to fix this is to create a relation RW to store these associations, and to remove W from the main schema:
- i.e., we decompose SNLRWH into SNLRH and RW
- The information to be stored consists of SNLRWH tuples. If we just store the projections of these tuples onto SNLRH and RW, are there any potential problems that we should be aware of?

[^0]CMPUT 391 - Database Management Systems University of Alberta 45

Lossless Join Decompositions

- Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$
-\quad \pi_{X}(r) \bowtie \pi_{Y}(r)=r
$$

- It is always true that $r \subseteq \pi_{X}(r) \bowtie \pi_{r}(r)$
- In general, the other direction does not hold! If it does, the decomposition is lossless-join.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)
© Dr. Osmar R. Zäane, 2001

Problems with Decompositions

- There are three potential problems to consider:
* Some queries become more expensive.
- e.g., How much did sailor Joe earn? (salary $=\mathrm{W} * \mathrm{H}$)
* Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
- Fortunately, not in the SNLRWH example.
* Checking some dependencies may require joining the instances of the decomposed relations.
- Fortunately, not in the SNLRWH example.
- Tradeoff: Must consider these issues vs. redundancy.

连

Dependency Preserving Decomposition

- Consider the contract relation schema CSJDPQV, C is key, JP $\rightarrow \mathrm{C}$ (project purchases a part using one contract) and $\mathrm{SD} \rightarrow \mathrm{P}$ (department purchases only one part from a suplier).
- BCNF decomposition: CSJDQV and SDP
- Problem: Checking JP $\rightarrow \mathrm{C}$ requires a join!
- Dependency preserving decomposition (Intuitive):
- If R is decomposed into X, Y and Z , and we enforce the FDs that hold on X , on Y and on Z , then all FDs that were given to hold on R must also hold. (Avoids Problem (3).)
- Projection of set of FDs F: If R is decomposed into X, \ldots projection of F onto X (denoted F_{X}) is the set of FDs $\mathrm{U} \rightarrow \mathrm{V}$ in F^{+}(closure of F) such that U, V are in X .

Decomposition into BCNF

- Consider relation R with FDs F . If $\mathrm{X} \rightarrow \mathrm{Y}$ violates BCNF, decompose R into R - Y and XY.
- Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
- e.g., CSJDPQV, key C, JP \rightarrow C, SD \rightarrow P, J \rightarrow S
- To deal with SD $\rightarrow P$, decompose into SDP, CSJDQV.
- To deal with $\mathrm{J} \rightarrow \mathrm{S}$, decompose CSJDQV into JS and CJDQV
- In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

Dependency Preserving Decompositions

- Decomposition of R into X and Y is dependency preserving if $\left(\mathrm{F}_{\mathrm{X}} \text { union } \mathrm{F}_{\mathrm{Y}}\right)^{+}=\mathrm{F}^{+}$
- i.e., if we consider only dependencies in the closure F^{+}that can be checked in X without considering Y , and in Y without considering X , these imply all dependencies in F^{+}.
- Important to consider F^{+}, not F , in this definition:
- $\mathrm{ABC}, \mathrm{A} \longrightarrow \mathrm{B}, \mathrm{B} \longrightarrow \mathrm{C}, \mathrm{C} \longrightarrow \mathrm{A}$, decomposed into AB and BC .
- Is this dependency preserving? Is $\mathrm{C} \longrightarrow \mathrm{A}$ preserved?????
- Dependency preserving does not imply lossless join:
- $\mathrm{ABC}, \mathrm{A} \longrightarrow \mathrm{B}$, decomposed into AB and BC .
- And vice-versa! (Example?)

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
- e.g., CSZ, CS $\rightarrow \mathrm{Z}, \mathrm{Z} \rightarrow \mathrm{C}$
- Can't decompose while preserving 1st FD; not in BCNF.
- Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs $\mathrm{JP} \rightarrow \mathrm{C}, \mathrm{SD} \rightarrow \mathrm{P}$ and $\mathrm{J} \rightarrow \mathrm{S}$).
- However, it is a lossless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
- JPC tuples stored only for checking FD! (Redundancy!)

Decomposition into 3NF

- Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a lossless join decomp into 3NF (typically, can stop earlier).
- To ensure dependency preservation, one idea:
- If $\mathrm{X} \rightarrow \mathrm{Y}$ is not preserved, add relation XY .
- Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve' JP \rightarrow C. What if we also have $\mathrm{J} \rightarrow \mathrm{C}$?
- Refinement: Instead of the given set of FDs F, use a minimal cover for F.

Multi-value Dependency

StuID	Major	Activity	- Key= StuID+Major+Activity
100	Math	Skiing	- 1NF (obvious) 2NF (all atrib
100	Physics	Skiing	key) 3NF (no transitive
100	Math	Golf	dependency) BCNF (no
100	Physics	Golf	nonkey determinant) \rightarrow
200	Physics Biology	Swimming Swimming	StuID \nrightarrow Major, StuID \nrightarrow Activity
200	Biology	Swimming	Stid Major, Suld

- We talk about multi-value dependencies
- StuID $\rightarrow \rightarrow$ Major and StuID $\rightarrow \rightarrow$ Activity
- Major and Activity are independent
- Anomalies: add student 100 signs up for squash, remove student 100 and swimming.

Minimal Cover for a Set of FDs

- Minimal cover G for a set of FDs F:
- Closure of F = closure of G.
- Right hand side of each FD in G is a single attribute.
- If we modify G by deleting an FD or by deleting attributes from an FD in G , the closure changes.
- Intuitively, every FD in G is needed, and "as small as possible" in order to get the same closure as F .
- e.g., $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{ABCD} \rightarrow \mathrm{E}, \mathrm{EF} \rightarrow \mathrm{GH}, \mathrm{ACDF} \rightarrow \mathrm{EG}$ has the following minimal cover:
$-\mathrm{A} \rightarrow \mathrm{B}, \mathrm{ACD} \rightarrow \mathrm{E}, \mathrm{EF} \rightarrow \mathrm{G}$ and $\mathrm{EF} \rightarrow \mathrm{H}$
- M.C. \rightarrow Lossless-Join, Dep. Pres. Decomp!!! (in book)
© Dr. Osmar R. Zaiane, 2001 CMPUT 391 - Database Management Systems University of Alberta 54

4NF and 5NF

StuID	Major
100	Math
100	Physics
200	Physics
200	Biology

StuID	Activity
100	Skiing
100	Golf
200	Swimming

- Now suppose only students Majoring in PhysEd can sign up for Decathlon
- Create another relation for the restrictions

Major	Activity
PhysEd	Decathlon

Inference Rules

■ Reflexivity for FDs

If $\mathrm{Y} \subseteq \mathrm{X}$ then $\mathrm{X} \rightarrow \mathrm{Y}$.

- Augmentation rule for FDs

If $\mathrm{X} \rightarrow \mathrm{Y}$ then $\mathrm{XW} \rightarrow \mathrm{Y}$.
\square Transitivity rule for FDs
If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$ then $\mathrm{X} \rightarrow \mathrm{Z}$.

Rules for both FDs and MVDs

- If $X \rightarrow Y$ then $X \rightarrow Y$.
- If $X \rightarrow \rightarrow Y$ and there exits
$\mathrm{W} \subseteq \mathrm{R}$ such that $\mathrm{W} \cap \mathrm{Y}=\varnothing$ and $\mathrm{W} \rightarrow \mathrm{Z}$, then $\mathrm{X} \rightarrow \mathrm{Z}$.
- Complementation rule for MVDs

If $\mathrm{X} \rightarrow \mathrm{Y}$ then $\mathrm{X} \rightarrow$ ($\mathrm{R}-\mathrm{XY}$)

- Augmentation for MVDs

If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{V} \subseteq \mathrm{W}, \mathrm{W} \subseteq \mathrm{R}$ then $\mathrm{WX} \rightarrow \rightarrow \mathrm{VY}$.
\square Transitivity rule for MVDs
If $\mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{Y} \rightarrow \mathrm{Z}$ then $\mathrm{X} \rightarrow(\mathrm{Z}-\mathrm{Y})$.

Examples

- Faculty $=\{$ Prof, Course, GraduateStudent $\}$ Prof \rightarrow Course | GraduateStudent
Thus, $\{$ (Prof, Course); (Prof, GraduateStudent) $\}$ is a 4NF decomposition of Faculty.
- Bank $=\{$ Customer, Account, Balance, Loan, Amount $\}$ Customer $\rightarrow \rightarrow$ Account, Balance |Loan, Amount
Thus, $\{($ Customer, Loan, Amount); (Customer, Account, Balance) $\}$ is a 4 NF decomposition of Bank.
- Employee (Name, Project, Dependent)

Name \rightarrow Project | Dependent
Thus, $\quad\{($ Name, Project); (Name, Dependent) $\}$ is a 4NF decomposition of Employee.

Summary of Schema Refinement

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
- Must consider whether all FDs are preserved. If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF.
- Decompositions should be carried out and/or re-examined while keeping performance requirements in mind.

[^0]: © Dr. Osmar R. Zaiane, 2001

